
Multi-Agent Planning with 
Cardinality: Towards

Autonomous Enforcement of 
Spectrum Policies

Maqsood Careem, Aveek Dutta and Weifu Wang

Department of Electrical & Computer Engineering

University at Albany, SUNY



Motivation
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ENTITIES

The “Target” (Violator) : Entity that violates spectrum policies

The “Agent” (Enforcer) : Entity that is deployed to detect and locate 
infractions (Enforcement Tasks).

The “Dispatch” : Enforcing agency with the authority to deploy agents 
as necessary and collect evidential information within its jurisdiction. 



Crowdsourced 
Enforcers

• Shortcomings of Crowdsourcing

• Provide approximate location 

• Limited mobility

• Limited resources

• Require incentives 

• Free-riders, trust and reputation management

Prior work: “See Something, Say Something”: Crowdsourced Enforcement of Spectrum Policies.                                               

Aveek Dutta, Mung Chiang, IEEE Trans. Of Wireless Communication, Sept. 2015”

Beyond Crowdsourcing
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Hybrid Enforcement
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Goal: Dispatch appropriate amount of resources (agents) to the 
accurate location in the shortest possible time

Multi



What is Cardinality?

• Cardinality

• Number of unique, mobile agents visiting targets, to achieve a target accuracy 

• Dimensions of Accuracy

• Detection of a bad source 

• Location estimate (Geometric Dilution of Precision)

• Assumed Method 

• Geometric trilateration to locate a target

• Find cardinality that minimizes the GDOP
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Accuracy and GDOP

• Uncertainty from 

• Assumption about Pt

• Measurement noise in SNR 

• Approximation of the channel model

• Use [SNR ± (X=x)]dB where X ∼ N (µ, σ2 )

• d = douter – dinner (from (1) above)

• Thickness of the annulus (d) decreases with SNR

• Closer the Enforcers to the target, lesser is the uncertainty
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Hata-Urban channel model



Trilateration under noise
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Ideal arrangement → Low GDOPCrowdsourced →High GDOP



ROC and Impact on Detection 

• Agents rely on a ROC curve and choose 
an operating point based on their SNR 

• Agents can use any detector and the 
associated ROC 

• e.g., Neyman-Pearson ROC
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Enforcers that have high SNR 
(closer to the target) will 

operate at desirable levels of 
[Pd, Pf], leading to maximum 

accuracy possible



Multi-Agent Planning with Cardinality
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Locations of m targets

Set of m targets 

Set of n agents 

Locations of n agents

Crowdsourced location 
estimates of targets

Set of m convex 
polygons for targets 
determined by 
crowdsourced and 
autonomous agent 
based localization



High Level View
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Crowd Sourced Localization Autonomous Agent Localization Scheduling

Optimal polygon circumscribing Zc

92% Improvement

Schedule optimal number of agents to 
all targets in minimum time



Step-A: Determination of 
Cardinality



Step-A: Determination of Cardinality
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Definition 1: Cost of Localization

Definition 2: Cardinality

# of agents deployed to target Tj

Trade-off factor, range [0 - 0.1]

Polygon circumscribing Zc

Polygon from crowd localization

• i typically varies between 3 and 8 

• Diminishing return beyond that



Algorithm to determine Cardinality
Goal: To find an optimal number and placement of agents for each target.

Idea: Find the optimum Polygon that circumscribes Zc, then deploy agents to the vertices of this polygon 

for low GDOP and high accuracy

Start with Location estimate from crowd - Convex Polygon Zc

Step 1: For 3 : maxAgents (# Edges of Zc ), 

Step 1a: Find smallest polygon (minPoly) that circumscribe Zc

Step 1b: Perform trilateration with agents positioned at vertices of minPoly (ZA)

Step 1c: Calculate Cost of Localization

Step 2: Optimal Polygon = minPoly with least Cost of Localization

Step 3: Cardinality = # Sides of Optimal Polygon
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Impact on Localization
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Accuracy and cost of localization. For      = 0.01, the optimal cardinality is 5 and the 
median reduction in the area of the convex polygon is 96%.

(a) Ratio of with Cardinality (b) Cost of Localization vs Cardinality.
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Step-B: Schedule 
Autonomous Agents



Step-B: Schedule Autonomous Agents
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Definition 3: Cost of Scheduling

Definition 4: Uniqueness

Definition 5: Schedule

- Path of agent       of length    

- Cost of a path with k vertices 
= Sum of Edge Weights

Distinct agents visit each target to fulfill its cardinality

The set of paths                                 of all n agents to 

visit m targets in the shortest possible time while

fullfilling the cardinality of each Target.



Algorithm for the Schedule
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1. Compute 
shortest 

distances from 
each agent to all 

targets.
2. Apply TSP to 
each agent to 
find shortest 
paths to all 

targets.



Analysis of the Scheduling Algorithm

Claim 1: The Schedule is NP-hard.
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Lemma 1: Algorithm for Schedule has complexity of $O(nm^
where n is the number of agents and m is the number of targets.



Proof Overview: 
Costliest paths returned by Algorithm 3 and OPT -

Goal: To find a relationship between 

Using: 1) Properties of Minimum Spanning Tree (MST)
2) Properties of Algorithm 3.

Cases: 

Approximation Ratio for Scheduling Algorithm 
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Performance Evaluation
• Scheduling Costs in different cities
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London New York Paris 



1. Constant Average Cardinality
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London New York Paris 



2. Constant Total Cardinality
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London New York Paris 



Overall System Performance 
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Figure: Comparison of the distribution of Normalized Cost Metric for NYC with that of (a) Edge lengths and 
(b) Average Distance between Targets.



Related Work

• Multiple Traveling Salesmen Problem (MTSP) [NP hard] [1] →
Multiagent Planning with uniqueness (MPU) → But, no 
Cardinality

• Vehicular Routing Problems (VRP/MDVRP) → Uncontrolled 
number of multiple visits → No Uniqueness [2]
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[1] “The multiagent planning problem,” Tamas et. Al
[2] “A review of dynamic vehicle routing problems,” Pillac et. Al 



Conclusions

Through simulations and analysis, we draw three firm conclusions: 

• The algorithm is polynomial and provides the shortest paths for the agents 

while conforming to the cardinality.

• The algorithm has a provable bound of 3-approximation ratio. 

• It exhibits strong generality across different geographical regions, by 

producing statistically similar results for varying degree of violations.
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CHRONOS
NSF Award # 1823225 CRI: II-NEW: CHRONOS : Cloud based Hybrid RF-Optical 

Network Over Synchronous Links  

Co-PIs: Drs. Dola Saha, Aveek Dutta and Hany Elgala
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