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Abstract—Recommending channel characteristics for V2X
communication has the distinct advantage of pre-conditioning
the waveform at the transmitter to match the expected fading
profile. The difficulty lies in extracting an accurate model for
the channel, especially if the underlying variables are uncorre-
lated, unobserved and immeasurable. Our work implements this
prescience by assimilating the Channel State Information (CSI),
obtained as a feedback from vehicles, over time and space to
adjust the modulation vectors such that the channel impairments
are significantly diminished at the receiver, improving the Bit
Error Rate (BER) by 96% for higher order modulations. To
account for the multivariate, non-stationary V2X channel, a
tensor decomposition and completion approach is used to mitigate
the effects of sparsity and noise in the CSI measurements.
Overall, the system is shown to operate with a prediction
accuracy of 1073 MSE even in dense scattering environments
over space and time.

I. INTRODUCTION

Recommender systems are designed to bridge the gap
between the desired and actual behavior of a partially known
(or sometimes unknown) process by iteratively tracking certain
patterns in the outcomes. In turn, this reduces the ambiguity
and uncertainty in the decision making process for the end-
user. Wireless communication between a Vehicle (V) to Any-
thing (X), termed as V2X [1], is analogous to such a recom-
mender system, where the receiver can significantly reduce its
packet (or bit) error rate, only if the transmitter (Road-Side
Unit (RSU) or another vehicle) uses the recommended signal
parameters based on historically observed channel profiles,
obtained as a feedback from the receivers. Intuitively, if the
transmitter pre-conditions the waveform with the mathematical
inverse of the expected channel, the received signal will likely
contain minimal amount of distortion.

This problem is complicated due to unknown and immea-
surable relationships among the factors contributing to the
fading profile of the channel, that also vary over space and
time. Most importantly, the localized scattering from nearby
vehicles, road-side features like buildings and vegetation,
Doppler spectrum and path-loss, are either stochastic variables
or time-variant. Collectively, these properties make the V2X
channel statistically non-stationary [2], [3]. Our goal in this
work is to rely on measurable parameters like vehicle density
(Ny), vehicle location, mapped into quasi-stationary segments
(S) [4] and the CSI feedback (CSI) to construct a non-
uniformly spaced, non-stationary time series (indexed by time
of reception, T'). The CSI from the receivers captures a wide
variety of channel characteristics across a stretch of road under
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Figure 1: V2X Channel recommender system. The corre-
sponding equations are indicated in parenthesis along with the
sections for the description within the text.

different scattering environments. Broadband communication
using frequency domain modulation such as Orthogonal Fre-
quency Division Multiplexing (OFDM) used in the standards
advocated for WAVE [5] also captures the channel profile in
frequency domain. Figure 1 shows the channel recommender
system for V2X communication. It operates on the quadruplet,
[CSI, Ny, S, T, obtained from vehicle 1.

The first step is to pre-process the CSI using an adaptive
filter (e.g., a combination of autoregression (AR) and Kalman
filter [6], [7]), to dampen the effects of non-linearities in the
estimation process in the receiver and the uplink channel. This
is used in the second step to predict the downlink channel
profile for any target vehicle in the road, according to its
position and the scattering environment. This is accomplished
by constructing a third order tensor containing the transitions
for number of scatterers, [N*~! N*] and segment number,
[Sk=1 Sk] from the last observed CSI in time-step k and
the corresponding error in the recommended channel. This is
described in §II-B,C. After this adjustment, the final step is to
pre-condition the waveform, such that the receiver estimates
an almost flat fading across all subcarriers (in §II-D). This step
eliminates the need for any complex receiver side algorithm
[8] and is also compatible with conventional pilot based
equalization. As the recommender system evolves with more
spatio-temporal CSI, the gap between the recommended and
the true channel gets asymptotically small leading to almost
two orders of magnitude improvement in the BER for QAM
modulations. Experiments in §III explore various trade-offs
and performance of the recommender system.



Non-stationary V2X Channel: V2X channels are modeled us-
ing the Geometric Stochastic Channel Model (GSCM), which
forms the basis of the widely used WINNER channel model
[4]. The V2X channel at time k and for the n'® OFDM
subcarrier, depends on factors like, the number of scatterers
at time k, N4(k), Doppler frequency, the angle of departure
(AoD) and angle of arrival (AoA), complex channel gains
and path delays for each sub-path. The AoAs and AoDs are
functions of the transmitter (RSU or vehicle) location, vehicle
(receiver) location, and number of scatterers in each (elliptical)
scattering zone that are stochastically distributed [7]. The
path delay (and consequently the channel impulse response)
collectively depend on these factors. This non-stationarity over
space, time and vehicular density affect the reliability and
latency of data transmission, which has also been validated
by various measurement campaigns [2].

