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Motivation

Advent of Spectrum Sharing demands Enforcement of Spectrum policies.

Dynamic nature of violations necessitate use of Autonomous Agents.

Problem Statement: 1. Requires efficient schedule for multi-modal agents.

2. Requires distributed inferences among trust-less agents

Autonomous Enforcement System:
“Multi-modal agents autonomously sense, make decisions and enforce policies”
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Autonomous Enforcement System

Autonomous Enforcement System

The “Target” (Violator) :
Entity that Vi()]ates Spectrum SenseChain: Distributed Fusion System

policies [ ]_>[ ]_>[ } _____ *[j
Agents that sense and detect ( Z \

The “Sensors” :

o 4 ™ g ™\ 4 N
infractions. — .
Crowd based Mobile Agent :
Spectrum > Sensing based Sensing Penalty Actions
Policy
. ~— — \ J \ J \_ J
The “Validators” : Autonomous Spectrum Sensing
Agents which make decisions B ’ |

and COHeCt ev1dence 1. Determine Schedule for Mobile Agents using Crowd measurements

2. Aggregate sensing results to detect violations and estimate locations
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Autonomous
Spectrum Sensing

“Spectrum Enforcement and Localization Using Autonomous Agents With Cardinality,”

Magsood Ahamed Abdul Careem, A. Dutta and W. Wang in IEEE TCCN.

“Multi-Agent Planning with Cardinality: Towards Autonomous Enforcement of Spectrum Policies,”
Magsood Ahamed Abdul Careem, Aveek Dutta and Weifu Wang in IEEE DYSPAN 2018.
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Beyond Crowdsourcing

e Crowdsourced measurements [1]
* Trust & Incentives
« Limited Mobility & Resources

« Provide approximate location & detection

* Accuracy

Crowdsourced

* Detection of a bad source Enforcers

O Tier-2 Network
O Tier-3 Network
- -» Violation detected by Tier-2 clients

* Location estimate
(low Geometric Dilution of Precision)

[1] “See Something, Say Something”: Crowdsourced Enforcement of Spectrum Policies. Aveek Dutta, Mung Chiang, IEEE TWC, Sept. 2015”
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Hybrid Autonomous Sensing

/"\
Ne—

Spectrum
Policy

N—

Crowd based
Detection &
Localization

Estimates

'

Autonomous
Derive Agent Detection &
Cardinality e Scheduling & —| Localization
Deployment

Multi Agent Planning with Cardinality (MPC)

Goal: Dispatch appropriate amount of resources (agents) to the right
location in the shortest possible time.
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L.ocalization: Multilateration

PL=A+Blog(d)+C = d=10
where, A=69.55 + 26.16log(f.) — 13.821og(hs)
— 3.2(log(11.75h))* — 4.97
B=44.9-6.551og(h;) and C=0 (Large metropolitan areas)
PL [dBm]=P,; [dBm] — SNR [dB] — Py [dBm]

A=

* Uncertainty from

« Assumption about P,

e Measurement noise in SNR

« Approximation of the channel model

« Use [SNR + (X=x)]dB where X ~ N (u, 02)

- d=d

outer dinner

1/29/2020

(from (1) above)
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Multilateration under noise

Close Agents = Less uncertainty Crowdsourced > ngh GDOP Ideal arrangement - Low GDOP
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Number of Agents, their proximity and orientations affect the Localization
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ROC and Impact on Detection

 Agents rely on ROC to choose an OP
based on SNR

» Agents can use any detector [2]

* e.g., Neyman-Pearson ROC

Close Enforcers have high
SNR and can operate at
desirable levels of [Py, Py]

Probability of Netection (Pd)

10710 107 10°

Probability of False Positive (Pf)
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Multi-Agent Planning with Cardinality

Crowd Sourced Localization Autonomous Agent Localization Scheduling
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Step-A: Optimal Cardinality: Impact on Localization

Improvement in Localization Accuracy
"
Zi — (over crowd)
AJ

Cost of Localization =
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Step-B: Scheduling Algorithm

Cost of Scheduling = maxy;c(P;) = maxry;l;

Mission',
] graphs aré,
/ \ /a8 \ Q) |extracted
Target 2 ;o e y
W Tero A, |for each _
) Agent A, agent in line
4 D) 4 & their J
P - shortest

i 7 T, . |paths, orders’
—H are found /

) 1 T,

- in line 5
5 of Alg.1/

(a) City map with 3 agents, 5 targets with
different cardinality and edge weights
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Ag T's TI T; T-l T.‘:-

(b) Iter 1: Initial Path Estimate: As-
costliest agent, T)s-farthest redundant target
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Schedule:P = {Py,....P,}

(f) Iter 5: Remove 71 from Asz’s path, A;-
costliest agent with-all cardinality fulfilled
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Analysis of Scheduling Algorithm

Claim 1: The Schedule is NP-hard.

