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Abstract—The distributed nature of policy violations in spec-
trum sharing necessitate the use of mobile autonomous agents
(e.g., UAVs, self-driving cars, crowdsourcing) to implement cost-
effective enforcement systems. We define this problem as Multi-
agent Planning with Cardinality (MPC), where Cardinality rep-
resents multiple, unique agents visiting each infraction location
to collectively improve the accuracy of the enforcement tasks.
Designed as a practical and deployable system, our solution
leverages crowdsourced information to determine the optimum
Cardinality and provide a routing schedule for the agents to
achieve the desired level of accuracy of detection and localization
at minimum possible cost. We show that by estimating spatial
orientation of the agents with single antenna, the accuracy is
improved by 96% over crowdsourcing only. Using geographical
maps as the basis, we solve the scheduling problem with a 3-
approximation ratio in polynomial time that exhibits statistically
similar performance under variety of urban locale across multiple
continents. The longest path traversed by an agent on average is
1.2km per unit diagonal length of a rectangular geographic area,
even when there are twice as many infractions as agents.

I. INTRODUCTION

Enforcement of spectrum policies is complementary to the
well-studied problem of Dynamic Spectrum Access (DSA).
However, the distributed nature of these policy violations
(defined as “Targets”) require accurate, cost-effective and
mobile, autonomous entities1(defined as “Agents”) to carry
out enforcement tasks. These tasks can be generalized as
various levels of signal measurement, waveform classification
and localization in order to pin-point rogue sources with very
high accuracy. The balance between cost and accuracy of such
an enforcement system critically depend on the appropriate
amount of resources (agents) mobilized to the right location
in the shortest possible time. More so because wireless signal
classification greatly benefits from proximity to the potential
source, different sensing parameters (bandwidth, sample rate,
battery constraints, etc) and aggregation of observations from
multiple agents.

To this end, crowdsourced paradigm [1], [2], [3] has been
shown as a viable apparatus. However, it suffers from many
inefficiencies like lack of trust and efficient incentive mech-
anism that may not provide bounded guarantees of accuracy
(e.g., detection and location) and cost (e.g., incentives, capital
and operational costs). Instead, we envision a hybrid approach
that leverage crowdsourced measurements (akin to eye-witness
accounts) to deploy mobile, autonomous agents to the target
sites depending on the veracity of these measurements. Our
work builds on any crowdsourced paradigm, where the wisdom

1We do not impose any restriction on the type of autonomous agents as
long as those use the road infrastructure to navigate. These agents can be
radio nodes mounted on autonomous vehicles or low flying UAVs (for sensing
ground based communication and avoid obstacles) or a combination of both.
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Fig. 1: MPC blocks: Crowdsourced measurements provide the
basis for deploying mobile agents to detect and localize targets.
The shaded blocks are the contribution of this work.

of crowd is simply used to assess the need for additional
resources to achieve a desired level of accuracy and cost,
thus avoiding unnecessary and restrictive burden on the crowd
(like undesired mobility, prioritized sensing, low incentive,
etc [4], [3]). This MPC system operates in two steps as
shown in figure 1. The Fusion center collects the initial
assessment of the target2 and derives the cardinality necessary
to collectively improve the accuracy at a bounded cost. This
information is used to deploy mobile agents to perform the
additional detection and localization tasks under the constraint
of scheduling a fixed number of agents in minimum time.

Cardinality, refers to the number of unique, mobile and
homogeneous agents (not including the participants from
the crowd) visiting targets, simultaneously or otherwise, to
achieve a target accuracy of the enforcement tasks. Accuracy
has two primary dimensions: a) Detection of a bad signal
(often expressed as a confusion matrix [5] and b) Location
estimate. Since the agents are homogeneous they can be
directed (although at a cost) to a near-optimal orientation or
detect signals with desirable operating points to independently
maximize along both the dimensions. We adopt the widely
used geometric trilateration [1], [6] as the basis to locate a
target and calculate the optimum cardinality that minimizes
the Geometric Dilution of Precision (GDOP). This is followed
by routing a finite number of agents to multiple targets while
fulfilling the cardinality determined in the previous step. The
solution to this lies at the intersection of finding the shortest
path between nodes in a graph and finding a schedule (or
order) for the agents to visit a set of targets. However, in
MPC, the additional requirement of fulfilling the cardinality
for each target, makes the solution orthogonal to the existing
literature [7], [8]. It is not necessary to route all the agents (as
per the cardinality) to a target at the same time. To ensure a
fast convergence of the scheduling algorithm the agents may
start from any point and take any path as long as it covers all
the targets in the least possible time.

2Crowdsourced agents may detect infractions with a wide variety of
accuracy (false and true positives) due to heterogeneous hardware and their
relative proximity to the target. There are many crowdsourced models [1], [3]
but our work subsumes any such paradigm without loss of generality.



(a) Ideal arrangement of agents
leads to low GDOP

(b) High GDOP using crowd-
sourced measurements.

(c) Thickness of the annulus, d de-
creases with SNR

(d) Receiver operating Character-
istic of a detector

Fig. 2: In trilateration, the location of a target is given by the intersection of the annular regions. The thickness of the annular
regions reduces with SNR based on (1). However, GDOP depends on the relative positioning of the agents as well. Also, An
ROC curve dictates the performance of any detector and assimilating results from various agents leads to higher accuracy.

In the final step the accuracy is iteratively improved until
the target level is achieved. Trilateration with no GDOP results
in a convex polygon that includes the target (§II). Each agent
is initially routed to the centroid of the polygon and then visits
each vertex to collect measurements and report to the Fusion
center. This ensures, aggregation of multiple sensing results
(using some form of weighted combination) at a very high
SNR. It is to be noted that these tasks may involve deeper
signal processing and possible indoor sensing as well, which
is not in the scope of this work. Since, the cost incurred to
conduct this localized sensing, is small compared to the overall
cost of scheduling it can be safely ignored in the larger context
of the cost of enforcement.

