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ABSTRACT
Modern wireless systems are increasingly dense and mobile that
makes the channel highly non-stationary, rendering conventional
receivers sub-optimal in practice. Predicting non-stationary chan-
nels is rare in literature, especially with iterations on channel state
feedback from the receiver. This research builds prescience in a
transmitter that will make ultra low latency applications reliable by
pre-compensating the waveform according to the impending channel
impairments. This work explores the apparatus of deep reinforce-
ment learning to understand when is learning beneficial and the
limits of error performance of non-stationary channels when pre-
dicted using sparse, noisy and corrupt channel state information
from the receiver.
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1 INRODUCTION
Design and analysis of optimal receivers using conventional commu-
nication theory, rely on mathematical and statistical channel models
that describe how a signal is corrupted during transmission. In par-
ticular, communication techniques such as modulation, coding and
detection that mitigate performance degradation due to channel im-
pairments are based on such channel models and, in some cases,
instantaneous channel state information about the model. However,
there are many propagation environments (such as vehicular net-
works) where this approach does not work well because the underly-
ing physical channel is highly dimensional, poorly understood, or
rapidly time-varying (non-stationary). These channels leads to sub-
optimal and sometimes catastrophic performance using conventional
receivers. This problem is relatively tractable and has been studied
in the literature for linear, stationary channels with normal distribu-
tion by employing the gamut of mathematical tools for Bayesian
inference that ranges from Autoregressive random walks, Kalman
filters and Particle filters.
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While it is desirable to learn the behavior of the wireless chan-
nel, it is a non-trivial problem in practice. Wireless channels are
influenced by many external variables that are often correlated, time-
dependant or unknown. Therefore, any acquired knowledge about
these factors will inevitably be ephemeral, which necessitates long-
term learning models that are fast, adaptive and evolve over time. Fur-
ther, in multicarrier communication systems like OFDM, frequency
selective fading can be alleviated if the subcarriers are pre-equalized
in accordance to the impending channel response. Therefore, we
postulate that in non-stationary channels, the transmitter has to learn
and predict the most accurate channel response on a per-packet ba-
sis such that when the signal is pre-equalized by the inverse of the
channel it counteracts the effects of wireless channel. For example
a Road-Side Unit (RSU) assimilates the Channel State Information
(CSI) from vehicles, which is a function of scatterers and vehicle
speed to predict future channel states. This temporal knowledge
can be obtained using reinforced learning while, decorrelating time-
varying, correlated, higher dimensional stochastic variables is one
of the strengths of deep neural networks. Therefore, instead of a
feed-forward learning model at the receiver, that only learns the past
history but is unable to predict future states of the channel, we believe
that Deep Reinforcement Learning (DRL) model will make accurate
predictions as it involves both the transmitter and the receiver to
jointly achieve an optimal performance when communicating over
non-stationary wireless channels.

The goal of this work is to achieve the error performance of
AWGN channel even when the channel is statistically non-stationary
by accurately predicting it at the transmitter. This is realized by
using CSIs, obtained as a feedback from the receiver, to decorrelate
latent variables using reinforced deep neural networks. Followed by
using the predicted channel to pre-equalize the waveform that yields
flat-fading across frequency at the receiver, reducing the error rate.
This gain in physical layer will also enable novel proactive higher
layer protocols for wireless networks.

Example application: Recent explosion in autonomous vehicles
has renewed the interest in investigating the properties of the ve-
hicular wireless channel for low-latency, broadband communica-
tion. Vehicular networks are unique because the communicating
nodes (Vehicle-to-Anything (V2X)) are always moving relative to
each other. Consequently, the wireless channel is extremely volatile,
which is a combination of many factors like, Doppler shift, shad-
owing, scattering, etc. More importantly, all of these quantities are
time-varying and statistically non-stationary. A reliable wireless
channel also provides resiliency in higher layer network functions
like traffic-aware, low-latency caching of content and coordinated
downlink transmission for multiuser communication techniques. Al-
though, V2X is an extreme example of non-stationary channel, the
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(a) BER for 16-QAM (b) BER for different modulations
Figure 1: Performance of Recommendation system.

proposed research organically applies to other wireless channels with
similar properties, like 802.11-(xx), C-V2X and mmWave networks.

