Multi-Agent Planning with Cardinality: Towards Autonomous Enforcement of Spectrum Policies

Maqsood Careem, Aveek Dutta and Weifu Wang

Department of Electrical & Computer Engineering University at Albany, SUNY

State University of New York

Motivation

ENTITIES

The *"Target"* (Violator) : Entity that violates spectrum policies

The *"Agent"* (Enforcer) : Entity that is deployed to detect and locate infractions (Enforcement Tasks).

The *"Dispatch"* : Enforcing agency with the authority to deploy agents as necessary and collect evidential information within its jurisdiction.

Beyond Crowdsourcing

- Shortcomings of Crowdsourcing
 - Provide approximate location
 - Limited mobility
 - Limited resources
 - Require incentives

- eation Crowdsourced Enforcers
- Free-riders, trust and reputation management

Prior work: "See Something, Say Something": Crowdsourced Enforcement of Spectrum Policies. Aveek Dutta, Mung Chiang, *IEEE Trans. Of Wireless Communication, Sept. 2015*"

1/29/2020

Hybrid Enforcement

Goal: Dispatch appropriate amount of resources (agents) to the accurate location in the shortest possible time

What is Cardinality?

- Cardinality
 - Number of unique, mobile agents visiting targets, to achieve a target accuracy
- Dimensions of Accuracy
 - Detection of a *bad* source
 - Location estimate (Geometric Dilution of Precision)
- Assumed Method
 - Geometric trilateration to locate a target
 - Find cardinality that minimizes the **GDOP**

- Thickness of the annulus (d) decreases with SNR
 - Closer the Enforcers to the target, lesser is the uncertainty 1/29/2020 University at Albany, SUNY

Trilateration under noise

Crowdsourced \rightarrow High GDOP

Distance along X direction (m)

Ideal arrangement \rightarrow Low GDOP

ROC and Impact on Detection

- Agents rely on a ROC curve and choose an operating point based on their SNR
- Agents can use any detector and the associated ROC
 - e.g., Neyman-Pearson ROC

Enforcers that have high SNR (closer to the target) will operate at desirable levels of [P_d, P_f], leading to maximum accuracy possible

Multi-Agent Planning with Cardinality

Algorithm 1: MPC Algorithm		
1 Function MPC(Map, a, Z_C)		
2	$\gamma_{th} = 10m^2$; $\mathfrak{t}_C = getCentroids(\mathcal{Z}_C)$;	
3	while True do	
4	$[\mathcal{C}, \mathcal{Z}_A] = findCardinality(Map, \mathfrak{t}_C, Z_C);$	t_C
5	$t = getCentroids(\mathcal{Z}_A);$,
6	$\mathcal{P} = findAgentSchedule(Map, a, t, C);$	Ŀ
	// Take measurements & evaluate actual ${f t}$	
7	if $\mathcal{Z}_A < \gamma_{th}$ then break; else $\mathcal{Z}_C = \mathcal{Z}_A$; $\mathfrak{t}_C = \mathfrak{t}$;	
8	end	7.0
9	return \mathcal{P} ;	~0
10 end		\mathcal{Z}_A

 $T = \{T_1, \dots, T_m\}$ Set of m targets $t = \{t_1, ..., t_m\}$ Locations of m targets = $\{t_{C,1}, ..., t_{C,m}\}$ Crowdsourced location estimates of targets $A = \{A_1, ..., A_n\}$ Set of n agents $a = \{a_1, ..., a_n\}$ Locations of n agents $C = \{\mathcal{Z}_{C,1}, ..., \mathcal{Z}_{C,m}\}$ Set of m convex polygons for targets $\mathcal{Z}_{A} = \{\mathcal{Z}_{A,1}, ..., \mathcal{Z}_{A,m}\}$ determined by crowdsourced and autonomous agent based localization

High Level View

Crowd Sourced Localization

Autonomous Agent Localization

Scheduling

Step-A: Determination of Cardinality

Step-A: Determination of Cardinality

Definition 2: Cardinality

$$C_j = \arg\min_i \frac{\mathcal{Z}_{A,j}^i}{\mathcal{Z}_{C,j}} + \lambda i$$

- *i* typically varies between 3 and 8
- Diminishing return beyond that

Algorithm to determine Cardinality

- **Goal:** To find an optimal number and placement of agents for each target.
- **Idea:** Find the optimum Polygon that circumscribes Z_c, then deploy agents to the vertices of this polygon for low GDOP and high accuracy

Start with Location estimate from crowd - Convex Polygon $\mathbf{Z}_{\mathbf{c}}$

```
Step 1: For 3 : maxAgents (# Edges of Z<sub>c</sub>),
```

Step 1a: Find smallest polygon (minPoly) that circumscribe Z_c

Step 1b: Perform trilateration with agents positioned at **vertices of minPoly (Z_A)**

Step 1c: Calculate Cost of Localization

Step 2: Optimal Polygon = **minPoly** with **least Cost of Localization**

Step 3: Cardinality = **# Sides** of **Optimal Polygon**

1/29/2020

Impact on Localization

Accuracy and cost of localization. For $\lambda = 0.01$, the optimal **cardinality is 5** and the median reduction in the **area of the convex polygon is 96%**.

1/29/2020

University at Albany, SUNY

Step-B: Schedule Autonomous Agents

Step-B: Schedule Autonomous Agents

Definition 3: Cost of Scheduling

Cost of Scheduling =
$$max_{\forall i}c(P_i) = max_{\forall i}l_i$$

Definition 4: Uniqueness

Distinct agents visit each target to fulfill its cardinality

Definition 5: Schedule

The set of paths $\mathcal{P} = \{P_1, ..., P_n\}$ of all *n* agents to visit *m* targets in the shortest possible time while fullfilling the cardinality of each Target.