Collectively, these three parts constitute a solution to the
MPC problem that operate in lock-step with any crowdsourced
paradigm to achieve very high accuracy at a bounded cost that
is also minimum under the above constraints.

II. BACKGROUND AND KNOWN RESULTS

Trilateration under noise: Although our solution is inde-
pendent of the underlying crowdsourced paradigm, we adopt
trilateration based localization [1] to derive the cardinality
for the infractions. Trilateration [6] involves estimating the
distance (also called range) of a receiver from a potential
source based on the path loss incurred by a signal using an
approximation of the wireless channel. For example, in the
Hata-Urban [9] channel model, the distance from a transmitter,
d is related to the path-loss, PL as,

PL=A+B log(d)+C =⇒ d=10
PL−A−C

B (1)
where, A=69.55 + 26.16 log(fc)− 13.82 log(hb)

− 3.2(log(11.75hm))2 − 4.97

B=44.9−6.55 log(hb) and C=0 (Large metropolitan areas)
PL [dBm]=Pt [dBm]− SNR [dB]− PN [dBm]

Pt is the transmit power and SNR is the received signal to
noise ratio at the agent. PN denotes the average noise power
in absence of any signal is assumed to be −96dBm.

In (1), uncertainty arise from the assumption about Pt,
measurement noise in estimating the SNR and approximation
of the channel model. These errors are collectively modeled
as a random variable X ∼ N (µ, σ2), with µ=0 and σ2=2dB.
This noise model leads to two limits, [SNR±(X=x)]dB that
translates to two range values using (1): douter and dinner,
resulting in annular regions (instead of circles) of thickness
d = (douter − dinner) for each enforcer. Thus, geometric

trilateration using these annular regions provides an estimate of
the location of the violator. The overlapping area of the annular
regions creates a convex polygon containing the violator and
its area is a measure of accuracy of localization. Figure 2a
shows an ideal scenario where the location of the violator is
estimated by using the measurements reported by three closest
(highest SNR) members of the crowd. It has a very low GDOP
because the crowd agents are uniformly distributed on all sides
of the violator providing an accurate estimate of the target.
While, figure 2b shows such a scenario where the agents are
located within a certain angle of the violation. This produces
multiple convex polygons because of GDOP. This is precisely
the drawback of any crowdsourced paradigm. It is to be noted
that the GDOP can only be eliminated if there is a viable way
of positioning the agents, which is not possible in a purely
crowdsourced enforcement paradigm. The GDOP is used as
the guiding metric to derive the cardinality of a target.
Accuracy and GDOP: Intuitively, it is desirable to choose
crowd agents that are operating at high SNR (closer to target).
The area of the convex polygon is a function of SNR and
the noise model given by (1), which defines the thickness of
annular regions. Figure 2c shows that higher the SNR, lower
is the median width of the annular region, d and consequently
lower is the uncertainty in the location of the targets Hence,
it is desirable to position the agents as close to the target as
possible. Therefore, one of the objectives is to deploy mobile
agents to surround the initial crowdsourced estimate of the
convex polygon in order to minimize GDOP. The number of
agents required for this is also the cardinality of the target.
ROC of a signal detector: Signal detection and parameter
estimation is a rich and well-studied area. The Receiver
Operating Characteristic (ROC) curve (figure 2d) shows the
ROC curve for Neyman-Pearson detector [10]) is universally
used to define the performance of a classifier or an estimator.
In this work, the agents rely on the ROC curve to choose an
operating point based on the SNR of the received signal similar
to [1], [11]. Directing crowd agents to always operate at a
desirable operating point can be cost prohibitive but a group of
homogeneous autonomous agents can be mandated to yield a
high detection result, especially since the SNR is also very high
at the vertices of the polygon as mentioned above. Therefore,
our work is independent of any specific detection scheme and
simply ensures that the agents are always delivering the highest
possible accuracy, e.g., aggregating the operating points chosen
by the agents on the 15dB curve in figure 2d will always yield
the best result for detection.



III. MULTI-AGENT PLANNING WITH CARDINALITY

In the context of the MPC problem, let the set of m
targets be denoted by T = {T1, ..., Tm} located at coordi-
nates specified by the set t = {t1, ..., tm}. Let the crowd-
sourced estimates of the locations of the set of m targets
be tC = {tC,1, ..., tC,m}. Let the set of n autonomous
agents be denoted by A = {A1, ..., An}, with coordinates
a = {a1, ..., an}. Let the set of m convex polygons for targets
T , as determined by the crowdsourced and autonomous agent
based localization, be denoted by ZC = {ZC,1, ...,ZC,m} and
ZA = {ZA,1, ...,ZA,m} respectively.

Algorithm 1: MPC Algorithm
1 Function MPC(Map, a, ZC )
2 γth = 10m2; tC = getCentroids(ZC );
3 while True do
4 [C,ZA] = findCardinality(Map, tC , ZC );
5 t = getCentroids(ZA);
6 P = findAgentSchedule(Map, a, t, C);

// Take measurements & evaluate actual t

7 if ZA < γth then break; else ZC = ZA;tC = t;
8 end
9 return P;

10 end

Algorithm 1 shows the steps in solving the MPC problem.
It is initialized with the starting locations of the autonomous
agents, a, and ZC , followed by updating the target location
set, tC with the geometric centroids of ZC in line 2. The
accuracy of localization is defined by the area of ZA, and the
target value is chosen to be 10m2. Although a higher accuracy
can be achieved in theoretical sense, in practice, the accuracy
is limited by the feasibility of deploying agents to the vertices
of ZA. In other words, if the vertices of ZA fall over (or inside)
any structure, then it requires additional resources to further
improve the accuracy of localization. Algorithm 1 terminates
under such infeasible conditions but provides the maximum
accuracy in outdoor setting.

