

MAQSOOD CAREEM

ADVISER: AVEEK DUTTA DEPT. OF ELECTRICAL & COMPUTER ENGINEERING UNIVERSITY AT ALBANY, SUNY

Autonomous Spectrum Enforcement: A Blockchain Approach

Motivation

- Advent of Spectrum Sharing demands Enforcement of Spectrum policies.
- Dynamic nature of violations necessitate use of Autonomous Agents.

Problem Statement: 1. Requires efficient schedule for multi-modal agents.2. Requires distributed inferences among trust-less agents

Autonomous Enforcement System:

"Multi-modal agents autonomously sense, make decisions and enforce policies"

1. Autonomous Spectrum Sensing

Turuntunu

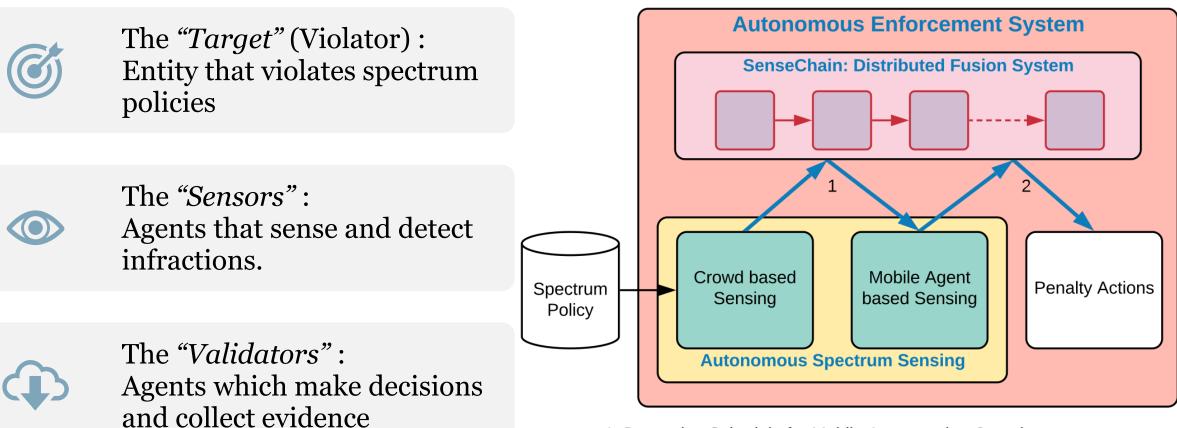
r

2. Distributed Decision Making

Cartholic Carton and State Street Contraction

2D

Autonomous Enforcement System



Determine Schedule for Mobile Agents using Crowd measurements
Aggregate sensing results to detect violations and estimate locations

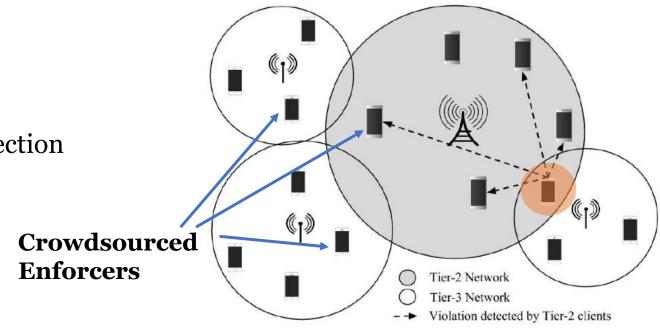
Autonomous Spectrum Sensing

"Spectrum Enforcement and Localization Using Autonomous Agents With Cardinality," Maqsood Ahamed Abdul Careem, A. Dutta and W. Wang in IEEE TCCN. "Multi-Agent Planning with Cardinality: Towards Autonomous Enforcement of Spectrum Policies," Maqsood Ahamed Abdul Careem, Aveek Dutta and Weifu Wang in IEEE DYSPAN 2018.

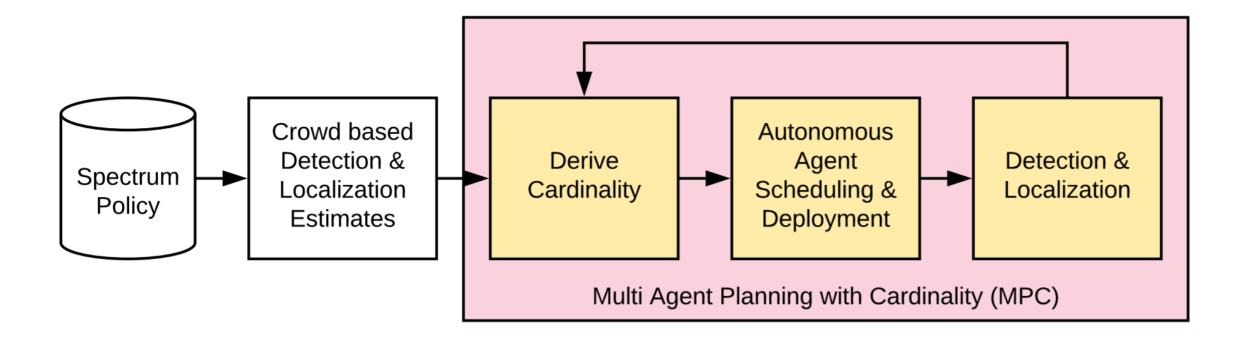
Beyond Crowdsourcing

- Crowdsourced measurements [1]
 - Trust & Incentives
 - Limited Mobility & Resources
 - Provide approximate location & detection
- Accuracy
 - Detection of a *bad* source
 - Location estimate

(low Geometric Dilution of Precision)



Hybrid Autonomous Sensing

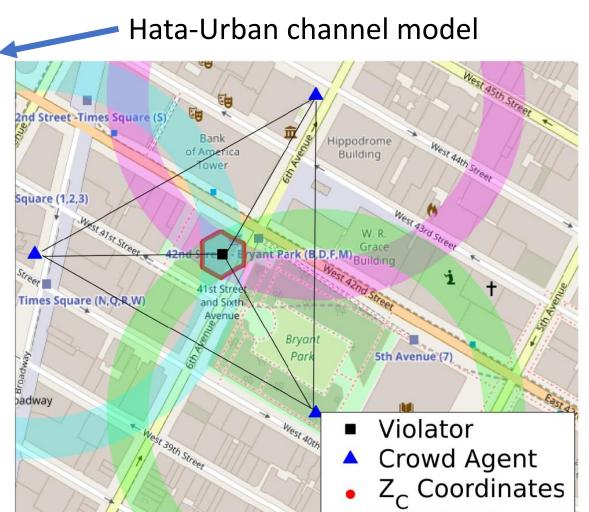


Goal: Dispatch appropriate amount of resources (agents) to the right location in the shortest possible time.