II. CHANNEL RECOMMENDATION SYSTEM

The CSI is a quantized estimate of the downlink channel that
can be used to adjust the parameters for future transmissions.
However, the high dynamics of the V2X network requires
agile scheduling of packets at the RSU for links with different
scattering environment and location. Hence, the CSI may
become obsolete (without further processing), and the RSU
has the added burden of making unique recommendations
for every downlink packet. To address this problem we de-
sign a recommender system that has four stages as shown
in figure 1: A) Adaptive Smoothing: lIteratively tracks and
smooths the non-stationary noise in the CSI (similar to [7]),
B) Tensor Factorization & Completion: This step generates
channel recommendations to account for the change in the
scattering environment and location of vehicles over time.
C) Spatio-Temporal Adjustment: The output of steps A and
B is fused to form the recommended downlink channel profile
for the next packet, and D) Pre-Equalization: The downlink
waveform is pre-equalized using the recommended channel
profile, to achieve flat fading at the receiver. In this paper, we
focus on step B and step C as above, while adopting steps A
and D from the literature [7].

The RSU processes the channel state, received as a quadru-
plet [CSI, Ny, S, T)* for each vehicle i, whenever it is avail-
able (typically piggy-backed on an acknowledgement packet).
It is to be noted that any two CSI are statistically different even
if the other values in the quadruplet remain unchanged. The
recommender system operates in real-time, requires minimal
training and lowers the BER even when the tensor is 99%
sparse and contains noisy measurements.

A. Adaptive Smoothing

Adaptive smoothing of non-stationary noise in the CSI can
be performed by a combination of autoregression (AR) and
Kalman filter. The CSI obtained from the various vehicles are
combined using a noisy autoregressive (AR) model (random
walk), the weights of which are tracked by a Kalman filter
as in [6], [7]. However, this iterative approach results in a
lag between the tracked channel and the actual channel, due
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Figure 2: The tracked channel lags the true channel.

to one time-step delay in the CSI feedback path as shown
in figure 2. Hence, an additional smoothing step (similar to
[6]) is employed to mitigate the effect of this lag and any
undesired transients in the received CSI. We denote it by z, (k)
and use it in §II-B and §II-C. Although the smoothing step
reduces transients, it is unable to maintain low error vector
magnitude (EVM) for higher order modulations. Moreover, a
single smoothing filter is unable to simultaneously track the
channel statistics over multiple locations and multiple vehicles.

B. Tensor Completion & Factorization

It is evident from figure 2, that there is a disconnect between
the smoothed channel and the actual channel, which depends
on the current scattering environment and location of the
receiver. This information is embedded in the CSI, which
consequently captures the deviation due to the change in
the scatterers and the receiver location. We construct a 3D
tensor, shown in figure 3 to capture this property. The purpose
of the tensor is to record these deviations and use them to
make adjustments (details in §II-C) to the smoothed channel,
z,(k). The measurement channel, z(k) derived from the CSI
(see §II-D) is recorded in the tensor corresponding to the
change in the scatterers (N*~1, N¥) and segments (S*~1, S%).
This represents a tube containing 100 quantization levels (g).
The output of the smoothing filter, z,(k) is quantized to the
nearest level and the corresponding cell is populated with the
measurement channel, z(k). The cell values are updated as a
running average of all measurement channels that are mapped
to that particular cell. Therefore, in essence, each cell in the
tube contains the historical deviations observed for a given
change in Ny and S and the corresponding quantized level
for z,(k). The quantized levels capture information required
to update the recommended channel as in §II-B2 and §II-C.

There are other latent factors that affect these deviations.
Moreover, key challenges in this tensor-based procedure are,
sparsity (due to the large size of the tensor database detailed in
6III and infrequent entries (CSI) that may not be observed over
long duration of time), and noisy data in the tensor (due to
incomplete filling of cells). These result in missing or corrupt
adjustments. Hence, to account for these factors, we introduce
tensor factorization & completion (which uses latent factors to
account for these missing variables). At each time step k, the
channel tensor is updated with the measurement channel, z(k).
This channel tensor is then factorized (§II-B1) into a factor
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model to capture the latent structure of the underlying process
under sparse conditions. The tensor is then reconstructed using
the factorized model (§II-B2) to extract missing entries. The
completed tensor is used to generate recommendations, z,.(k)
which is used to adjust the smoothed channel, z,(k) (§II-C)
for the location and scattering environment of a target vehicle.