2 PRELIMINARY RESEARCH AND RESULTS
Predicting the wireless channel is a three-step process: The first step
is accumulation of the CSI from the receivers along with any and all
measurable parameters that might affect channel states. Secondly, a
carefully orchestrated mathematical treatment (algebraic, Bayesian,
neural networks, etc.) to analyze the correlation among the vari-
ables that constitute the measured CSI. Non-stationary V2X channel
contains many immeasurable and hidden variables that collectively
contribute to a particular CSI value. However, these hidden variables
may be correlated with other observable parameters like the number
of scatterers, vehicle speed and road-side features. In our preliminary
work ([1]), we have been successful in employing Tensor Factoriza-
tion (TF) to address this problem. The third and final step is to utilize
the information from the previous two steps to obtain an accurate
representation of the channel based on the impending (future) states
of the observable variables and pre-compensate the waveform at the
transmitter to combat the channel.

Latent variables are responsible for hidden correlations that can-
not be ascertained a priori. As an example, in [1], tensors are used to
record the multivariate V2X channel to analyze the impact of latent
variables on the CSI. In [1], we evaluated the performance of the
TF approach using the WINNER model. Vehicles are simulated at a
speed of V=20m/s (45mph). The number of fixed scatterers is set to
be different in each segment (between 1 to 5) and variable scatterers
are chosen uniformly between 0 and 9. The road length is 200m,
divided into 20 segments. Figure 1a shows the BER in comparison
to the AWGN case (blue) and that without any prediction (black).
These results show that the channel prediction system yields >90%
improvement in BER for 16-QAM constellation but considerably
worse compared to the AWGN channel. It also outperforms other
iterative methods like Kalman filter (green). Closing this gap for
higher order modulations is the goal of this research. Figure 1b
shows the BER for differenet modulations.

3 DRL FRAMEWORK
Channel prediction using TF captures the latent variables of the
channel when combined with the observable variables (CSI, scat-
teres and location). However, there are several factors that limit the
performance and practicality of this method. For example, TF as-
sumes a multi-linear decomposition, and computes latent variables
that adhere to this constraint. As such the computed latent variables

might not be disentangled as desired and also capture the noise in
the tensor. In contrast, reinforcement learning captures the temporal
variation of the channel while disentangling the latent variables using
the β-VAE network, leading to better predictions. Also, deep neural
networks serves as complicated function approximators, making
the underlying computations generic and tractable. DRL enables an
agent to learn and predict in an interactive environment (involving
both transmitter and receiver) using feedback from its own actions
(predictions) and experiences (flatness of estimated channel at re-
ceiver). It leverages deep neural networks to approximate the policy
of reinforcement learning to make it tractable for online predictions.
Hence, DRL serves as the ideal form of online learning where re-
wards (function of CSI) are based on past predictions can be used to
improve future actions.

The flow of information from transmitter to the receiver is as fol-
lows: At the transmitter, the bits that are to be transmitted are modu-
lated to generate the I/Q vectors. These I/Q vectors are pre-equalized
with the most accurate prediction of the impending channel profile
produced by the Agent (β-VAE). The pre-equalized I/Q vectors are
converted to time-domain waveform and transmitted over the non-
stationary downlink channel. At the receiver, the baseband signal
is estimated using conventional pilot based estimation, equalized,
demodulated and decoded to extract information bits. In parallel,
the agent works as follows: The CSI is piggy-backed on a low-rate
uplink packet and is used to compute a reward proportional to the
flatness of the estimated channel at the receiver, for the reinforce-
ment learning using a VAE. The VAE update stage involves using a
N-way tensor to store the CSI and other measurable parameters. This
tensor is sparse, as all entries may not have been observed as well as
noisy due to correlated latent variables and serves as the input to the
β-VAE. The β-VAE computes the disentangled latent representation
and generates the output tensor, which is complete and less noisy
and contains future states of the channel for impending values of the
measurable parameter set. This is obtained in the VAE query stage.
The generative β-VAE is guided by the reinforcement framework,
which determines the optimal value of β based on the cumulative
reward. Over time, with more reinforcements, the input tensor gets
less sparse improving the predicted channel states.
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