This algorithm has two key steps: A) Derivation of Car-
dinality, and B) Scheduling of autonomous agents. Step-A
calculates the cardinality (C) and the convex polygons (ZA)
in findCardinality (line 4), using the estimates from the
crowdsourced phase, ZC and tC . Figure 3a shows an example
of a target with crowdsourced detection and localization.
Figure 3b shows the cardinality for that target, the optimal
orientation of the autonomous agents and the improvement in
the accuracy of localization over crowdsourced localization by
employing Algorithm 2 in §IV. Then the target location set, t
is updated with the geometric centroids of ZA in line 5.

Step-B uses the locations, t and cardinality C from Step-
A to determine the paths, P for each agent by calling the
subroutine findAgentSchedule in line 6, outlined in §V.
Figure 3c shows an example schedule in a major city in the
US with a small set of agents and targets. Two properties are
evident from the schedule: 1) Paths for different agents overlap
but the same agent never visits a target more than once and
2) The agents can start and finish at any target as long as it
minimizes the length of the longest traversing agent. These
two properties collectively lead to Algorithm 3 in §V-A that
iteratively prunes the paths as the cardinality for the targets
are fulfilled, terminating with the quickest possible schedule
for all agents.

Then the agents are deployed to each target and measure-
ments are taken to validate the calculated ZA and [Pd, Pf ]
(true and false positives). If ZA is greater than the threshold
γth, then steps A and B are repeated by setting ZC = ZA and
tC = t, until ZA is less than the threshold γth. In other words
at each round of enforcement we use the estimated convex
polygon, ZA and locations t as the inputs for the next round
of enforcement. This procedure ensures that each violation is
localized with target accuracy threshold with no ambiguity.
The output of Algorithm 1 are the paths of all the agents (P).

In practice, once an agent visits a target, it performs a
single round of patrolling by visiting the vertices of the optimal
polygon circumscribing ZC as shown in figure 3b. At each
vertex the agent collects measurements (SNR) and estimates
the annular region based on the noise model mentioned in §II.
Since, each target is visited by a number of agents equal to
its cardinality the average of all the measurements minimizes
the error in ZA and [Pd, Pf ]. This aggregation is independent
of the MPC algorithm and can be designed to achieve other
objectives like trust and fault tolerance. The cost of a single
round of patrolling by the agents is negligible, since the area
of ZA are very small compared to the cost of scheduling the
agents to the the target locations. Hence, this cost is ignored
from the overall cost of scheduling.

IV. STEP-A: DETERMINATION OF CARDINALITY

Definition 1 (Cost of Localization) The Cost of Localization
for target Tj ∈ T , given ZC,j , i agents deployed to target Tj ,
and the convex polygon Zi

A,j is defined as,

Cost of Localization =
Zi

A,j

ZC,j
+ λi (2)

where Zi
A,j denotes the convex polygon with i agents on

the vertices of the smallest polygon circumscribing ZC,j and
Zi

A,j/ZC,j denotes the improvement in the accuracy of lo-
calization (Zi

A,j � ZC,j) over crowdsourcing after deploying
i agents. The regularization parameter, λ is a non-negative
value that trades off the localization accuracy with the cost of
deploying more agents.
Definition 2 (Cardinality) The Cardinality of a target Tj ∈ T ,
denoted by Cj is the total number of unique agents Ai, that
are required to visit Tj . For each Tj ∃ Cj ≥ 1. The set of
cardinality for the m targets is denoted by C = {C1, ..., Cm}.

Thus, the desired cardinality, Cj for each target, Tj ∈ T ,
is the number of unique agents (i) for which the Cost of
Localization for target Tj is minimum.

Cj = arg min
i

(Cost of Localization) (3)

A. Algorithm to determine Cardinality
The key idea here is to find an optimal polygon for each target
Tj that circumscribes the convex polygon, ZC,j . By deploying
the autonomous agents to the vertices of this optimal polygon
we can ensure that the target is localized with low GDOP and
high accuracy while choosing optimum operating points on the
ROC for signal detection.

Initially the number of edges of ZC is extracted in line
3. For each target Tj , the optimal polygon that circumscribes
ZC,j is determined. To do this we scan through the number of
agents (i) starting from 3 agents to a maximum number that
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Fig. 3: (a), (b) The autonomous agent based localization achieves a 92.25% reduction in the area of the convex polygon containing
the violation. (c) Example routes and the cost metric (details in §VI) for 5 agents and 10 targets in New York City.
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gon (ZA/ZC ) with Cardinality

(b) Cost of Localization vs Car-
dinality.

Fig. 4: Accuracy and cost of localization using Algorithm 2.
For λ = 0.01, the optimal cardinality is 5 and the median
reduction in the area of the convex polygon is 96%.

Algorithm 2: Algorithm to determine Cardinality
1 Function findCardinality(Map, tC , ZC )
2 for j=1:size(ZC ) do
3 numEdges = ZC .Edges;

// Find optimal circumscribing polygon
4 for i=3:numEdges do
5 MinPoly[i] = findMinPoly(ZC ,i);
6 Z̄A[i] = findConvexPoly(MinPoly[i], tC [j]);
7 CostLoc[i]= Z̄A[i]

ZC
+ λi;

8 end
9 [CostLoc[j], C[j]] = min(CostLoc);

10 ZA[j] = Z̄A[C[j]]; // Convex Polygons
11 end
12 return C, ZA;
13 end

is equivalent to the number of edges of ZC,j . For each i we
find the smallest polygon, MinPoly with i number of sides
that circumscribes ZC,j (line 5). Line 6 calculates the convex
regions Z̄A[i], when i agents are deployed to the vertices of
MinPoly. This step involves, computing the annular regions
and trilaterating as described in §II assuming that the target is
at tC[j] and the agents are at the vertices of MinPoly. The
overlapping area of these annular regions is the convex polygon
Z̄A[i]. Next, we determine the cost of localization for each i
according to Definition 1. The optimal circumscribing polygon
is the polygon that gives the minimum cost of localization.
Thus, line 9 gives the Cost of Localization for target Tj and
the cardinality of Tj is equal to the number of sides of the
optimal polygon. The above steps are repeated, to determine
the cardinality, Cj and ZA,j for all targets, Tj ∈ T .

