
SenseChain: Blockchain based Reputation
System for Distributed Spectrum Enforcement

Abstract—Distributed enforcement of spectrum policies require
fusion of sensing results from a set of spatially scattered sensors
to detect anomalous behavior with the highest possible accuracy.
Central to this problem is the lack of trust or reputation of the
participating sensors, which often leads to incorrect and biased
inferences. In SenseChain, we leverage the distributed con-
sensus mechanism employed in Blockchain networks to capture
the reputation of the sensors, leading to a highly reliable and
accurate enforcement system. Specifically, we define and analyze
a detection mechanism to identify falsifying sensors using a
distributed anomaly detection system and use the Blockchain
to record the individual’s behavior. The reputation is then based
on the combination of the difficulty level of the consensus method
and the degree of falsehood in the reported sensor values.
We evaluate SenseChain using an integrated Blockchain and
anomaly detection simulator to show that DLTs can be used
to track reputation of distributed sensors for enforcement of
spectrum policies.

I. INTRODUCTION

Recent interest in applying Distributed Ledger Technology
(DLT) like Blockchain, beyond cryptocurrencies [1], [2] has
led to creative applications that maintain the integrity of
transactions while assuring provenance of information being
transacted on. Smart Contracts [3] are often seen as a viable
way of deploying these transactional systems on a Blockchain.
While such applications benefit from continued proliferation
of DLT platforms (e.g. Ethereum, Hyperledger, Hashgraph,
etc), these are fundamentally restricted to the features of
such platforms that limit the innovation and scope for new
applications. Interestingly, the core features of DLTs like
immutability and distributed validation of transactions can
be found in many applications that rely on data aggregation
and dissemination among untrustworthy entities. Central to
this, is the definition of Transaction and Consensus. While
transactions are unique entries in an electronic ledger that
encapsulate exchange of valuables (money, goods, data, etc.)
between multiple parties in a cryptographically secure manner,
consensus is responsible for all the constituents in a network to
agree on one common version of the ledger without involving
globally trusted intermediaries (e.g., trusted web servers or
human arbiters like lawyers etc.).

We envision a connected world of Things where instead
of any one universal Blockchain for a gamut of applications
(Ethereum, Hyperledger, etc.), there are numerous independent
islands of DLTs, employing proprietary definitions of transac-
tions and consensus algorithms that are tailored for specific
applications. In practice there are no technical barriers to
implement such an idea, unless it needs to scale with a global
footprint. We believe that many applications need not be scaled
beyond a certain geographical area or a small interconnected
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Fig. 1: SenseChain: Distributed nodes can interchange roles
as Sensor or Validator. Each Validator assesses false sensor
reports, assigns confidence scores and creates transactions for
each peer sensor. Transaction blocks are mined with Proof-of-
Work difficulty proportional to number of sensors in a block.

network like a Smart-City, Smart-Home, Micro-grid and Mo-
bile Adhoc Network (MANET) of sensors. SenseChain is
such an example, where distributed sensors detecting violation
of spectrum access policies (malicious or otherwise) can take
advantage of Blockchain technology that is self-contained
and operates autonomously, while benefiting from the core
properties of DLT. Our work focuses on the post sensing
phase, where the sensing results may be incorrectly reported
with a malicious intent to disrupt the information fusion.
Therefore, SenseChain also includes an anomaly detection
system that separates the good actions from the bad and then
assign a reputation metric to each sensor based on individual
actions. This reputation can then be utilized in fusing the
results of the sensors via a weighted function. The challenge
in such reputation based systems is an implicit reliance on a
separate trusted infrastructure to detect falsifying sensors and
disseminate reputation metric. SenseChain eliminates such
restriction by assigning the task of validation to the sensors
itself and requiring to compute a Proof-of-Work to include
their validation in the Blockchain. Thus, the Blockchain serves
as a historical ledger of falsifying behavior since the genesis
of the enforcement system that is immutable and is available
to all the nodes in the network.