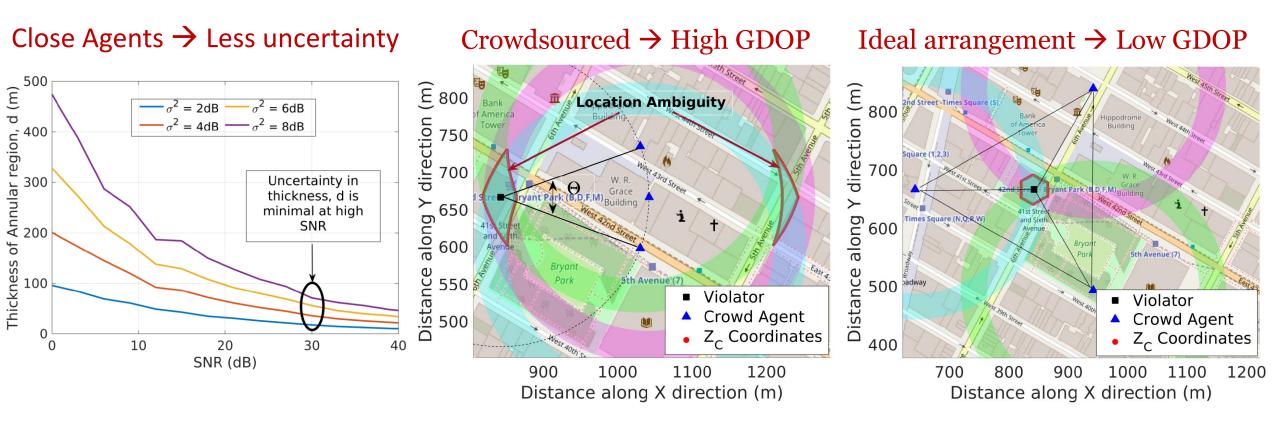
Localization: Multilateration

 $PL=A+B\log(d)+C \implies d=10^{\frac{PL-A-C}{B}}$ (1) where, $A=69.55+26.16\log(f_c)-13.82\log(h_b)$ $-3.2(\log(11.75h_m))^2-4.97$ $B=44.9-6.55\log(h_b)$ and C=0 (Large metropolitan areas) PL [dBm]= P_t [dBm] - SNR [dB] - P_N [dBm]

- Uncertainty from
 - Assumption about P_t
 - Measurement noise in SNR
 - Approximation of the channel model
- Use [SNR ± (X=x)]dB where X ~ N (μ , σ^2)
 - $d = d_{outer} d_{inner}$ (from (1) above)



Multilateration under noise



Number of Agents, their proximity and orientations affect the Localization

ROC and Impact on Detection

- Agents rely on ROC to choose an OP based on SNR
- Agents can use any detector [2]
 - e.g., Neyman-Pearson ROC

letection (P_d) SNR=13dB 0.8 /SNR=11d/B /SNR=9dB/ /SNR/=7dB /SNR=5dB of 0.4 robability 0.2 Operating Points [P_d,P_f] • 10⁻¹⁰ 10⁻⁵ Probability of False Positive (P_{f})

Close Enforcers have high SNR and can operate at desirable levels of [P_d, P_f]