B. Impact on Localization
Figure 4 shows the fidelity of localization of the au-

tonomous agents oriented as described in Algorithm 2. Figure
4a shows the reduction in the area of the convex polygons
encompassing the targets over crowdsourced localization. It
shows that the higher the number of agents deployed to the
target, the smaller is ZA and the higher is the accuracy of
localization. Figure 4b shows the dependence of the optimal
cardinality on the regularization parameter, λ. At larger values
of λ, a lower cardinality provides a lower cost of localization.

C. Impact on Detection
The set homogeneous autonomous agents can be directed to

operate at a desirable operating point on the ROC. Also, since
Algorithm 2 positions the agents on the vertices of the optimal
polygon (figure 3b) and the SNR is very high at these vertices
they guarantee a near optimum detection result (F-score[12]
≈ 1) regardless of the chosen operating point, as shown in
figure 2d. Such a guarantee cannot be made for crowd agents
as mandating the crowd to operate at a fixed operating point
may be cost prohibitive. Thus, it is guaranteed that autonomous
agents provide better detection accuracy than crowd agents.

V. STEP-B: SCHEDULE AUTONOMOUS AGENTS

After ascertaining the improvement in localization based on
the optimal cardinality, unique agents are routed to each target.
The starting point of the scheduling phase is the construction
of an undirected, weighted graph G = (V,E) from the road
network of the geographical area being enforced for spectrum
policies, where the roads are mapped as edges E and the
intersections as vertices V . A Path in G = (V,E) is defined as
a subgraph P = (Vs, Es), if Vs is a set of k vertices of its base
graph G and Es = {(x1, x2), (x2, x3), ..., (xk−1, xk)} ⊆ E
is the set of k − 1 edges that connect those vertices. The
length of a path depends on the number of its edges and
their weights, w(vi, vj) = w(vj , vi). In this paper, the weight
associated with each edge is the geographical distance between
the corresponding vertices.

The Cost of Scheduling n agents to visit m targets is the
time it takes for all the agents to cover m targets while satis-
fying the cardinality for each target. This time is determined
by the agent that takes the longest time to traverse its path.
Since, all agents are assumed to travel at the same speed, the
time taken by an agent is determined by the sum of the edge



weights of Es. Finding the costliest path, P = (V s,Es) is the
central goal of this work. For practical purposes, m ≥ n.
Definition 3 (Cost of Scheduling) Given the path Pi of an
agent ai of length li, the Cost of Scheduling is the length of
the path of the longest travelling agent.

Cost of Scheduling = max∀ic(Pi) = max∀ili

Where, the cost c(.) of a path of k vertices (targets) is the sum
of its edge weights,

c(P ) =

k∑
i=1

w(xi, xi+1)

Definition 4 (Uniqueness) Uniqueness is the necessary condi-
tion that requires distinct agents Ai to visit each target Tj in
order to fulfill its cardinality Cj).

For example, if Cj = 2, Uniqueness guarantees that
even if agent Ai traverses multiple times through target Tj ,
it still needs another agent, other than Ai to visit Tj to
fulfill the cardinality of 2. In practice, unique agents provide
additional layers of information that can be assimilated for
higher accuracy [1].
Definition 5 (Schedule) Given a set of m targets
{T1, T2, ..., Tm} at t1, t2, ..., tm, where tj ∈ V , a set of
n agents {A1, A2, ..., An} at a1, a2, ..., an, where ai ∈ V ,
m ≥ n, and max∀j(Cj) < n, the Schedule is to find the paths
Pi,∀Ai ∈ A to visit m targets in the shortest possible time
with Cj unique agents visiting Tj , ∀Tj ∈ T .

The solution is the set of paths, P = {P1, ..., Pn} such
that the the cost of scheduling (according to Definition 3) is
minimum, while ensuring the number of unique agents visiting
each target Tj is exactly equal to Cj ,∀Tj ∈ T (Definition 2 and
4). The targets can be visited at any time during their traversal
without any constraint of waiting time or synchronization, until
the cardinality is satisfied for each target.

A. Algorithm for the Schedule
The algorithm is initialized with the locations of the agents,

a and the targets, t with corresponding Cardinality C, projected
on to a graph G = (V,E), extracted from open source
map engines like OpenStreetMap [13]. For one round of
enforcement activity, the locations of the targets are assumed
to be constant while the agents follow a schedule to visit the
targets. Line 2 in Algorithm 3 initializes these steps. It is
assumed that the Dispatch, where the algorithm is executed
has prior information about the initial conditions.

The goal of finding the shortest path between the points
in a graph is accomplished by creating a Mission-Graph for
every agent in a as shown in line 3 and the corresponding
subroutine in lines 20 – 28. The Mission-Graph is defined
as a complete graph Ḡi = V̄i, Ēi, where, V̄i = T ∪ Ai

The edge weights, w̄(p, q) is the length of the shortest route
between nodes p, q ∈ V̄ , computed using Dijkstra’s shortest
path algorithm in lines 24 and 25. In other words, the Mission-
Graph provides the best geographical route for each agent Ai

to reach every target Tj and also the shortest route between
any two targets in V̄ . Given, the shortest paths in the Mission-
Graph, Line 4 calculates the schedule (order) for each agent to
cover all the targets in V̄ in the shortest time, which is also the
sum of edge-weights w̄(p, q) in the path Pi. This is equivalent
to solving the TSP for each agent and dropping the last edge
of the TSP tour to obtain the path Pi. Considering the best

achievable performance to solve the TSP for each agent, we
utilize the approach in [14].