1) Tensor Factorization: Tensor factorization is employed
to capture latent structure of the channel tensor by express-
ing it as the sum of component rank-one tensors [9]. This
latent structure is used to reconstruct missing entries in the
tensor. Figure 4 shows the tensor factorization of the third
order channel tensor. Here, scalars are denoted by lowercase
letters (e.g., a), vectors by boldface lowercase letters (e.g.,
a), matrices by boldface capital letters (e.g., A), higher-order
tensors by boldface Euler script letters (e.g., Z). The i" entry
of a vector a is denoted by a;, element (¢, ) of a matrix A is
denoted by a;;, and element (i, j, k) of a third-order tensor Z
is denoted by z;;. The jt" column of a matrix A is denoted by
a;. The n'" element in a sequence is denoted by a superscript
in parentheses, e.g., A" denotes the n'" matrix in a sequence.
Let Z be the three-way channel tensor of size I x J x K, and
rank R. Then the channel tensor decomposition is defined by
factor matrices A, B, and C of sizes I/ x R, J x R, and K x R

(defined in figure 4) that minimize the objective function,
I
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The error function is employed to account for CSI noise in
the channel tensor (i.e., imperfect data) and the weighted
version of the error function is used to address sparsity by
ignoring missing data and modeling only the known entries
[10]. Consequently, minimizing the above objective function
ensures that the recommendations, z,.(k) accurately represents
the discrepancy in channel tracking, even in the case of
missing entries. Here, W denotes a nonnegative weight tensor
(representing the sparsity of the channel tensor Z), with entries
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Figure 4: Illustration of tensor factorization for third-order
tensors. Here, A = [aj1,...,ag|, B = [by,...,bg] and C =
[c1,...,cR] represent the factor matrices for the transition in
the number of mobile scatterers and transition in segments and
quantized levels respectively.

of ‘1’, when z;;, is known and entries of ‘0’, when z;;, is
missing, foralli =1,...,I,57=1,...,JJ)k=1,..., K. The
regularization term penalizes the size of the latent factors and
consequently avoids over-fitting the noise in the measurement
channel, z(k) and ensures the generality of the tensor, Z over
space and time. The regularization parameter, A is a non-
negative value that balances the modeling error and the com-
plexity of the latent structure. For convenience the objective
function in (1) is expressed as,

1

A
+ S (1Al + [1B]]* + [|C[1*) 2)

Here [-] represents the Kruskal operator shorthand notation
[9], || - || refers to the analogous Frobenius and two-norm
for matrices and vectors respectively, while ||Z||w is the
W-weighted norm of Z. The objective function in (2) is
minimized by a nonlinear gradient-based optimization [10],
to find the latent factor matrices A, B, C.

_ 2) Tensor Completion: This stage, reconstructs the tensor
Z (Recommendation tensor) from the computed factorization
model (A,B,C) in (2) and is given by,

R R
Z = IIA7 B, C]] = Z a, o br o¢C, Or 21]k = Z airbjrckr

r=1 r=1

where "o’ refers to the outer product. Recent work [11] shows
that even if a small amount of entries (CSI) are available and
those are corrupted with noise, it is still possible to recover
the missing entries up to the level of noise.

The recommendation tensor, Z is used to obtain the rec-
ommendations, z,(k) corresponding to the §m00thed channel,
z,(k). These are the N entries of tensor Z at indices corre-
sponding to, transitions for number of scatterers, [NF~1, N¥]
and segment number, [S*~! S*] from the last observed
CSI, and the quantized levels corresponding to the smoothed
channel, z,(k). Let the smoothed channel for N subcarriers
be, z,(k) = [2,(k, 1), 2,(k,2) ... 2,(k, N)]T. Hence, at each
iteration N recommendations (z,(k,n)) are made where,

2z (k,n) = Z[(NF7L NF), (S5, 9%, ¢, 3)
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that achieves low BER (details in §III).

for all n = 1,..., N. Here, 2[(Nf_1,Nf), (SE=1 5%, qn)]
is the entry of Z at index [(NF~1 NF) (Sk=1 S*) g,] as in
figure 3 and g, is the quantization level of z,(k,n). Then the
recommended channel for N subcarriers is

2.(k) = [k, 1) 2(k,2)... z(kN)]" @

The above tensor factorization method is applicable for real
valued tensors. Since the actual channel is complex valued,
two separate tensors are used to recommend the channel for
the I/Q vectors separately.