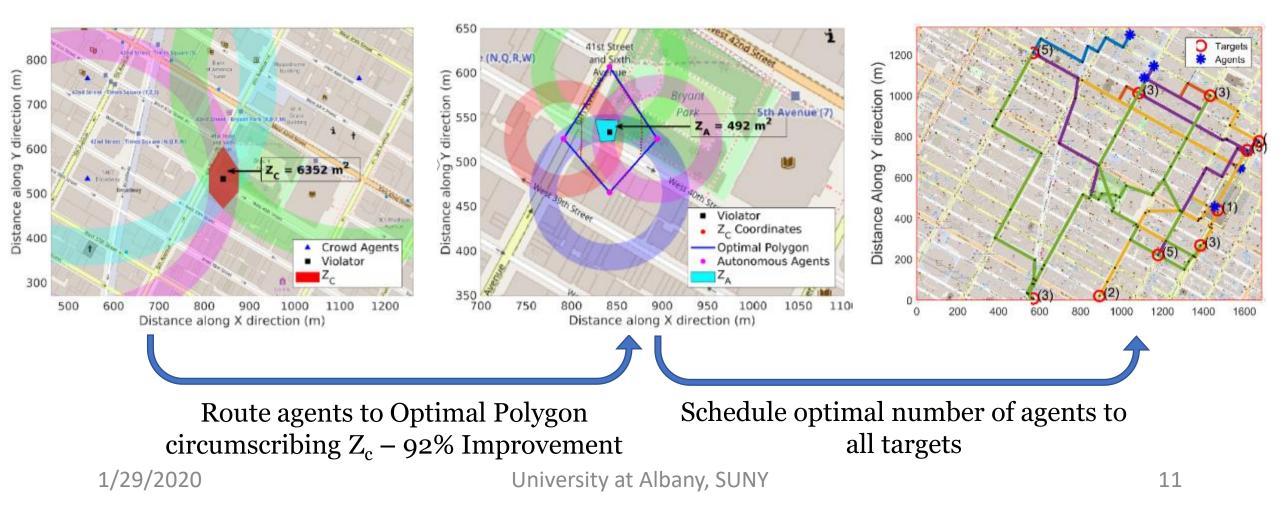
 10^{0}

Multi-Agent Planning with Cardinality

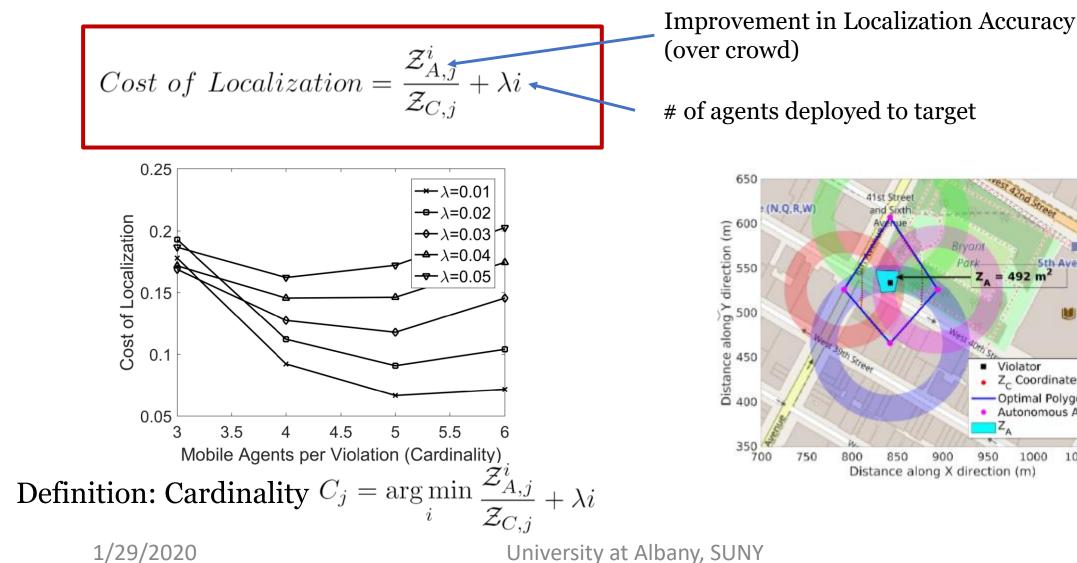
Crowd Sourced Localization Aut

Autonomous Agent Localization

Scheduling



Step-A: Optimal Cardinality: Impact on Localization



Sth Avenue (7)

1050

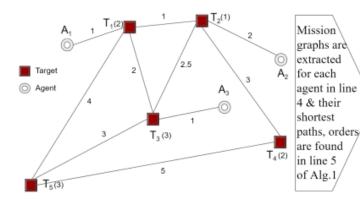
110

Violator Z_ Coordinates - Optimal Polygon Autonomous Agents

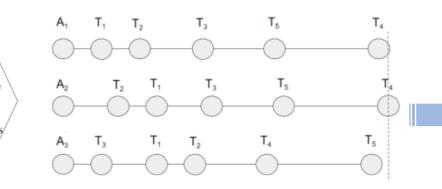
1000

Step-B: Scheduling Algorithm

Cost of Scheduling = $max_{\forall i}c(P_i) = max_{\forall i}l_i$

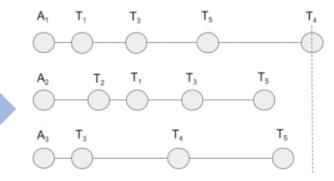


(a) City map with 3 agents, 5 targets with different cardinality and edge weights



(b) Iter 1: Initial Path Estimate: A_2 -costliest agent, T_4 -farthest redundant target

Schedule:
$$\mathcal{P} = \{P_1, ..., P_n\}$$



(f) Iter 5: Remove T_1 from A_3 's path, A_1 costliest agent with all cardinality fulfilled

University at Albany, SUNY

Analysis of Scheduling Algorithm

Claim 1: The Schedule is NP-hard.

Lemma 1: Algorithm for Schedule is Polynomial $O(nm^4)$ *n*-# agents, *m*-#targets.

Theorem 1. Algorithm 3 is 3-approximation for the Scheduling Problem.

Proof Overview:

```
Costliest paths returned by Algorithm 3 and OPT - l_p and l_q^*
```

Goal: To find a relationship between l_p and l_q^*

Using: 1) Properties of Minimum Spanning Tree (MST)2) Properties of Algorithm 3.

Cases: 1) The targets in $P_p \subseteq$ the targets in P_p^*

2) The targets in $P_p \not\subseteq$ the targets in P_p^* .

Property 1. If $T_y^i = 0$, then l_i is <u>no worse</u> than twice the optimal cost l_i^* . i.e., $l_i \leq 2.l_i^*$.

Furthermore, the following properties can be observed based on the design of Algorithm 3 and the definition of OPT.

Property 2. Since, Algorithm 3 and OPT both return the costliest paths among all the agents (say l_p and l_q^*), the paths travelled by any other agent, <u>must not</u> be costlier than l_p or l_q^* . Thus, for any agent $i \in A$ we have, $l_i \leq l_p$ for Algorithm 3 and $l_i^* \leq l_q^*$ for OPT.