Algorithm 3: Path Pruning Algorithm
1 Function findAgentSchedule(Map, a, t, C)
2 targets assigned=[t;...;t];X=[n,...,n]; // Visits Count
3 Ḡ=findMissionGraphs(Map,a, t);

// Order for all agents to cover all targets
4 [P ,costs] = TSP(Ḡ, a, t);

// Compute shortest path to find Schedule
5 while X 6= C do
6 i=0; k=getMax(costs);

// Prune redundant edges
7 while True do
8 l=P[k][end-i];
9 if X [l] > C[l] then

10 targets assigned[k][end-i]=[]; break;
11 end
12 i=i+1;
13 end

// Reevaluate TSP for costliest agent
14 Ḡ[k]=graph(Dijkstra([t,a(i)],G[k]));
15 [P[k], costs[k]] = TSP(Ḡ[k], a[k],

targets assigned[k]);
16 X [l]=X [l]-1;
17 end
18 return P , max(costs);
19 end
20 Function findMissionGraphs(Map, a, t)
21 City Graph=graph(Map);// Extract connectivity
22 Ḡ=[];// Extract Mission Graph for each agent
23 for i = 0 to size(a) do
24 DistanceMatrix=Dijkstra([t,a(i)],City Graph)
25 Ḡ[i]=graph([t,a(i)],DistanceMatrix)
26 end
27 return Ḡ;
28 end

Pruning for least costly path: Given the objectives in Def-
initions 2 & 5, the algorithm iteratively prunes the path of
the costliest agent obtained from line 4 (shortest tour on the
Mission-Graph) to find a schedule with the minimum cost of
scheduling. Central to the pruning step is the adherence to the
cardinality Cj for each target. This is outlined in Lines 5–17.
The pruning begins by selecting the costliest agent indexed
by k (the agent that traverses the longest path) and choosing
the farthest target (indexed by l) that the agent k visits, as
indicated in lines 6 and 8 respectively. Line 9 checks for the
condition if the cardinality of this target, C[l] has been fulfilled
by other agents visiting it prior to the agent k. The variable
X keeps track of the number of visits for each target, which
is initialized in line 2 with the maximum number of visits
possible for each agent, n (max∀j(Cj) < n in Definition 5). It
is decremented by one in line 16 every time a target is removed
and the path is pruned to minimize the cost of scheduling.
The intuition behind this approach is that by removing this
redundant node (cardinality already fulfilled) from P[k], it
produces a local minima for the overall time taken among all
agents. The condition in line 9 is checked for each target in
P[k] and after all the redundant paths are removed, the shortest
route among the remaining targets in P[k] is computed again
using Dijkstra’s algorithm, followed by finding the shortest
tour by solving the TSP [14] in lines 14 and 15 respectively
and the visits count variable X is decremented. The reason
for recomputing Dijkstra’s algorithm and the shortest tour in



(a) City map with 3 agents, 5 targets with
different cardinality and edge weights

(b) Iter 1: Initial Path Estimate: A2-
costliest agent, T4-farthest redundant target

(c) Iter 2: Remove T4 from A2’s path. A1-
costliest agent, T2-farthest redundant target

(d) Iter 3: Remove T2 from A1’s path. A3-
costliest agent, T2-farthest redundant target

(e) Iter 4: Remove T2 from A3’s path. A3-
costliest agent, T1-farthest redundant target

(f) Iter 5: Remove T1 from A3’s path, A1-
costliest agent with all cardinality fulfilled

Fig. 5: Example illustration of Algorithm 3 with 3 agents and 5 targets (T1 - T5 with cardinality {2, 1, 3, 2, 3} respectively).
In each step the costliest agent (longest travelling agent) is identified and the redundant target (cardinality already fulfilled) is
removed. After 5 iterations, Agent A1 is the costliest. This cost is normalized with the diameter of the graph used a cost metric
for evaluation in §VI. The algorithm also provides the best schedule for the remaining agents.

lines 14 and 15 is to ensure that once a node is removed from
the current TSP tour, the weight of the new edge between the
nodes immediately prior and after the one removed may not
be equal to the sum of the two edges prior to the removal.
In other words, if a → b → c is a TSP tour and edge b is
removed in line 10 then w(a, c) 6= [w(a, b)+w(b, c)]. Although
the inequality strictly depend on the graph G (city map), it
cannot be ascertained a priori and hence line 14 and 15 ensures
that the final schedule is always has the minimum cost. This
process (lines 5-17) is repeated until the cardinality is fulfilled
for all targets in t (line 5) and the last calculated shortest tour
given by line 15 is the final schedule for the agents, returned
as P along with the final cost of scheduling in line 18.
Example Illustration of Algorithm 3: Figure 5 shows an
example of the iterative evolution of Algorithm 3. Figure 5a
shows a simple city graph, G with edges representing the roads
along with 5 targets and 3 agents located at the intersection
of these roads. The cardinality of the targets T1 − T5 is
{2, 1, 3, 2, 3} respectively. After computing the shortest tour
in the Mission-Graph for all agents in lines 3 and 4, the costs
(length of the lines) and the resultant paths (order) for each
agent are indicated in Figure 5b. In the first iteration, agent
A2 travels the longest to cover all the targets and is identified
as the costliest agent. The farthest target in A2’s path is T4.
As T4 has a cardinality of 2, requiring only 2 of the 3 agents
to visit, it is considered to have a redundant visit in A2’s path.
In other words, T4 can be visited in shorter time by the other
two agents and fulfill the cardinality of 2. Hence, removing
this redundant and costly target T4 from agent A2’s path (as
per lines 9 – 11) reduces the cost of A2’s path while fulfilling
the cardinality for all the targets. The new path for A2 and its
cost is determined from the new Mission-Graph (without T4)
as per line 14 and 15.