 $P_i\;$ - Path of agent $a_i\;$ of length $l_i\;$

c(P) - Cost of a path with k vertices = Sum of Edge Weights $c(P) = \sum_{i=1}^{k} w(x_i, x_{i+1})$

1/29/2020

Algorithm for the Schedule

A₁

 A_3

Τ,

 T_3

T₂

 T_2

 T_1

T₁

(a) City map with 3 agents, 5 targets with different cardinality and edge weights

(d) Iter 3: Remove T_2 from A_1 's path. A_3 costliest agent, T_2 -farthest redundant target 1/29/2020

 T_3

T₃

 T_2

 T_5

 T_5

 T_5

T₄

costliest agent, T_4 -farthest redundant target

(e) Iter 4: Remove T_2 from A_3 's path. A_3 costliest agent, T_1 -farthest redundant target University at Albany, SUNY

(c) Iter 2: Remove T_4 from A_2 's path. A_1 costliest agent, T_2 -farthest redundant target

(f) Iter 5: Remove T_1 from A_3 's path, A_1 costliest agent with all cardinality fulfilled

Analysis of the Scheduling Algorithm

Claim 1: The Schedule is NP-hard.

Lemma 1: Algorithm for Schedule has complexity of $O(nm^4)$ where *n* is the number of agents and *m* is the number of targets.

Approximation Ratio for Scheduling Algorithm

Theorem 1. Algorithm 3 is 3-approximation for the Scheduling Problem.

Proof Overview: Costliest paths returned by Algorithm 3 and OPT - l_p and l_q^*

Goal: To find a relationship between l_p and l_q^*

Using: 1) Properties of Minimum Spanning Tree (MST)2) Properties of Algorithm 3.

Cases: 1) The targets in $P_p \subseteq$ the targets in P_p^*

2) The targets in $P_p \not\subseteq$ the targets in P_p^* .

Property 1. If $T_y^i = 0$, then l_i is <u>no worse</u> than twice the optimal cost l_i^* . i.e., $l_i \leq 2.l_i^*$.

Furthermore, the following properties can be observed based on the design of Algorithm 3 and the definition of OPT.

Property 2. Since, Algorithm 3 and OPT both return the costliest paths among all the agents (say l_p and l_q^*), the paths travelled by any other agent, <u>must not</u> be costlier than l_p or l_q^* . Thus, for any agent $i \in A$ we have, $l_i \leq l_p$ for Algorithm 3 and $l_i^* \leq l_q^*$ for OPT.

Property 3. In Algorithm 3 and OPT, all targets must be visited by the same number of agents (Definition 2 in $\S V$).

Property 4. If a target t_k is removed from an agent *i*'s path, it must have been the costliest path at some prior iteration of the algorithm (line 8–15). So, if agent *p* is the costliest agent at the end of the algorithm, the increase in agent *i* for visiting t_k <u>must be</u> such that $l_i + l_i(t_k) \ge l_p$.

Property 5. From Table I, we can express the costs l_i and l_i^* of agent *i* as,

$$l_i = l_i(T_x^i) + l_i(T_y^i) l_i^* = l_i^*(T_x^i) + l_i^*(T_z^i)$$

Performance Evaluation

• Scheduling Costs in different cities

(a) Example routing in London. Cost metric = 2.618 km/km

Paris

(b) Example routing in NYC. Cost metric = 2.374 km/km

(c) Example routing in Paris. Cost metric = 2.874 km/km

1. Constant Average Cardinality

(a) Normalized cost metric in London

(b) Normalized cost metric in NYC

(c) Normalized cost metric in Paris

Fig. 3: Normalized cost metric for Average Cardinality = 3 for (a) London (b) NYC and (c) Paris. The dark line highlights the points beyond which the cost variation is below 10%. The variance is indicated using the color scale.

2. Constant Total Cardinality

London

New York

(a) Normalized cost spread in London

(b) Normalized cost spread in NYC

(c) Normalized cost spread in Paris

Fig. 4: Normalized cost metric for **Total Visits = 40**. The dark line highlights the points beyond which the cost variation is below 10%. The variance is indicated using the color scale.

Overall System Performance

Figure: Comparison of the distribution of Normalized Cost Metric for NYC with that of (a) Edge lengths and (b) Average Distance between Targets.

Related Work

- Multiple Traveling Salesmen Problem (MTSP) [NP hard] [1] → Multiagent Planning with uniqueness (MPU) → But, no Cardinality
- Vehicular Routing Problems (VRP/MDVRP) → Uncontrolled number of multiple visits → No Uniqueness [2]

[1] "The multiagent planning problem," Tamas et. Al[2] "A review of dynamic vehicle routing problems," Pillac et. Al

1/29/2020

Conclusions

Through simulations and analysis, we draw three firm conclusions:

• The algorithm is polynomial and provides the shortest paths for the agents while conforming to the cardinality.

• The algorithm has a provable bound of 3-approximation ratio.

• It exhibits strong generality across different geographical regions, by producing statistically similar results for varying degree of violations.

1/29/2020

CHRONOS

NSF Award # 1823225 CRI: II-NEW: CHRONOS : Cloud based Hybrid RF-Optical

Network Over Synchronous Links

Co-PIs: Drs. Dola Saha, Aveek Dutta and Hany Elgala

Baseband Processing in Quad-FPGA Blade Server

Thank you