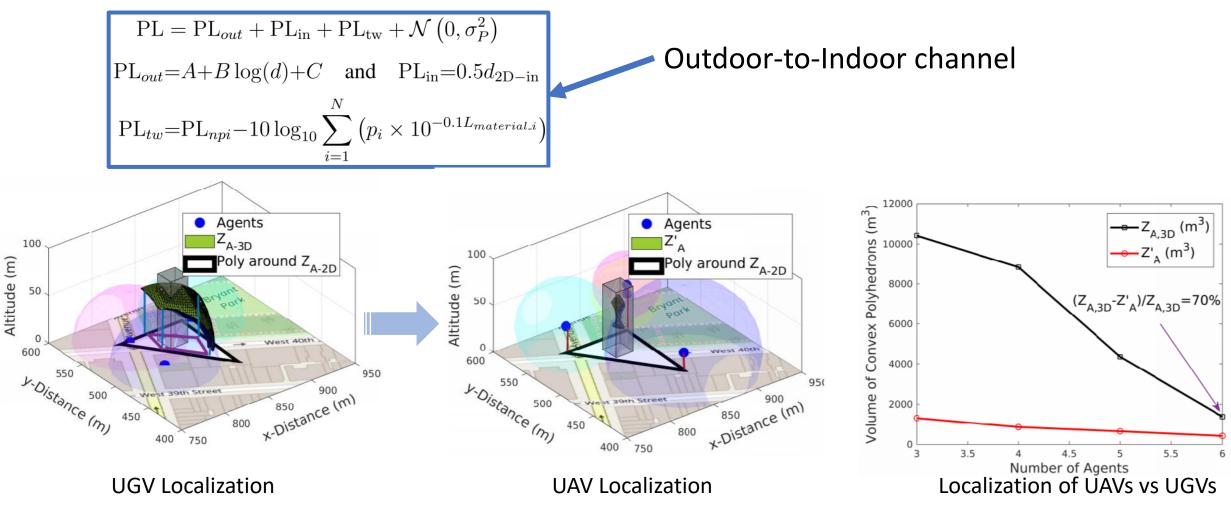
Property 3. In Algorithm 3 and OPT, all targets must be visited by the same number of agents (Definition 2 in $\S V$).

Property 4. If a target t_k is removed from an agent i's path, it must have been the costliest path at some prior iteration of the algorithm (line 8–15). So, if agent p is the costliest agent at the end of the algorithm, the increase in agent i for visiting t_k must be such that $l_i + l_i(t_k) \ge l_p$.

Property 5. From Table I, we can express the costs l_i and l_i^* of agent *i* as,

 $l_{i} = l_{i}(T_{x}^{i}) + l_{i}(T_{y}^{i})$ $l_{i}^{*} = l_{i}^{*}(T_{x}^{i}) + l_{i}^{*}(T_{z}^{i})$

3D Localization and Detection: UAVs



1/29/2020

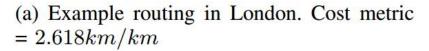
University at Albany, SUNY

Evaluation Framework

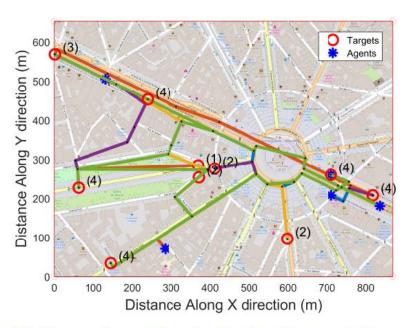
Spectrum Sensing and Geographical Simulator1) Open Street Map2) Building Tags (OSM Buildings)

Autonomous Sensing Performance

• Scheduling Costs in different cities London New York



Paris



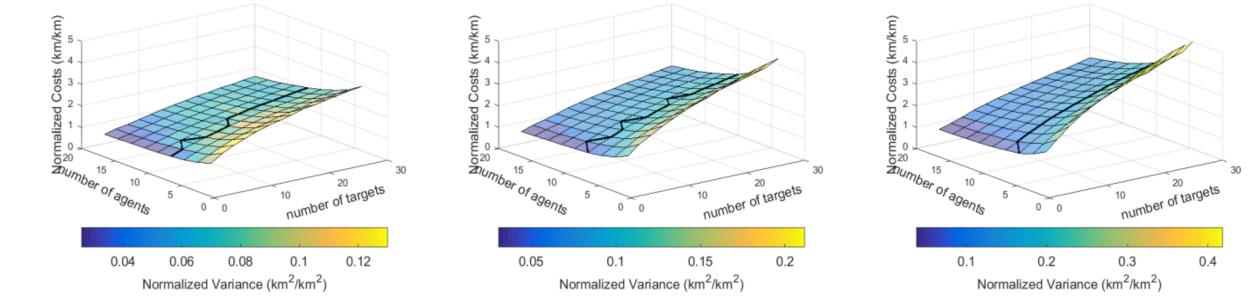
(b) Example routing in NYC. Cost metric = 2.374 km/km

(c) Example routing in Paris. Cost metric = 2.874 km/km

Parametric Analysis: Scheduling

London

New York



(a) Normalized cost metric in London

(b) Normalized cost metric in NYC

(c) Normalized cost metric in Paris

Fig. 3: Normalized cost metric for Average Cardinality = 3 for (a) London (b) NYC and (c) Paris. The dark line highlights the points beyond which the cost variation is below 10%. The variance is indicated using the color scale.

Overall System Performance

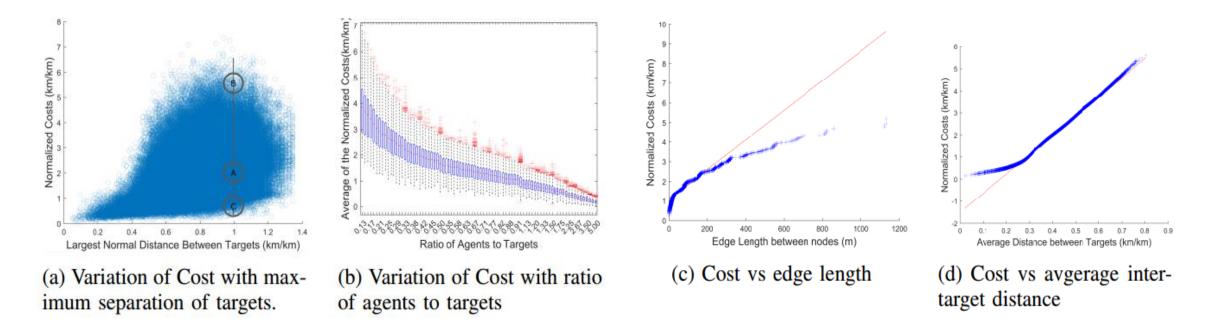
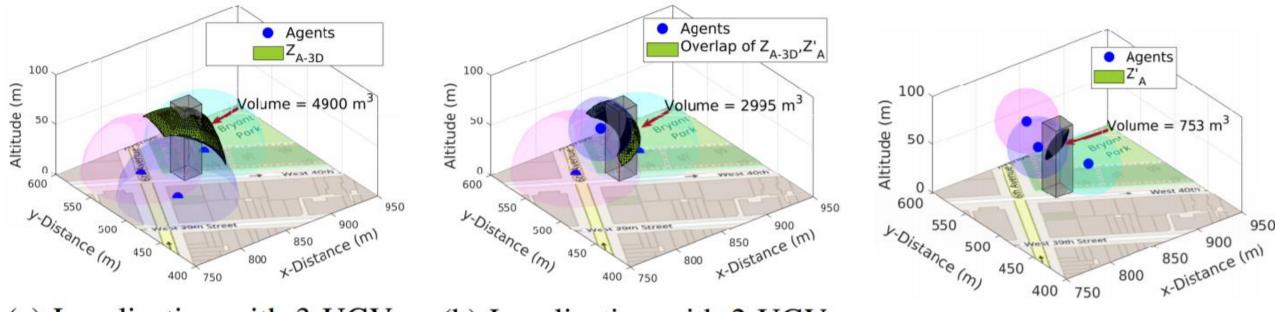