Figure 5c shows the paths and the costs of the agents at
the beginning of Iteration 2. In the second iteration, A1 is

determined to be the costliest agent and T4 as the farthest
target. However, as T4 has a cardinality of 2 and has two
agents visiting it (including A2). So, this is not considered as
a redundant visit. So, the algorithm continues to look for the
farthest target in A1’s path that has redundant visits, until it
detects T2 as the farthest redundant visit, which is removed
from A1’s path. Note, T5 and T3 in A1’s path, both require all
three agents to visit as they have cardinality of 3, hence those
two nodes cannot be removed from A1’s path. The updated
path and its corresponding cost is shown in figure 5d. Similarly,
in the third iteration, A3 is the costliest agent and T2 is the
farthest redundant target in its path (removing other nodes will
not meet the cardinality for those). While the removal of T2
does not improve the cost, as T4 can only be reached via
T2, it should be noted that removal of any targets and the
corresponding edges does not increase the cost (due to the
triangular rule governing Euclidean graphs [14]). In Iteration
4, shown in figure 5e, A3 is still the costliest agent, and T1
is the farthest redundant target because its cardinality can be
met in shorter time by the other two agents. Consequently,
T1 is removed from A3’s path and after recomputing the new
schedule and the path cost the final schedule is obtained as
shown in in figure 5f. The cost of scheduling for this graph is
the total cost of the A1’s path because that is the minimum time
required to visit all the targets while fulfilling the cardinality.

B. Analysis of Algorithm 3
We show that the Schedule is NP-hard, hence there is no

optimal solution in polynomial time.

Claim 1. The Schedule is NP-hard.

Proof: Consider a subproblem of the Schedule, with 1
agent having to visit all the targets, with all the targets having
a cardinality of 1. This is equivalent to solving the TSP for
that agent. Since, the TSP is NP-hard and it is a special case
of the Schedule, it is inferred to be at least NP hard.



TABLE I: Notations used in §V-D

Notation Interpretation

i Agent i, i ∈ {1, 2, ..., n}
tk Target j, j ∈ {1, 2, ...,m}
Pi Path of Agent i returned by Algorithm 3
P∗

i Path of Agent i returned by OPT

li Cost of Agent i obtained by Algorithm 3
l∗i Cost of Agent i obtained by OPT

li(tk) Increase in cost of agent i by adding target tk in Algorithm 3
l∗i (tk) Increase in cost of agent i by adding target tk in OPT

T i
x Set of targets visited by both Pi and P∗

i

T i
y Set of targets visited by Pi, but not by P∗

i

T i
z Set of targets visited by P∗

i , but not by Pi

C. Complexity of Algorithm 3
In absence of an optimal algorithm, Algorithm 3 yields a

solution for the Schedule in polynomial time.

Lemma 1. Algorithm 3 has complexity of O(nm4), where n
is the number of agents and m is the number of targets in G.

Proof: Since the cardinality of the targets is fixed, the
number of iterations of Algorithm 3 is bounded by a fixed
number. The algorithm is initiated with all agents visiting all
targets (X in line 3) and executes until each target is visited
by a number of agents equal to its cardinality. Each iteration
removes one redundant visit from the costliest agent (as shown
in Figure 5). So, for each target Tj , the algorithm executes
(n−Cj) times and therefore, the total iterations in Algorithm
3 for all the targets is,

(n− C1) + (n− C2) + ...+ (n− Cm) = m.n−
m∑
i=1

Ci (4)

Recall that, n < m and max∀i∈m(Ci) ≤ n. Hence,
m∑
i=1

Ci ≤ m.n =⇒ m.n−
m∑
i=1

Ci ≥ 0 (5)

The 3/2-approximation for TSP [14] used in Algorithm 3 has
a complexity of O(m3). Since, the TSP is computed once in
every iteration, the complexity of Algorithm 3 is,

=O(m.n−
m∑
i=1

Ci).O(m3) = O((m.n−
m∑
i=1

Ci).m3)

=O(n.m4 −m3.

m∑
i=1

Ci)

=O(n.m4) From (5)

Hence, Algorithm 3 has a complexity of O(nm4).
Note: The 2-approximate solution of TSP based on the Mini-
mum Spanning Tree (MST) of the corresponding graph [15],
has a complexity of O(m.log(m)). Using such an implemen-
tation in Algorithm 3, the complexity can be improved to
O(n.m2log(m)). Using the MST has the added advantage of
solving the Schedule for non-metric graphs, such as in the
presence of traffic the costs of edges are no longer just a
function of distance. This problem is out of scope of this work
and will be investigated in future.

D. Approximation Ratio for Algorithm 3
In absence of a polynomial time, optimal solution for the

Schedule, an approximation ratio is a bound, which guarantees

that any solution from Algorithm 3 is always within a constant
factor of the solution from an optimal algorithm. In other
words, using the notations in Table I, if agent p is the costliest
in Algorithm 3 and agent q is the costliest in the optimal
algorithm, then lp ≤ 3.l∗q is provably correct.

Let, OPT be the optimal algorithm for the Schedule
problem that returns the paths P ∗i ,∀i ∈ A, with minimum
cost among all the possible paths that fulfills the cardinality of
the targets. It is to be noted, that we do not make assertions
on the design of OPT except to acknowledge that a Minimum
Spanning Tree (MST) can be constructed from the targets in
any optimal path P ∗i ,∀i ∈ A, similar to deriving a solution of
the TSP problem (used in Algorithm 3) from a corresponding
MST. Also, Pi,∀i ∈ A, in Algorithm 3 (computed in lines 6–
21) can be obtained using the round-trip MST of the Mission-
Graphs (Ḡi) instead of the 3/2-approximate TSP approach
[14]. Under such implementation, we observe that if T i

y = 0,
i.e. targets in Pi ⊆ targets in P ∗i , then by the construction of
MST [16] we observe Property 1.

Property 1. If T i
y = 0, then li is no worse than twice the

optimal cost l∗i . i.e, li ≤ 2.l∗i .

Furthermore, the following properties can be observed
based on the design of Algorithm 3 and the definition of OPT .