Lemma 1: Algorithm for Schedule is Polynomial O(nm*).

n-# agents, m-#targets.

Theorem 1. Algorithm 3 is 3-approximation for the Schedul-
ing Problem.

Proot Overview:
Costliest paths returned by Algorithm 3 and OPT - [, and [

Goal: To find a relationship between [, and [

Using: 1) Properties of Minimum Spanning Tree (MST)
2) Properties of Algorithm 3.

Cases: 1) The targets in P, C the targets in P}

2) The targets in P, ¢ the targets in Pl

Property 1. If T, ; = 0, then l; is no worse than twice the
optimal cost 7. i.e, I; <2.I7.

Furthermore, the following properties can be observed
based on the design of Algorithm 3 and the definition of OPT.

Property 2. Since, Algorithm 3 and OPT both return the
costliest paths among all the agents (say l, and l}), the paths
travelled by any other agent, must not be costlier than l, or
Ly Thus, for any agent i € A we have, |; <1, for Algorithm
3and I7 <1 for OPT.

Property 3. In Algorithm 3 and OPT, all targets must be
visited by the same number of agents (Definition 2 in §V).

Property 4. If a target ty. is removed from an agent i’s path,

it must have been the costliest path at some prior iteration of

the algorithm (line 8—15). So, if agent p is the costliest agent
at the end of the algorithm, the increase in agent i for visiting
ty. must be such that l; + 1;(tr) > 1.

Property 5. From Table I, we can express the costs |; and [}
of agent 1 as,

l; = Li(Ty) + Li(T})
Iy =0(Ty) + 1} (T%)
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Altitude (m)

3D Localization and Detection: UAVs

N

1=1

PL = PLyy + PLin + PLyy + N (0,0%)

Outdoor-to-Indoor channel

PLout:A+Blog(d)+C and PLin:0-5d2D—in
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Evaluation Framework

Spectrum Sensing and Geographical Simulator

1) Open Street Map
2) Building Tags (OSM Buildings)
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Autonomous Sensing Performance

* Scheduling Costs in different cities
Paris
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(a) Example routing in London. Cost metric
= 2.618km/km

(b) Example routing in NYC. Cost metric =
2.374km/km

(c) Example routing in Paris. Cost metric =
2.874km/km
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Parametric Analysis: Scheduling

London New York Paris
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Fig. 3: Normalized cost metric for Average Cardinality = 3 for (a) London (b) NYC and (c) Paris.The dark line highlights the
points beyond which the cost variation 1s below 10%. The variance 1s indicated using the color scale.
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Overall System Performance
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3D Localization using UAVs
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SenseChain: Distributed
Fusion System

“SenseChain: Blockchain based Reputation System for Distributed Spectrum Enforcement,”
Magsood Ahamed Abdul Careem and Aveek Dutta in IEEE DYSPAN 2019.
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|. Contributions

Problem: Lack of Trust = Biased Inferences Reputation of Agents

1. Anomaly Detection: Credibility of Sensing
2. Heterogeneous Blockchain: Credibility of Validation.

3. Network protocol: Consensus on Most credible Chain.

SenseChain: Fast & Tamper-proof distributed consensus on the reputation of
sensors, among trustless entities.
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® - -
II. SenseChain
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Q Credibility of Sensing
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1l. SenseChain: Anomaly Detection

o © ®
Log Distance Channel Model | | °
ds, . ®
PLSi:PL'Uj_*_lO’YlOglO + X PL=PF, - P,
dy, - [“%?z -
P, ,(dBm) = SNR(dB) + NF(~96dBm) 4
ds. ®
—SNR,, = —SNR,, + 107log, d— + x [ ) r
U_'; ‘
Estimated Annular Zone
min (SNRj i)fRng> @ sensors
dsi — (dvj _ derr) X 10 . B validators
. : Al
Jmaz g ] 10 ( SR _foijl_Xg ) Reception Zone
S ( v; T WT) : Error in Tx location
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Anomalies and confidence score

Anomaly Detected if... —
- s1 | it the s,
Repo rted |0cat|0n, \%I?;Iated by v1 based
) i 2 n reported SNR
Is Outside Validator Range za

(e, — Wiy, ) > IR

Is Out5|de estimated annulus /§g

Reported location is

d < dmzn or d > dmax outside the annulus

'0

53

/
‘ Annulus is calculated Location of the Transmitter is
based on the reported estimated by the Validator v1 using
Confidence Score SNR using (4) s the reported SNRs and locations
hﬁé; by the sensors{si,s2,53}.

dma:{:_dmin ) N
( 1_ ( g do S5 ) ’ lf (dg;z,zn Sdsz Sd;};l,ax) &
Ss,,;: < (d?s?ja,:c_dg;bzn<R)

L0 . otherwise Else a confidence score represents its truthfulness.