Figure: Comparison of the distribution of Normalized Cost Metric for NYC with that of (a) Edge lengths and (b) Average Distance between Targets.

3D Localization using UAVs



(a) Localization with 3 UGVs $(\mathcal{Z}_{A,3D})$.

(b) Localization with 2 UGVs and 1 UAV.

(c) Localization with 3 UAVs.

SenseChain: Distributed Fusion System

"SenseChain: Blockchain based Reputation System for Distributed Spectrum Enforcement," Maqsood Ahamed Abdul Careem and Aveek Dutta in IEEE DYSPAN 2019.

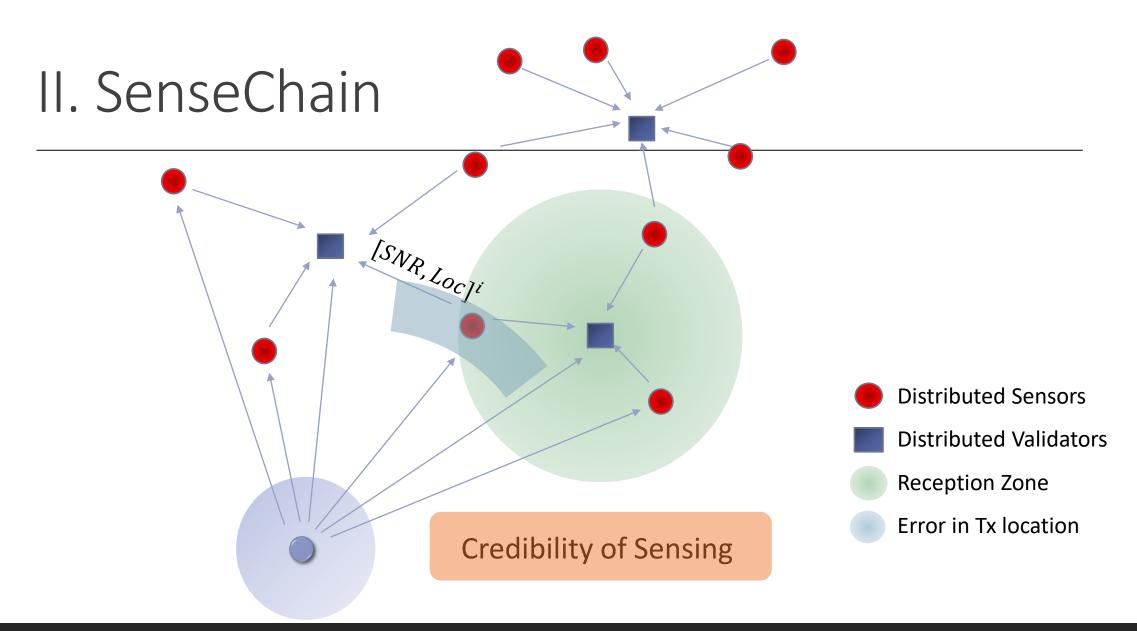
I. Contributions

Problem: Lack of Trust → Biased Inferences

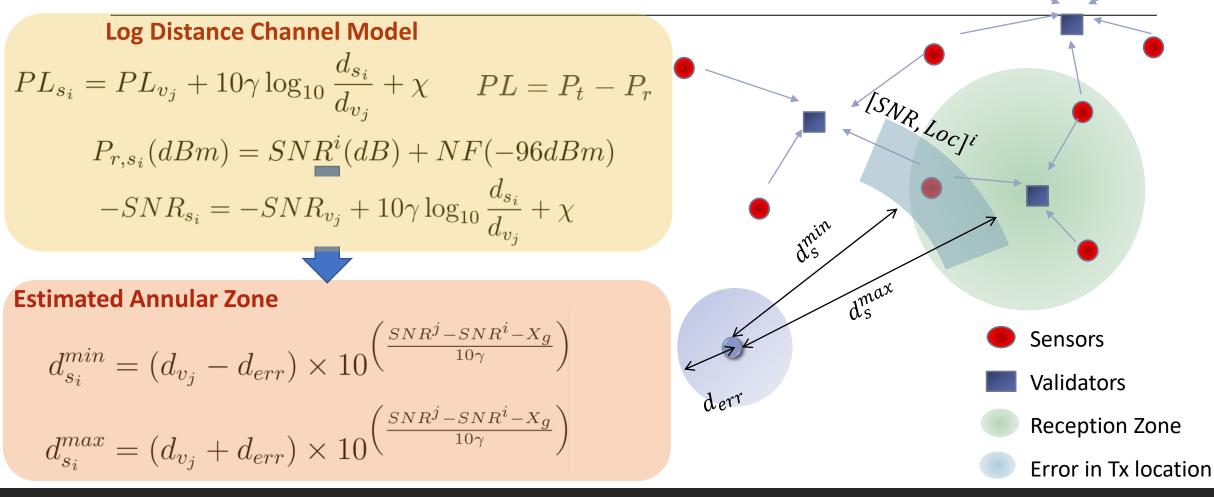
Reputation of Agents

- 1. Anomaly Detection: Credibility of Sensing
- 2. Heterogeneous Blockchain: Credibility of Validation.
- 3. Network protocol: Consensus on Most credible Chain.

