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ENTITIES

The “Target” (Violator) : Entity that violates spectrum policies

The “Agent” (Enforcer) : Entity that is deployed to detect and locate
infractions (Enforcement Tasks).

The “Dispatch” : Enforcing agency with the authority to deploy agents
as necessary and collect evidential information within its jurisdiction.



Beyond Crowdsourcing

 Shortcomings of Crowdsourcing

Provide approximate location

 Limited mobility
» Limited resources g:;x.‘li?;rced
« Require incentives i O Tier2 Newwork

O Tier-3 Network
- -» Violation detected by Tier-2 clients

Free-riders, trust and reputation management

Prior work: “See Something, Say Something”: Crowdsourced Enforcement of Spectrum Policies.

Aveek Dutta, Mung Chiang, IEEE Trans. Of Wireless Communication, Sept. 2015”
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Hybrid Enforcement
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‘Multi Agent Planning with Cardinality (MPC)

Goal: Dispatch appropriate amount of resources (agents) to the
accurate location in the shortest possible time
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What 1s Cardinality?

 Cardinality
« Number of unique, mobile agents visiting targets, to achieve a target accuracy
* Dimensions of Accuracy

e Detection of a bad source

« Location estimate (Geometric Dilution of Precision)

 Assumed Method

* Geometric trilateration to locate a target

 Find cardinality that minimizes the GDOP
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Accuracy and GDOP

_ Hata-Urban channel model
PL=A+Blog(d)+C = d=10" 5 (1) /
where, A=69.55 + 26.16log(f.) — 13.82log(hs)
— 3.2(log(11.75h,,))* — 4.97 500
B=44.9—-6.55log(hy) and C=0 (Large metropolitan areas) _Gz = 2dB cri = 6dB
PL [dBm]=P, [dBm] — SNR [dB] — Py [dBm] 400 f —oc =4dB —c =8dB

* Uncertainty from

Uncertainty in
thickness, d is
minimal at high

w
o
o

« Assumption about P,

Thickness of Annular region, d (m)

« Measurement noise in SNR 200 SR
« Approximation of the channel model
100 |
* Use [SNR + (X=x)]dB where X ~ N (u, 02) \
e d=d, g — dipper (from (1) above) % 10 50 ;’6

« Thickness of the annulus (d) decreases with SNR SNR (dB)

 Closer the Enforcers to the target, lesser is the uncertainty
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Trilateration under noise
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ROC and Impact on Detection

 Agents rely on a ROC curve and choose
an operating point based on their SNR

« Agents can use any detector and the
associated ROC

* e.g., Neyman-Pearson ROC

Enforcers that have high SNR
(closer to the target) will
operate at desirable levels of
[P, P, leading to maximum
accuracy possible

Probability

Detection (Pd)

e Operating Points [Pd,Pf]

—

10710

Probability of False Positive (P,)
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Multi-Agent Planning with Cardinality

Algorithm 1: MPC Algorithm T = {T),...T,,} Setofm targets
1 Function MPC(Map, a, Z¢) . : . ¢
2 Yen = 10m*; to = getCentroids(Z¢); t = {t1,...t;mf  Locations of m targets
3 while 7rue do :
., _ Crowdsourced location
4 [C,Z4] = findCardinality(Map, tc, Zc); tc = {tC,lv ey tc’m}estimates of targets
5 t = getCentroids(Z 4); o )
6 P = findAgentSchedule(Map, a, t, C); A = {A,..,A,} Setofnagents
// Take measurements & evaluate actual t - .
. — Locations of n agents
if Z4 < 7, then break; else Z¢o = Za:tc = t: a {al’ ’a”} 5
end zZ., - {z z Set of m convex
return P; ¢ =12ca, - Zom} polygons for targets
10 end Zx=1{241,..., ZA,m} determined by
crowdsourced and
autonomous agent
based localization
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High Level View

Crowd Sourced Localization Autonomous Agent Localization Scheduling
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Step-A: Determination of
Cardinality



Step-A: Determination of Cardinality

# of agents deployed to target T;

Detfinition 1: Cost of Localization
__— Polygon circumscribing Z,

C'ost of Localization = —= A
CLj

Definition 2: Cardinality

- “:rl{ .
- —_— . * i Aq. .
C; = arg min 247

— Trade-off factor, range [0 - 0.1]

Polygon from crowd localization

* 1typically varies between 3 and 8

‘ Zc . e Diminishing return beyond that
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Algorithm to determine Cardinality

Goal: To find an optimal number and placement of agents for each target.