Anomaly detected if reported sensor is outside annulus.
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A. Difficulty of mining

® Trans. | Sensor | Confidence | Reported Sensing Value

. . . ID ID Score (S;) [SNR, Loc]'

Effort In Creatlng a BIOCk Of Informatlon UQ ® Six transactions for 6 sensor reports to U
o -~ ined block with Difficult 10 (Hash<O0O03F)

Mine oc wi 1 icu Yy = ash<
leficult ’ ¢ © |00352e8£12141005ec5bd3d0£36392b17be523e30e0e

_ — o 06dcccd4986028b76887e
U3
Dy, = | D Mg Yo; € V :
vj T max X Uy S
N o U1 . .

Trans. | Sensor | Confidence | Reported Sensing Value

® B———> p | D |Score(s.) [SNR, Loc]'

Six transactions for 3 sensor reports to U1
. . . Trans. | Sensor | Confidence | Reported Sensing Value :
n'Uj # Sensa's in Reception zone of validator D | b |seore(sy| [S‘,\,RQLO(%
]V Six transactions for 4 sensor reports to U3 nined block with Difficulty = 5 (Hash<07F)
Total Nl mber Of sensors : - 0710d20ea07a::g?zgfﬁz:gizig:gg:t;ﬁ?d56d31b220

Mined block with Difficulty = 7 (Hash<OlF)
01d6322d1c340ee073d46eaadebdad3da27f10a6bb53

[Immutability] vs [Low Power & Fast Convergence] 2078£c£0765409a6£523

Difficulty o« Validation Credibility (Power of the Crowd)
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B. Most-Difficult-Chain consensus

Round [ Round! + 1 Round [ + 2
?_)1 D’Ul =6 D,,Jl =4
(%) D,, = 10 D,, =8
/US D"Us =10 JD,U3 = 112
Validators arrive at consensus on most credible V4 D,, =12 Dy, =4
chain
Vs D, =6 D, =8
Y S~ ¥
Genesis Block D =D Diyr = Diyz =
ana I v
Block l — 1 * D’Uz DU:!
/

Converged Blockchain

New blocks added to
before Round |

the Blockchain

Most-Difficult-Chain Consensus: At each round, the most difficult mined block is added to the blockchain.
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V. Historical Reputation & Provenance
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Evaluation Framework

1) Sensing Environment

2) Blockchain Simulator

11/5/19

TABLE I: Simulation Parameters

Parameters

Value/Model

Area
Node Distribution
Mobility Model
Propagation Model
Path-loss exponent ()
Carrier Frequency (f)
Number of Validators
Number of Sensors
Antenna Type
Broadcast Range
Maximum Difficulty (Dyaz)
Block-wait Time (73)

Target location error (derr)

300m x 300m
Uniform Distribution
Random Waypoint
Log-distance propagation model [14]
3 (urban area)
600 MHz
5
20
Omnidirectional
100
16
7s
Uniformly distributed in [20,30] m
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Thickness of Annulus (m)
rJ LiY) B3 L o |
] [ (=] o (o] ]

—
(=]

(a) Variation of annulus width

A. Performance of anomaly detection
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Truthfulness of Sensors can be Accurately inferred in Distributed Manner
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B. Performance of Blockchain based Reputation

Blockchain performance:

- T ' 7
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(a) Block mining times of validators with (b) Block mining time per validator (c) The number of hashes generated by
varying difficulty targets and winning block in each round the winning validator
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Reputation Assignment:

o 1 PN 1
o T xn
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Reputation of Sensors represents the Degree of Maliciousness of Sensors
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Conclusion

1. Can Enforce, Distributed and Dynamic Violations in Shortest possible time with high accuracy
compared to crowd or static paradigms

2. Distributed Decisions can be made among trust-less agents without centralized architecture

3. Can also be applied to Spectrum Sharing and Autonomous Spectrum Sensing.

Autonomous Spectrum Enforcement system performs fully autonomously and achieves higher
Enforcement accuracy and reliability compared to crowdsourced or static paradigms
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Infraction Locations (Targets)

—) Sensor Report Broadcast

Block Multicast by Validators




Infraction Locations (Targets)

Multi-Modal Agents
Sensing Report Broadcast

Distributed Consensus