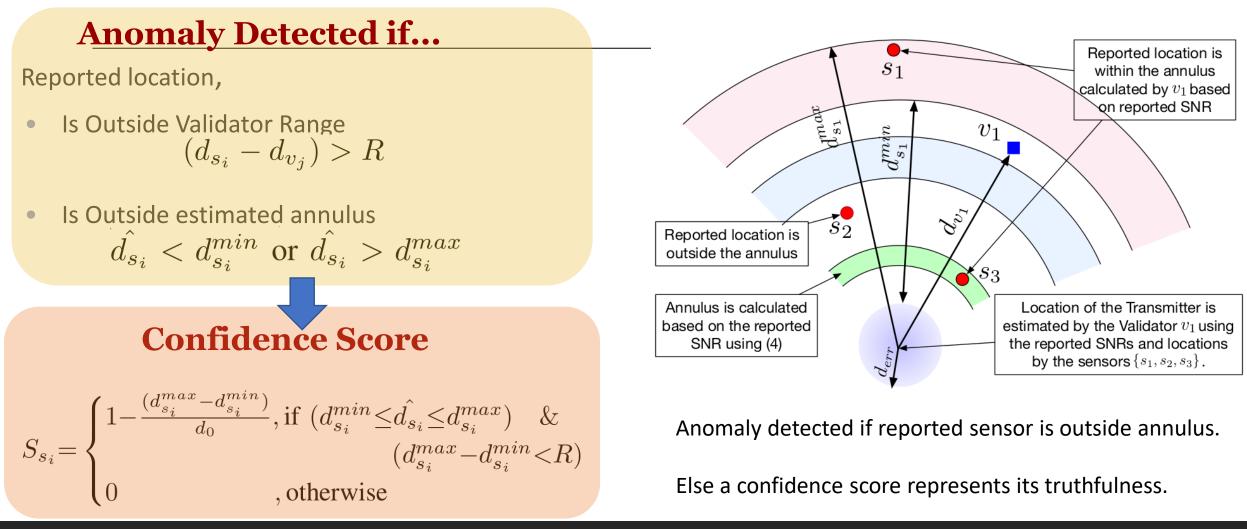
SenseChain: Fast & Tamper-proof distributed consensus on the reputation of sensors, among trustless entities.