C. Spatio-Temporal Adjustment

At each time step k, the smoothed channel z,(k) is im-
proved to Z,(k) (recommended channel) by incorporating the
recommendations, z,.(k) from (4) using a normalized weighted
average:

zy(k) = (1 — ar)zp(k) + apz, (k) (5)
= zp(k) + (2, (k) — 2,(k)) = z,(k) + a0z, (k)

where o, is the normalization weight at time step & (a design
parameter assuming a value between 0 and 1). This has the
effect of updating the smoothed channel, z,(k) by a delta
adjustment of the form dz,(k) = z,(k) — z,(k). A channel
adjustment of this form alleviates the lag and the disparity in
Ny and S. Since, the smoothed channel is adjusted with the
recommendations based on the scattering environment and the
location of the target vehicle, the recommended channel, ip(k')
is able to account for the non-stationarity of the actual channel
over time, space and vehicle density.

D. Pre-equalization at Transmitter

In order to take advantage of the recommended channel
profile, the waveform of the downlink packet is pre-equalized
such that when convolved with the true channel, the net effect
is a flat fading at the receiver, that can be easily equalized
using pilot based linear interpolation methods commonly used
in V2X communication. The pre-equalized channel, Z, (k) is

given by,
zy(k) = 1./2,(k) (6)

Conceptually, Z,(k) represents the inverse of the expected
fading profile of the true channel, z;(k) (details in §III-A).
Hence, the resultant channel, zf(k), as estimated by the
receiver vehicle is given by Hadamard product (®, which is
equivalent to convolution in time-domain),

2y (k) = 2:(k) © 2, (k) + w(k) ©)

where, w(k) is an additive term that captures the effect of
the noise and estimation errors. The CSI, zf(k), captures
the interaction between the true channel z;(k) and the pre-
equalized channel z, (k). At the transmitter, the measurement
channel z(k) is computed, by combining (5) and (7),

2(k) = 2;(k) © 2p(k) + w(k) = z;(k)./2, (k) + w(k) (8)

Mathematically, z(k) represents the error in the recommen-
dation along with added system and numerical noise in the
feedback loop. This forms the new input to the recommender
system described in §II-B. Figure 5 shows the constellation
diagram for a packet with 64-QAM modulation. The ideal
constellation in figure 5a is pre-equalized by changing the I/Q
vectors in the modulator using the recommended channel, as
shown in Figure 5b. Figure Sc is the equalized constellation
at the receiver with the corresponding channel profile in
Figure 5d. These results show that the channel recommender
system works very well for higher order constellations as well.
However, there are cases when residual distortion remain at the
receiver, but the penalty in BER for those cases are minimal.

III. EXPERIMENTS AND RESULTS
A. Experimental setup

Figure 6 illustrates the emulated testbed to reflect a prac-
tical V2X network. The V2X channel is modeled using the
WINNER channel toolbox in Matlab [12], which was used
to generate 1000 channel instances for each segment (.5)
of the road. These channel instances are used to emulate
a schedule of downlink transmissions (i.e., the true channel
z;), by randomly selecting a segment at each time step and
selecting the channel state for that segment. In reality, this
schedule is not observed by the vehicles, but is used here
to evaluate the accuracy and performance of the recommender
system in terms of the mean square error at the transmitter and
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the BER and EVM at the receiver. The Winner channel toolbox
has been shown to accurately reflect the real V2X channel
using practical measurements in [13]. Moreover, this simulated
test-bed gives the freedom to address a variety of different
scenarios of the V2X channel and scattering environment
that may not be observed in measurement campaigns. The
parameters for the evaluation are as follows. The AR-model
order is 3 (which yields the best Kalman-AR predictions), and
the target vehicle’s speed is V' = 20 m/s (45 mph). The target
vehicle’s and the transmitter’s antenna heights are 1.5m (dg;)
and 2.5m (dp,) respectively, from the surface of the road. The
transmitter is placed at the center of the road and it is assumed
that there is a LOS propagation and the transmitter-vehicle
communication link is not intercepted by large vehicles.