Property 2. Since, Algorithm 3 and OPT both return the
costliest paths among all the agents (say lp and l∗q ), the paths
travelled by any other agent, must not be costlier than lp or
l∗q . Thus, for any agent i ∈ A we have, li ≤ lp for Algorithm
3 and l∗i ≤ l∗q for OPT .

Property 3. In Algorithm 3 and OPT , all targets must be
visited by the same number of agents (Definition 2 in §V).

Property 4. If a target tk is removed from an agent i’s path,
it must have been the costliest path at some prior iteration of
the algorithm (line 8–15). So, if agent p is the costliest agent
at the end of the algorithm, the increase in agent i for visiting
tk must be such that li + li(tk) ≥ lp.

Property 5. From Table I, we can express the costs li and l∗i
of agent i as,

li = li(T
i
x) + li(T

i
y)

l∗i = l∗i (T i
x) + l∗i (T i

z)

Theorem 1. Algorithm 3 is 3-approximation for the Schedul-
ing Problem.

Proof Overview: Let the costliest paths returned by Algorithm
3 and OPT be lp and l∗q respectively. Our goal is to find a
relationship between these two quantities, by first establishing
an inequality between the costs of the same agent in Algorithm
3 and OPT, and then using the inequality and the properties
to relate the costs of different agents in the two algorithms.
This result is used to relate the costs of agents which have
non-overlapping targets in the paths obtained from Algorithm
3 and OPT. We consider two cases: 1) The targets in Pp ⊆ the
targets in P ∗p and 2) The targets in Pp * the targets in P ∗p .

Due to space constraint, the complete proof of the approx-
imation ratio is provided as an anonymous external document
at www.dropbox.com/s/xa7yzce5z0s1m4q/Proof.pdf?dl=0 .



(a) Normalized cost metric in London (b) Normalized cost metric in NYC (c) Normalized cost metric in Paris

Fig. 6: Normalized cost metric for Average Cardinality = 3 for (a) London (b) NYC and (c) Paris.The dark line highlights the
points beyond which the cost variation is below 10%. The variance is indicated using the color scale.

VI. PERFORMANCE EVALUATION

For practicality, the algorithm was evaluated in three promi-
nent cities: New York City (NYC), Paris and London, primarily
to understand the performance on different graphs, with the
roads mapped as edges, and the intersections to vertices. To
compare the outcome of Algorithm 3 among different cities,
the cost metric (Definition 1) is normalized by the diameter
of the graph and its unit is represented as km/km. For a
rectangular area, the diameter is simply the diagonal. Figure
3c shows the cost metric and paths for one instance in NYC
where 5 agents are routed using Algorithm 3 among 10 targets
with different cardinality. To further investigate the Scheduling
performance, we perform a parameter space analysis on larger
geographical area and more agents and targets.

A. Parameter Space Analysis
For each graph (city) the number of agents (n), the number

of targets (m), the location of agents (a), the location of
targets (t) and the cardinality of targets (Cj) were varied and
the effect on the paths (Pi) and the costs (li) of the agents
were recorded. The location of agents and targets were chosen
randomly among the available nodes in the graph.The agents
are varied from 4 to 20 and number of targets from 4 to 30 and
executed 500 unique arrangements of agents and targets. The
cardinality was varied from 1 to n (1 ≤ Cj ≤ n). However,
the distribution of Cj is controlled in two ways: (1) Constant
average cardinality and (2) Decreasing the average cardinality
with increasing number of targets (by ensuring a Constant
number of total visits across all the agents).

1) Constant Average Cardinality: The cardinality was dis-
tributed among the targets such that an average cardinality
of 3 is maintained across all agents. This ensures that even
with increasing number of agents, the average number of visits
required for the targets is 3, such that for a fixed number of
violations the cost reduces as we deploy more agents. Figure 6
shows the mean and variance of the normalized cost metric for
the three cities. The fixed average cardinality justifies the drop
in cost observed when more agents are deployed. The cost
increases with increasing violations, since the total number of
visits required also increases linearly as the average cardinality
is fixed. However, it is observed that the rate of reduction in the
cost metric drops with increasing number of agents, denoted by
the dark line, which shows the 10% reduction in the cost metric
for different number of targets. This line indicates a boundary
for cost-effective enforcement as adding more agents does not

lead to substantial reduction in the cost metric. Further, the
variance of the cost metric (the color axis) increases with the
number of targets and drops with the number of agents. This
is influenced by the fact that, as there are more infractions,
the potential of having diverse target distributions (such as
clusters or well separated targets) increases resulting in a larger
variation. Figure 6 also reveals that the algorithm performs
statistically similar with respect to the mean and variance of
the cost metric among the cities regardless of the attributes
of the city maps. However, closer inspection indicates that
Paris portrays a slightly larger cost followed by New York and
London. This behaviour is attributed to the features of the road
network in these cities. In Paris, the agents have to travel via
the central hub to cover the targets. This feature contributes to a
higher travel time. In comparison, NYC has highly connected,
grid-like road systems with plenty of connectivity between the
targets, resulting in a relatively lower cost metric compared
to Paris. It is interesting to observe that in London and New
York the 10% line is located between 10-12 agents and for
Paris between 8-10, suggesting that in London and New York
the costs can be further improved by increasing the number of
agents compared to Paris.

2) Constant Total Number of Visits: The total number of
visits was fixed at 40 to ensure that even with increasing
number of targets the total number of visits required by all
the targets combined is limited to 40, such that the average
cardinality reduces as the number of targets increases, limiting
the growth in the cost. Since, the total number of visits is
constant and the average cardinality reduces with the number
of targets, it is observed that the change in cost with the
number of targets was minimal compared to the previous case.
Practical implications of limiting the total number of visits
include situations where the cost must be maintained at a
specific value even with increasing violations. This is a metric
that is controlled by the Dispatch to conserve enforcement
resources. The variation of the mean normalized cost metric
in Figure 7 display a similar pattern with minuscule increase
from London to Paris. However, it is observed that the variance
decreases with increasing number of targets unlike in the
previous case. This is because the lesser the targets the higher
is the average cardinality introducing more variation in the
paths of agents for lesser number of violations.