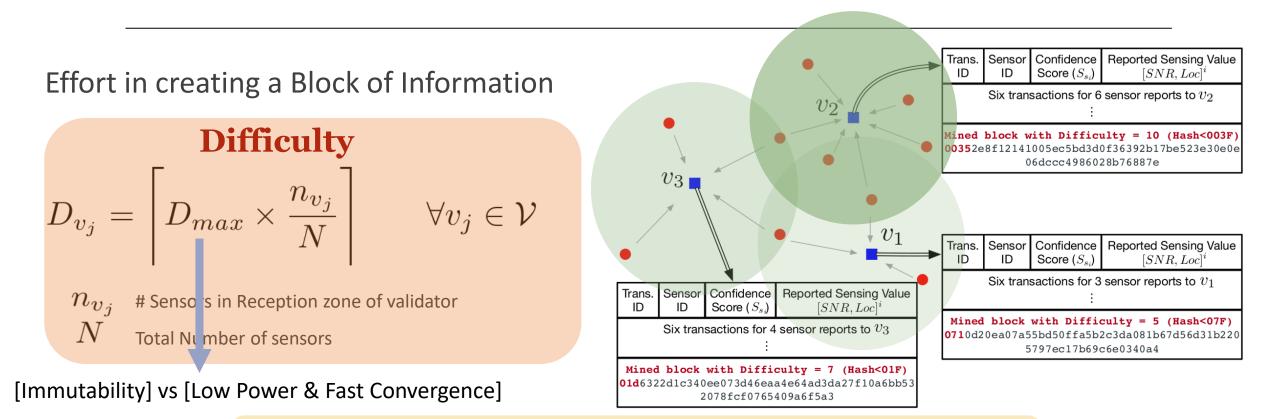
III. SenseChain: Anomaly Detection



Anomalies and confidence score

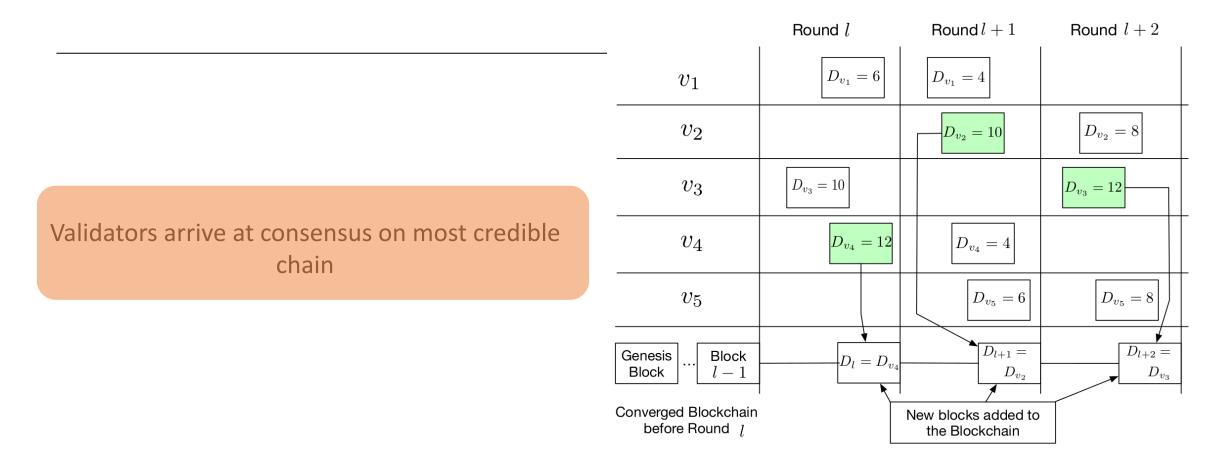


A. Difficulty of mining



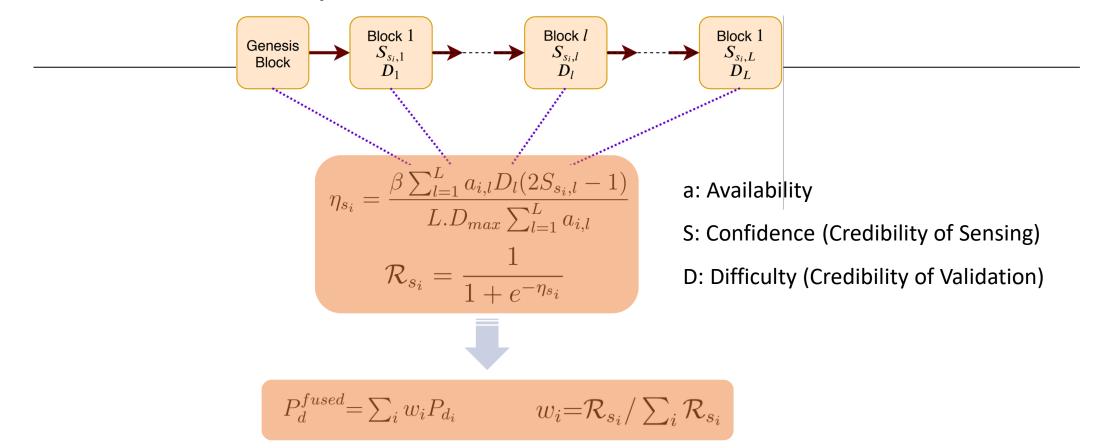
Difficulty ∝ Validation Credibility (Power of the Crowd)

B. Most-Difficult-Chain consensus



Most-Difficult-Chain Consensus: At each round, the most difficult mined block is added to the blockchain.

V. Historical Reputation & Provenance



Most Credible Reputation Assignment → **Most Credible Inference**

Evaluation Framework

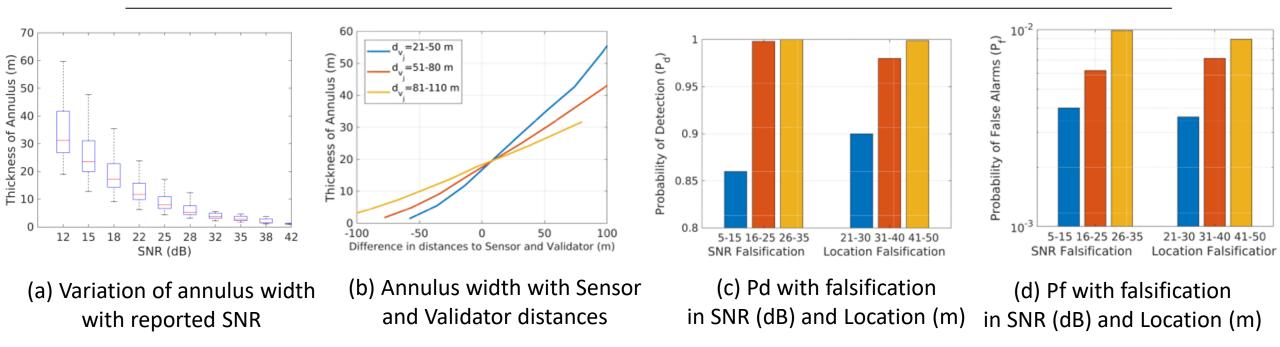
1) Sensing Environment

2) Blockchain Simulator

TABLE I: Simulation Parameters

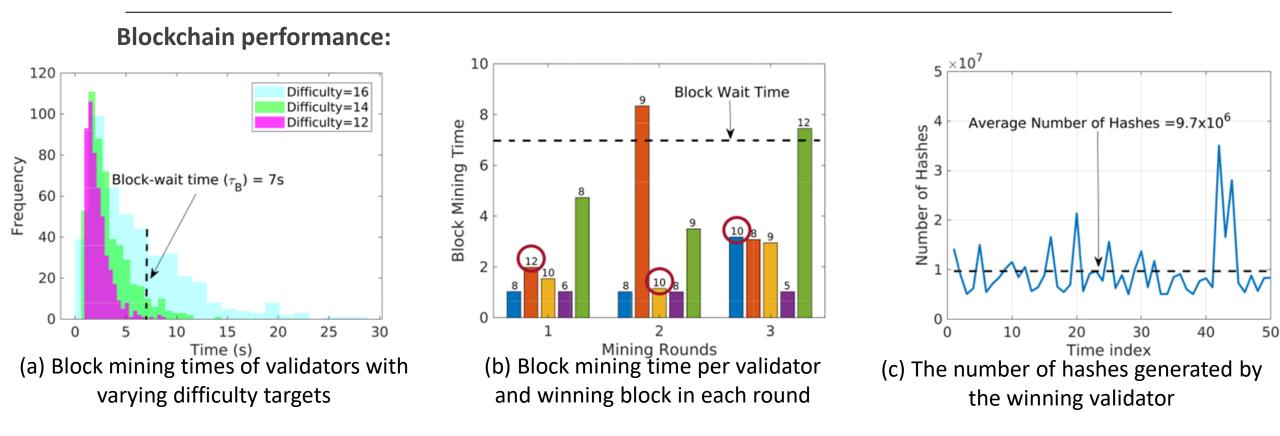
Parameters	Value/Model
Area	$300m \times 300m$
Node Distribution	Uniform Distribution
Mobility Model	Random Waypoint
Propagation Model	Log-distance propagation model [14]
Path-loss exponent (γ)	3 (urban area)
Carrier Frequency (f)	600 MHz
Number of Validators	5
Number of Sensors	20
Antenna Type	Omnidirectional
Broadcast Range	100
Maximum Difficulty (D_{max})	16
Block-wait Time $(\tau_{\mathcal{B}})$	7 s
Target location error (d_{err})	Uniformly distributed in [20,30] m