The number of fixed scatterers (deterministic road-side
features) is assumed to be different in each segment (between
1 to 5). The number of variable scatterers is modeled as a
random variable between 0 and 9. Consequently, the possible
transitions, [N*~1, N¥], form a (10 x 10) x 1 = 100 x 1 array.
The road length is set to d,,qq = 200 m and divided into 20
segments (i.e. dseg = 10 m) and the possible transitions in
segment number, [S*~1, S*], form a (20 x 20) x 1 =400 x 1
array. The number of quantization levels for the smoothed
channel z, (is determined by the trade-off of accuracy and
computational cost of the recommender) is limited to 100,
forming a 100 x 1 array. This data is used to construct
the channel tensor Z of size 100 x 400 x 1000. The tensor
factorization rank [10] was set to R = 2 (which produced the
least error for the recommender).

B. BER & EVM at the Receiver

Figures 7a, 7b and 7c show the BER performance. The
BER corresponds to an OFDM packet of 100 random bits
using different modulation and coding at a carrier frequency of
fe = 5.9GHz and sampling frequency of f; = 10MHz. Figure

7a shows the BER performance for 16-QAM modulation and
1/2 coding, with and without (as in conventional 802.11p)
channel recommendation (with pilot-based linear interpola-
tion equalization employed at the receiver). The frequency
selective fading of V2X channel is very well compensated
(shown in figure 5d) resulting in a BER improvement by
almost two orders of magnitude, which is very encouraging.
In contrast, conventional receiver algorithms are simply not
sufficient to track the channel over space, time and frequency,
hence performing much worse even at high SNR. This is
another motivating reason to adopt a channel recommender
at the transmitter. The ideal scenario represents an oracle with
complete knowledge of channel properties, which is shown
for comparison. The channel recommender requires only 7
dB more SNR to achieve the same BER (=~ 10~?) as the ideal
case as highlighted in figure 7a. Figure 7a also emphasizes
the improvement in BER introduced over adaptive smoothing,
by incorporating the tensor-based channel recommendations in
¢II-B and §II-C. Figure 7b shows the BER performance for
different modulation schemes and the ability of the algorithm
to support higher order modulation schemes (like 64-QAM)
with very low BER. Figure 7c emphasizes the improvement
in the BER performance for higher order modulations by
incorporating more pilot subcarriers.

Figures 7d and 7e show the EVM performance of the
channel recommender. Figure 7d shows the EVM performance
for different modulation schemes, with and without channel
recommendation. It shows an almost ideal performance of the
EVM upto 16dB SNR, which is very encouraging. Figure 7e
confirms the improvement in EVM with the number of pilots.

C. Throughput-Pilot Trade-off

In 802.11p, four pilot tones are inserted in subcarriers [-21
-7 7 21] and are used to estimate the channel. While incorpo-
rating more pilot tones, improves the channel estimation at the
receiver and results in a lower BER & EVM performance and
more accurate prediction of the channel (as shown in figures
7c and 7e), it reduces the theoretical throughput, since the
number of active tones is less. Figure 7f shows that while the
transmission throughput reduces with increasing number of
pilots, the drop in the achievable throughput is relatively less,
since the BER also decreases. Hence, we can choose higher
order modulations for V2X transmission to achieve higher
throughput, while maintaining the same BER. For instance, a
64-QAM scheme with 16 pilots has similar BER performance
as a 16-QAM scheme with 4 pilot tones while providing higher
data rate. Figure 7f also emphasizes that the recommender
with a 4 pilot tone channel estimation, is sufficient to provide
good BER performance and clean constellations for BPSK
and QPSK and that more dense constellations require more
pilots to achieve comparable BER performance due to their
low margin of error (as seen in figure 5c). Using more pilots
is justified for higher order modulations as they offer offer
higher throughput compared to BPSK and QPSK.
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D. Accuracy of the Recommender System

Figures 7g & 7h show the accuracy of the channel recom-
mender, in terms of the Mean Square Error (MSE) between
the recommended channel coefficients and the true channel as
generated in §III-A (shown in figure 6), over 1000 channel
instances. Figure 7g shows that the variance about the median
error and the median value of the MSE remain fairly uniform
across the subcarriers, and confirms that the recommendation
algorithm is able to track the non-stationary V2I channel
with high accuracy. Figure 7h shows the reduction in MSE
over time and the improvement in channel recommendation.
It is evident that with time, as more entries are recorded,
the MSE reduces since the sparsity and noise in the tensor
reduces, leading to an improvement in accuracy of the channel
recommender with time.