Idea: Find the optimum Polygon that circumscribes Z_, then deploy agents to the vertices of this polygon
for low GDOP and high accuracy

Start with Location estimate from crowd - Convex Polygon Z,
Step 1: For 3 : maxAgents (# Edges of Z_),
Step 1a: Find smallest polygon (minPoly) that circumscribe Z,

Step 1b: Perform trilateration with agents positioned at vertices of minPoly (Z,)

Step 1c: Calculate Cost of Localization
Step 2: Optimal Polygon = minPoly with least Cost of Localization
Step 3: Cardinality = # Sides of Optimal Polygon
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Impact on Localization
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Accuracy and cost of localization. For A = 0.01, the optimal cardinality is 5 and the
median reduction in the area of the convex polygon is 96%.
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Step-B: Schedule
Autonomous Agents



Step-B: Schedule Autonomous Agents

Definition 3: Cost of Scheduling P; - Path of agenta,; of length [
‘ (:(P ) - Cost of a path with k vertices
Cost of Scheduling = maxy;c(P;) = maxy;l; , = Sur}} of Edge Weights

C(P) = Z "U,-"(ﬂ“f.é, I-‘i—l—l)

Definition 4: Uniqueness

Distinct agents visit each target to fulfill its cardinality

1200 [ 5 Sai

Definition 5: Schedule

—
o
-
o

The set of paths P = {F,.... P, } of all n agents to

visit m targets in the shortest possible time while

Distance Along Y direction (m)

fullfilling the cardinality of each Target.
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Algorithm for the Schedule

2 shortest

targets.

targets.

(a) City map with 3 agents, 5 targets with
different cardinality and edge weights

A T T, T T
A, T, T, T T

(d) Iter 3: Remove 7% from A:’s path. Az-
costliest agent, T>-farthest redundant target

1/29/2020

. Compute

, . "5 | distances from
W Terget /oo A, feach agent to all

2. Apply TSP to
each agent to
i “1.»| findshortest

5 paths to all

(b) Iter 1: Imitial Path Estimate: As-
costliest agent, T’;1-farthest redundant target

A T T, T T,
A T, T, T T

(e) Iter 4: Remove 7> from A3’s path. A3-
costliest agent, 71 -farthest redundant target

University at Albany, SUNY

A T T, T T T,
A T, T, T Ts

(c) Iter 2: Remove T4 from As’s path. A;-
costliest agent, T>-farthest redundant target

A T T, T T
A, T, T, T, T

(f) Iter 5: Remove 771 from A3’s path, A;-
costliest agent with all cardinality fulfilled

18



Analysis of the Scheduling Algorithm

‘ Claim 1: The Schedule is NP-hard. ‘

Lemma 1: Algorithm for Schedule has complexity of O(nm?)
where n is the number of agents and m is the number of targets.
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Approximation Ratio for Scheduling Algorithm

Theorem 1. Algorithm 3 is 3-approximation for the Schedul-
ing Problem.

Proof Overview:
Costliest paths returned by Algorithm 3 and OPT - [, and [,

Goal: To find a relationship between [, and [,

Using: 1) Properties of Minimum Spanning Tree (MST)
2) Properties of Algorithm 3.

Cases: |) The targets in P;D C the targets in P;

2) The targets in P, ¢ the targets in Py.

Property 1. If T_; = 0, then [; is no worse than twice the
optimal cost l}. i.e, [; < 2.17.

Furthermore, the following properties can be observed
based on the design of Algorithm 3 and the definition of OPT'.

Property 2. Since, Algorithm 3 and OPT both return the
costliest paths among all the agents (say l,, and l;‘; ), the paths
travelled by any other agent, must not be costlier than [, or
ly- Thus, for any agent i € A we have, l; < 1, for Algorithm
3 and I7 <1 for OPT.

Property 3. In Algorithm 3 and OPT, all targets must be
visited by the same number of agents (Definition 2 in §V).

Property 4. If a target t;. is removed from an agent i’s path,
it must have been the costliest path at some prior iteration of
the algorithm (line 8—15). So, if agent p is the costliest agent
at the end of the algorithm, the increase in agent 1 for visiting
ty must be such that l; + 1;(ty) > [,

Property 5. From Table I, we can express the costs [; and

of agent 1 as,
;= 1;(Ty) + Zz(sz)

5= 15T + 15T

4
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Performance Evaluation

 Scheduling Costs in different cities
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1. Constant Average Cardinality

London
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(c) Normalized cost metric in Paris

Fig. 3: Normalized cost metric for Average Cardinality = 3 for (a) London (b) NYC and (c) Paris.The dark line highlights the
points beyond which the cost variation 1s below 10%. The variance 1s indicated using the color scale.
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2. Constant Total Cardinality

London New York
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Fig. 4: Normalized cost metric for Total Visits = 40. The dark line highlights the points beyond which the cost variation is
below 10%. The variance is indicated using the color scale.
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Overall System Performance
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(b) Average Distance between Targets.
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Related Work

» Multiple Traveling Salesmen Problem (MTSP) [NP hard] [1] =
Multiagent Planning with uniqueness (MPU) - But, no
Cardinality

 Vehicular Routing Problems (VRP/MDVRP) - Uncontrolled
number of multiple visits 2 No Uniqueness [2]

[1] “The multiagent planning problem,” Tamas et. Al
[2] “A review of dynamic vehicle routing problems,” Pillac et. Al



Conclusions

Through simulations and analysis, we draw three firm conclusions:

 The algorithm is polynomial and provides the shortest paths for the agents

while conforming to the cardinality.

 The algorithm has a provable bound of 3-approximation ratio.

« It exhibits strong generality across different geographical regions, by

producing statistically similar results for varying degree of violations.



CHRONOS

NSF Award # 1823225 CRI: II-NEW: CHRONOS : Cloud based Hybrid RF-Optical
Network Over Synchronous Links

Co-PIs: Drs. Dola Saha, Aveek Dutta and Hany Elgala
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