Figure 1a shows a distributed spectrum enforcement sce-
nario, where certain nodes assume the role of Sensor (red cir-
cles) while others assume the role of Validator (blue squares).
Each sensor broadcasts their sensing results for peer validation,
which may include false reports from some of the sensors.
Depending on the reception zone (based on transmit power of
the sensors) each Validator is tasked with identifying false
reports for different number of sensors as highlighted by



the green area in figure 1a. The first step is to estimate
the approximate location of the transmitter location based
on the reported sensor values. There are many examples of
such methods in the literature using variety of methods like
multilateration [4], centroid [5], clustering, etc [6]. All of these
methods estimate the location of the transmitter with some
degree of uncertainty that can be modeled as an error term,
derr in figure 1a, around the true location of the transmitter
(which is unknown to the validators). Guided by the estimated
position of the transmitter and the characteristics of derr,
Validators use the Log-distance path loss model to validate
the reported SNR of the sensors using its own sensed SNR
and distance to transmitter as a reference. This results in a
annulus validation zone for each sensor within the broadcast
zone. Consequently, if a sensors is outside the annulus, it is
concluded as a bad action with high certainty, while a score
is calculated proportional to the thickness of the annulus, if
the sensor lies inside the annulus. In the context of this work,
we define this validation step as anomaly detection.

The anomaly detection phase is followed by recording the
confidence score in the Blockchain for provenance and calcu-
lation of historical reputation. Figure 1b shows the protocol
that also includes the Blockchain based accumulation of this
reputation metric. The confidence score for each sensor along
with the sensing values constitute a transaction and a block
is mined by the Validator for all the sensors it validates. In
SenseChain the role of Blockchain is two fold: 1) Provide
an immutable record of anomalous behavior by the sensors and
2) By requiring the difficulty for the mining to be proportional
to the number of sensors being validated, it acts as a measure
of credibility of the validators as well. The mined blocks are
multicast within the Validators to converge on the block that
is mined with the highest difficulty as it is deemed as the most
credible validation for the set of sensors included in that block.
We define this as the Most-Difficult-Chain consensus. Once
each Validator gets an updated Blockchain state, it broadcasts
that to its validated sensors to update their local states as well.
In that way, in the following round if any sensor chooses to
assume the role of a validator it will always have historical
confidence scores that is used to calculate the most current
reputation of the sensor. Therefore, we make the following
contributions:

1) Design and analysis of a fully distributed, peer-based
anomaly detection algorithm to assess the degree of
falsification by Sensors using a confidence score by the
Validators (Section III).

2) Design and analysis of a novel Blockchain design to
record the confidence scores where the Difficulty of
mining is proportional to the number of the sensors
being validated. This provides a measure of credibility
of validation (Section IV).

3) Design and analysis of network protocol to disseminate
Blockchain and achieve consensus based on the Most-
Difficult-Chain rule (Section IV-B).

4) Employ a non-linear function to aggregate historical

confidence scores and Difficulty in the block to compute
a reputation score for each Sensor (Section V).

5) Practical evaluation using a novel simulator that combine
the anomaly detection and the Blockchain based reputa-
tion management system (Section VI).

II. MODELS AND PRELIMINARIES

System Model: Let S={s1, . . . , sN} be the set of N sensors
in the area. Let V={v1, . . . , vM} be the set of M validators in
the area. The target that is being sensed is denoted by T . The
target may be a primary user, a rogue source or a transmitter
to be localized. The sensors and validators are mobile entities
with omnidirectional antennas and have a limited broadcast
range. The validators have their own overlay network to
communicate among themselves. Validators and sensors are
mobile crowd devices. Devices with more processing capabil-
ities assume the role of a validator. As such, typically there
are much more crowd sensors than validators (i.e., M�N ).
Sensing Model: Each sensor si ∈ S senses the target T and
may report the probability of detection (Pdi ), probability of
false alarms (Pfi ), SNR and location. The validators use the
SNR and location for anomaly detection and to assign repu-
tations to the sensors. The reputations of sensors can be used
by the validators to fuse the information of sensors for more
reliable inference. The weighted aggregation of Pd and Pf

as in [7], using the normalized reputations as weights would
increase the credibility of detection. e.g., P fused