IV. DISCUSSIONS

The evaluation of the V2X channel recommender system,
in this work, is applicable to multiple locations for multiple
vehicles. This technique is easily extensible to a complete
system to address the more generic problem of V2X channel
recommendations in the presence of multiple lanes, direction
of traffic, varying speeds of vehicles, simultaneous multi-
vehicle downlink and V2V channels. A brief sketch of the
steps required in integrating the channel recommender system
into a generalized real-time vehicular network is provided
below and are currently being investigated using simulation
and practical measurement campaigns. To address the gen-
eralized V2X channel recommendation problem the channel

(perfect estimation).

tensor factorization in (2) is extended to a higher-dimensional
tensor Z (N-way tensor, for N > 3) factorization, giving way
to the N-way objective function defined by,

fwAD, . AW ||z

)\ n
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n=1
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where [A(V M7 = E (ayo...oa}, and the factor
matrices are deﬁned as AW = [ajlv, . aR] with size I,, X R,
forn=1,..., N, where A(l)7 e ,A(N) are the latent factor

matrices for transition in number of scatterers, segments, lanes,
direction of traffic, vehicle speed etc... The objective function
in (9) is minimized using the method outlined in §II-B. Tensor
completion is then used to construct the recommendation
tensor as, Z = [A® ..., A®)] and obtain the recommended
channel, z,(k) similar to §II-B and §II-C. This shows the
adaptability of the recommender approach to address a variety
of V2X scenarios.
V. RELATED WORK

V2X channels are inherently non-stationary and are particu-
larly difficult to analyze [14]. Decision Feedback Equalization
(DFE) has been adopted in [15] at the cost of complex feed-
back paths, which we eliminate by employing a channel rec-
ommender at the transmitter to pre-equalize the channel. Fast
varying vehicular environments are addressed in [16] using
the extended Kalman filter, but is restricted to a deterministic
evolution of the channel. Approaches that used the Kalman
filter to track the non-stationarity statistics of a time series [6],



[7], do not adapt well for spatio-temporal channel equalization
and for higher order modulation techniques (details in §II).

Latent factor recommenders enable the extraction of recom-
mendations when the underlying system-process is unknown
[17]. Tensor factorization based recommenders have been
adopted for multi-channel EEG analysis for sparse and noisy
data in [18]. Tensor completion has been employed to recover
missing entries of a tensor in the context of Network traffic
data in [10]. Temporal tensor models for recommendation,
designed to learn time-evolving patterns (such as periodicity)
in data [19] and where time is considered as a separate
dimension in the tensor [20], are impractical for V2X channels
due to their inherent non-stationarity and are not scalable over
time. The space-time-frequency tensor-recommender for EEG
data in [18], also suffers from the same temporal scalability
issues. In contrast, we design a spatio-temporal recommender,
with a Kalman-AR smoother to address the time evolution of
the V2X channel statistics, enabling the design of the channel
tensor without a separate time dimension, to address the non-
stationarity over space and time. Thus, limiting the size of
the channel tensor database and consequently, causing the
recommendations to improve over time.

In the context of vehicular networks and wireless com-
munications, recommender systems have been adopted in
vehicular social networks [21], network traffic data [10],
wireless channel selection [22] and abundantly in the context
of IoT [23]. However, to the best of our knowledge have not
been employed for channel equalization in wireless and V2X
communications. This emphasizes the challenging nature of
the problem and the novelty of this work.

VI. CONCLUSION

In this work, we have shown the power of recommender
systems when applied to highly dynamic wireless environ-
ments like V2X networks. Through modelling, analysis and
simulations, we draw three conclusions: 1) The channel rec-
ommender is able to successfully predict the V2X channel
to obtain 96% lower BER in spatio-temporal, non-stationary
channels by resulting in an almost flat fading profile at the
receiver, 2) This enables higher modulation schemes to be
used in V2X communications for high throughput, and 3)
The accuracy of the recommender system improves with time
and asymptotically achieving an MSE of 10~3. Therefore, the
encouraging results from this work will form the core of ro-
bust and highly reliable V2X networks supporting demanding
mobile applications.
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