A. Performance of anomaly detection

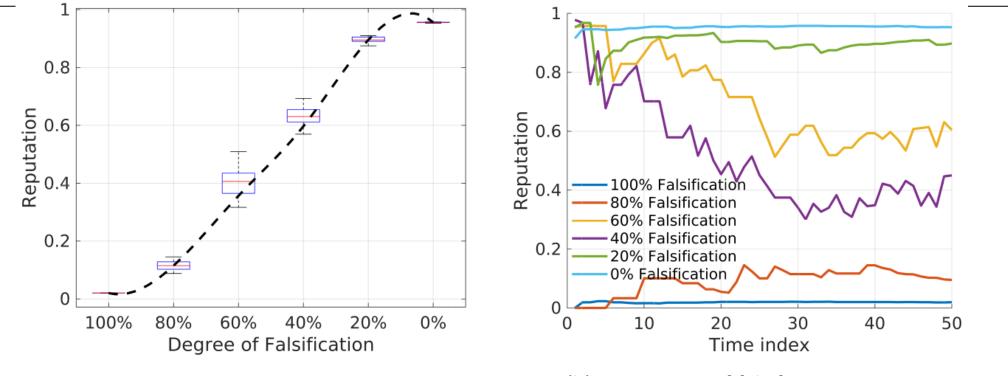


Truthfulness of Sensors can be Accurately inferred in Distributed Manner

B. Performance of Blockchain based Reputation



Reputation Assignment:



(a) Reputation with degree of falsification

(b) Reputation of falsifying Sensors over time

Reputation of Sensors represents the Degree of Maliciousness of Sensors

Conclusion

1. Can Enforce, Distributed and Dynamic Violations in Shortest possible time with high accuracy compared to crowd or static paradigms

- 2. Distributed Decisions can be made among trust-less agents without centralized architecture
- 3. Can also be applied to Spectrum Sharing and Autonomous Spectrum Sensing.

Autonomous Spectrum Enforcement system performs fully autonomously and achieves higher Enforcement accuracy and reliability compared to crowdsourced or static paradigms

Thank you

Feedback & Questions

1. Autonomous Spectrum Sensing

R

monition

7:0

2

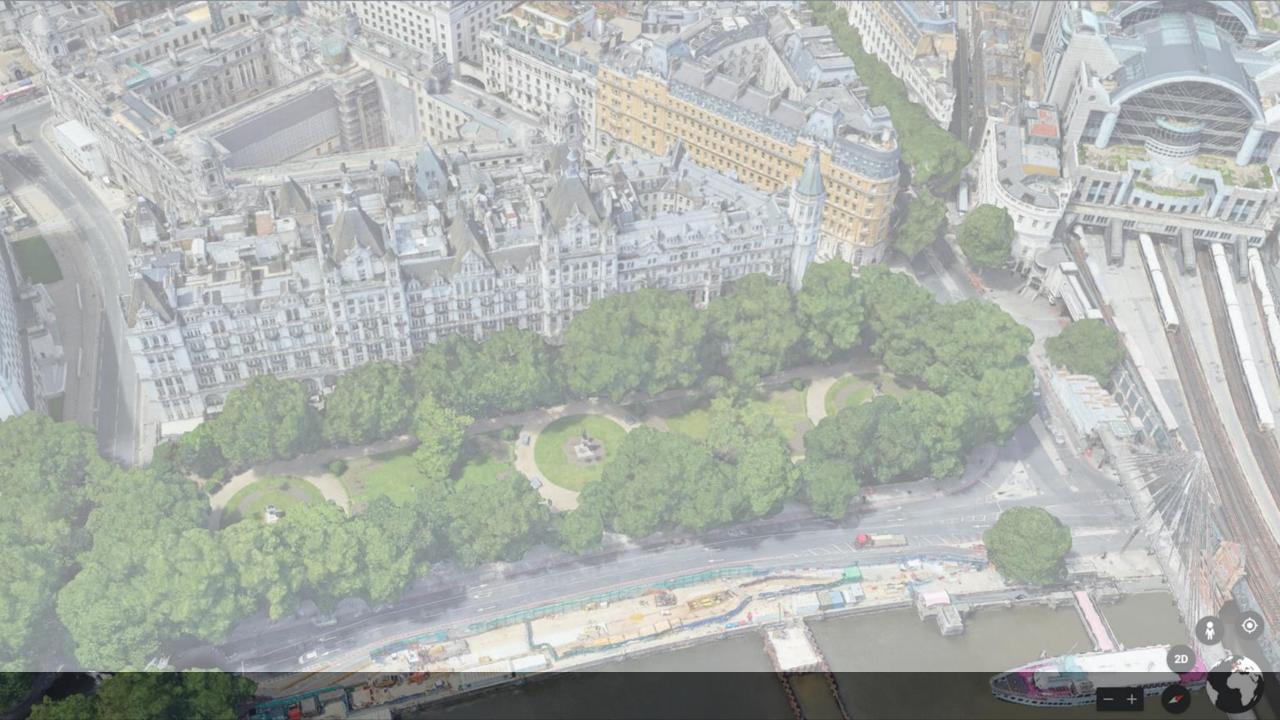
2. Distributed Decision Making

Carrier Carrier Martin Martin

W.

r

2D



Infraction Locations (Targets)

Τ

R

*

Л

D

2D

Sensor Report Broadcast

Block Multicast by Validators

Most-Difficult-Chain

00000 00000 00000 00000

*

r

*

Ň

Infraction Locations (Targets)

Multi-Modal Agents

Sensing Report Broadcast

Distributed Consensus