B. Overall System Performance
The overall performance metrics for Algorithm 3 is shown

in Figure 8 for an average cardinality of 3. Figure 8a indicates



(a) Normalized cost spread in London (b) Normalized cost spread in NYC (c) Normalized cost spread in Paris

Fig. 7: Normalized cost metric for Total Visits = 40. The dark line highlights the points beyond which the cost variation is
below 10%. The variance is indicated using the color scale.

increasing cost metric with increasing separation of targets,
confirming its influence on the cost. The large variation of
cost observed at the same target separation, is due to the
dependence of the cost metric on the distribution of the
targets. Among the regions highlighted on Figure 8a at a target
separation of 1, region A exhibits expected behaviour, where
the cost metric is comparable to the separation of the targets.
Region B has an unusually high cost metric due to widely
distributed and hostile violations (high cardinality) with few
available agents. On the contrary, region C portrays a much
lower cost than the separation, which occurs when there are
more agents than targets that are clustered within a small area.

The variation of the average cost metric with the ratio of
agents to targets shown in Figure 8b, confirms that deploying
more agents for the same number of infractions, decreases
the cost. The plot shows the ability of the algorithm to scale
as the trend of the cost is similar even for larger systems
of agents and targets. i.e if the hostility in an environment
increases, increasing the number of agents by the same factor
will ensure similar cost performance. The figure also shows
the ability of the algorithm to perform load balancing, which
is naturally guaranteed by the algorithm as it prunes the path
of the costliest agents, improving the balance among agents,
ensuring that no agent is overworked. The behaviour of the
cost metric with the attributes of the city graph is depicted by
the QQ plots. Figure 8c compares the distribution of the cost
metric with that of the length of the edges in the city graph.
The distribution of the cost and the average distance between
the targets are highly correlated as shown in figure 8d. Results
from London and Paris exhibits similar behaviour that follows
the trends observed in figures 6 and 7.

VII. RELATED WORK

The Scheduling problem has its roots in Multiagent plan-
ning (MP) which is the NP-hard problem [17] of finding the
shortest paths of agents with targets visited at least once.
The MP problem has been approached using parallel graph
algorithms [18], Integer-Linear programming (ILP) algorithms
[19] and A* search algorithms with guarantees [20]. In general
these methods do not enforce unique visits at the target. In
the context of Multiagent Planning with uniqueness (MPU),
an intriguing class of problems is the Multiple Traveling
Salesmen Problem (MTSP) which finds closed tours for agents,
while enforcing uniqueness. MTSP is challenging due to its
combinatorial nature and NP-hardness [21]). Approaches to

(a) Variation of Cost with max-
imum separation of targets.

(b) Variation of Cost with ratio
of agents to targets

(c) Cost vs edge length (d) Cost vs average inter-
target distance

Fig. 8: Comparison of the distribution of Normalized Cost
Metric for NYC with that of (a) Edge lengths and (b) Average
Distance between Targets.

solve the MTSP include the transformation into an equivalent
TSP and solving by exact or approximate algorithms [7],
or solving the MTSP directly using Linear Programming or
exact methods [22]. These methods do not solve the MPU
directly as they yield tours and not paths for agents. In [23]
a heuristic search method is proposed to solve the Multiagent
Path Finding problem, which is similar to MPU, except that the
endpoints of the tours are also fixed. [21] presents a Genetic
Algorithm Inspired Descent (GAID) method for solving the
MPU. For detecting and localizing infractions we require
multiple agents visiting each infraction to address its het-
erogeneity (Cardinality). An exact method for heterogeneous
MTSP (some targets can be visited only by a specific agent)
is provided in [22]. However, the class of MTSP does not
addresses the notion of multiple visits. In the general MP
problem targets aren’t restricted to a single visit, and may incur
multiple visits, but no control is enforced on number of visits.
An interesting class of problems here is the Vehicular Routing
Problems (VRP/MDVRP) [8], which might facilitate multiple



visits [24], however does not ensure uniqueness or constraints
on number of visits. A class of problems in VRP deal with
some notion of heterogeneity (some targets can be visited only
by a specific agent), for which a 8-approximation algorithm
is presented in [25]. However, these approaches are based
on graph partitioning, where imposing cardinality constraint
is challenging. Multiagent patrolling problems [26] enable
targets to be visited multiple times, however by the same
agent. Under the constraint of Cardinality, MP problem evolves
to Multiagent Planning with Cardinality (MPC) problem. To
the authors best knowledge Multiagent planning problem with
Cardinality and the notion of using the crowd as eyewitnesses
to efficiently deploy agents to improve the enforcement of
spectrum policies, is unprecedented in literature.

VIII. CONCLUSION

In this paper, we architected and analyzed a solution for the
MPC problem which consists of algorithms to derive the near-
optimum cardinality of the targets and to compute schedule for
all the agents to fulfill the cardinality of the targets in the short-
est possible time. This contribution is a complementary and
necessary precursor to advance signal processing for enforcing
spectrum etiquette using mobile, autonomous agents. Through
simulations and analysis, we draw four firm conclusions: 1)
The autonomous agents are able to detect and localize targets
with higher accuracy than a purely crowdsourced regime.
2) The scheduling algorithm is polynomial and provides the
shortest paths for the agents while conforming to the cardinal-
ity requirement, 3) The scheduling algorithm has a provable
bound of 3-approximation ratio. 4) The scheduling algorithm
exhibits strong generality across different geographical regions,
by producing statistically similar results for varying degree of
violations. While we await practical system implementation,
the encouraging results from this work lay the foundation
towards adopting a real-time, autonomous enforcement system
for spectrum policies.
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