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Enable Reliable Communication over V2X Channels

V2X Communication

• V2I – Vehicle to Infrastructure

• V2V – Vehicle to Vehicle
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Security Autonomy InfotainmentTraffic

Chaotic V2X Channel → Impaired Communication



V2X Channel Prediction
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Scattering Zone

RSU: Road Side Unit

Example of a vehicular Edge network



V2X Channel Prediction

• State of the Art techniques do NOT work: 
1. Time-series analysis of the channel

2. Reactive Receiver-side Equalization

• Problem Statement
• Prediction and Proactive Transmitter-side Pre-Equalization
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Intuition
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Pre-Equalized Waveform



V2X Channel Prediction System
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A typical V2X Channel Model

Model

Factors

Measurable
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[1] Svensson et. al “WINNER II Channel Models”.

[1] 

Latent 
(Uncorrelated) 

Factors

Measurable 
(Correlated) 

Factors

• Scatterering Environment
• Doppler frequency

• Angle of Departures & Arrivals (AoD & AoA)
• Channel gains and path delays, etc…

• Number of Scatterers (Ns)
• Locations (S)



Non-stationarity of V2X Channel

• V2X Channel is non-stationary over space, time and vehicular density.

1/29/2020 University at Albany, SUNY 8

Number of scatterersOver time Non-stationary channel 

(d)

Over Space



Channel Recommendation System
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Channel Recommendation System
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A. Adaptive Smoothing - Tracking

Kalman-AR Combination:

• Combination of autoregression (AR) and Kalman filter.
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Predicted channel coefficients (z(k)) are combined 
by an AR model 

weights of the AR model are tracked and predicted by the 
Kalman filter

[2] Al-Ibadi and A. Dutta, “Predictive analytics for non-stationary v2i channel”



Additional Smoothing
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The tracked channel lags the true channel!



Alleviating the Disparity
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k=1
Ns=3
S=0

k=2
Ns=2
S=10

Ns2,S2

Ns1,S1

This can be used to track the Spatio-Temporal Evolution of V2X Channel!



Tensor Update
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Dimensions
• Transition in Number of Scatterers (Ns)

• Transition in Location (S)

• Quantization levels (q)

Entries
• Adjustments = f(CSI)

Channel Tensor



Concerns

Limitations…
• Sparsity                  → Missing adjustments

• Noisy data              → Corrupt adjustments

Solution
• Tensor factorization & Completion 
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Sparse & Noisy Channel Tensor



Tensor Update

B. Tensor Factorization & Completion
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Example
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1) Tensor Factorization

• Captures latent structure of channel tensor (CP Factorization [5])
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Error Function        Regularization Term

[3] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”



2) Tensor Completion

• Reconstructs tensor from computed factors (A , B , C)
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Tensor Query

• Extract Channel Adjustments, 
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Tensor Query



C. Spatio-Temporal Adjustment

• This alleviates the lag and the disparity in Number of Scatterers
and location.
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Predicted Downlink 
Channel Profile



D. Pre-equalization at Transmitter

• The waveform of the downlink packet is pre-equalized → Net 
effect is a flat fading at the receiver [4].

• Inverse of the expected fading profile,
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[4] Al-Ibadi and A. Dutta, “Predictive analytics for non-stationary v2i channel”



Effect of Pre-Equalization

High level system performance: 

• The waveform of the downlink packet is pre-equalized 

→ Result: Clean constellations and flat fading at the receiver
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Simulation setup & testbed

• Measurement channel life-cycle
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• Conventional 802.11p (OFDM packet)

• With pilot-based linear interpolation equalization 

• Carrier frequency (fc) = 5.9GHz 

• Vehicle Speed = 45 mph

• Segment Length = 10 m



Results: A. BER at the Receiver

• Bit Error Rate (BER)
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(a) BER for 16-QAM with 16 pilot 
tones.

(b) BER for different modulation 
with 16 pilot tones.

(c) BER for 16QAM and 64QAM with 
varying # pilot tones.



B. EVM at the Receiver
• Error Vector Magnitude (EVM)
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(b) EVM plot for 16QAM with varying pilot tones at 20dB 
SNR.

(a) EVM distribution for 16QAM with 16 pilot tones



C. Throughput-Pilot Trade-off

• The gain in goodput due to low BER. 
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(a) Throughput and BER for different modulation for different number of pilots.



D. Accuracy of the Recommender System

• Mean Square Error (MSE) of the Recommender at Transmitter.
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(b) MSE reduces with more CSI entries in the 
tensor.

(a) MSE is fairly consistent for each frequency sub-
carrier.



Discussion

1) V2X Channels have high spatio-temporal non-stationarity.

2) Recommender at Tx is able to predict the V2X channel 

→ flat fading profile → 96% lower BER 

3) Higher modulation orders → V2X achieves higher Data Rates

4) Accuracy of recommender improves with time (MSE of 0.001) 
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Tx

Ongoing Work: A. Outdoor V2X wireless testbed: 

Rx



B. Deep Reinforcement Learning for V2X
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Unique Advantage
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More Accurate 
Channel Prediction



C. Intelligent Higher Layer Functions

Recommendation Framework at Physical Layer
32



D. Generalization to other Non-stationary Channels

● This framework can be generalized to other wireless channels,

○ 802.11-(xx), 

○ C-V2X, 

○ Visible Light, 

○ Space communication and 

○ Underwater networks

33[4] Qualcomm, “C-V2X”



Courses Taken

ICSI 516 - Computer Communication Networks

ICSI 525 - Mobile Wireless Networks

ICEN 553 - Cyber-Physical Systems

ICSI 503 - Algorithms & Data Structures

ICSI 551 - Bayesian Data Analysis

AMAT 575 - Optimization Theory

AMAT 524 - Advanced Linear Algebra
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Relevant Publications:
[VTC 2018] Spatio-Temporal 
Recommender for V2X Channels
[IEEE 5GWF] Channel Analytics for V2X 
Communication
[TWC*] Real-time prediction of Non-
Stationary V2X channel using Tensor 
Decomposition

Relevant Publications:
[Dyspan 2018] Multi-Agent Planning with 
Cardinality: Towards Autonomous 
Enforcement of Spectrum Policies
[TCCN] Spectrum Enforcement & 
Localization using Autonomous Agents 
with Cardinality

Relevant Publications:
[IEEE 5GWF] CHRONOS : A Cloud based 
Hybrid RF-Optical Network Over 
Synchronous Links
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Conclusion

● My work…

○ Emerging Applications in Emerging Wireless Networks:
Autonomous Agents, Adverse Channels, Hybrid Communications etc.

○ Emerging Techniques: 
Deep AI, Distributed Consensus Algorithms, Quantum Computing, etc.

● My Vision…

○ Enabling Pro-active, Real-time applications via Autonomous agents (UAVs, 
UGVs, crowd) for emerging wireless networks

36



Thank you
Questions & Feedback