d =
∑

i wiPdi ,
where wi is the reputation of sensor si normalized by the
aggregate reputation of all the sensors. Similarly, the weighted
localization as in [8], using the normalized reputations leads
to more credible and accurate localization.
Blockchain Model: Each validator, vj receives the sensing
reports (referred to as ‘transactions’) from all the sensors
within a finite range (referred to as a ‘Validator Range’) within
a fixed duration (referred to as the ‘sensing phase’). The
validator detects whether the report is valid or an anomaly,
evaluates and appends a confidence score to each transaction
from all sensors within its range. These transactions are
aggregated by the validator to create a candidate block with a
certain difficulty (Proof of Work [9]). Each validator appends
its candidate block to the blockchain which is then broadcasted
to all the validators. The validators arrive at consensus on the
most difficult blockchain. The blockchain is used to extract
the reputation of each sensor. This work does not rely on a
specific type of financial incentive mechanism, any approach
that rewards validators for their effort (difficulty) [10] and
sensors according to their reputation is valid.
Threat Model: 1) Malicious Sensors (Sensing threat): The
sensors may falsify either their reported SNR, their reported
location or both. 2) Malicious Validators (Validation threat):
The validators may forge information in the block they create
by falsifying the confidence scores. Since, the validators may
assume the role of a sensor, whose reputation depends on the
reputation-weighted fusion of reports from other sensors, the
validators are intrinsically discouraged from falsifying.
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Protocol: There are three key phases of activity in
SenseChain that each of the entity in the system adheres to:
1) Sensing Phase: the sensors sense the target and report their
findings to the validators in the vicinity, 2) Validation Phase:
the validators assess the truthfulness of the reports and creates
a block by aggregating the reports, and 3) Blockchain Phase:
the validators broadcast mined blocks to arrive at consensuses
on the Blockchain before calculating the reputation of sensors.

In the sensing phase, each sensor si ∈ S senses the target
T , and creates a report with its perceived signal-to-noise
ratio (SNR), SNRi and an estimate of its location, Loci

and broadcasts the report, [SNR,Loc]i to all the validators.
Additionally, the sensors may report other sensing parame-
ters depending on the application of interest. However, for
applications in wireless communications, the SNR and the
location are identified as fundamental sensing parameters that
all sensors must report. A sketch of the protocol steps is
shown in figure 1b. It is to be noted that there is not explicit
synchrony in the network and all nodes will converge at the
same Blockchain state eventually by employing the most-
difficult-chain rule described in subsequent sections.

III. SENSECHAIN : ANOMALY DETECTION

The goal of anomaly detection is to gauge the truthfulness
of a sensor in a distributed manner, using only the fundamental
sensing information that is reported by the sensor. In the
validation phase, each validator vj∈V receives the reports from
all the sensors located within the ‘Validator Range’ (limited
to a distance R around the validator). Algorithm 1 describes
the anomaly detection performed by each validator.

Algorithm 1: Anomaly Detection Algorithm
1 Function AnomalyDetection(Map, [SNR,Loc])
2 R = 100; d0 = Diameter(Map);
3 nvj = count([SNR,Loc]);
4 [LocT , derr]=DistributedTargetLocalization([SNR,Loc]);
5 dvj = EuclideanDistance(LocT , Locvj );
6 for i=1:nvj do
7 [dmin

si , dmax
si ] = Estimate Annulus as in §III-A;

8 d̂s = EuclideanDistance(LocT , Loci);
9 if (d̂s≥dmin

s & d̂s≤dmax
s ) & (dmax

s −dmin
s <R) then

10 Ssi = 1−
(dmaxsi

−dminsi
)

d0
11 else
12 Ssi = 0;
13 end
14 end
15 return Ssi for all si ∈ S
16 end

First, the validator vj∈V estimates the region most likely to
contain the target T using the reports from the sensors as in
line 4. This is done using a multilateration based localization
similar to [11]. The centroid of the estimated region is taken
as the location estimate of the target, denoted by LocT . The
estimated location of the target may vary from the true location
due to two major reasons: 1) potential falsification in the

sensing reports from malicious sensors, and 2) inaccuracies
in the path loss model, receiver heterogeneity and other
noise sources. The effect of falsified sensing reports on the
localization of the target can be mitigated by clustering the
location estimates similar to [12]. To account for any errors
in the estimated location, we model the error in the location
estimate and the true location using the random variable derr.
This represents the circular region with a radius equal to derr
around the estimated location, that is likely to include the true
location of the target. This is shown in figure 1a. The distance
from the target to the validator vj , denoted by dvj is estimated
as the euclidean distance between the estimated location of the
target, LocT and the location of the validator, Locvj (line 5).
Due to the uncertainty in the location of the target, the true
distance from the target to the validator will be a value in the
interval [(dvj−derr), (dvj+derr)].

Lines 6-14 detail the steps involved in the detection of
anomalies for each sensor si ∈ S. The core of the anomaly
detection algorithm involves two steps: 1. based on the SNR
reported by sensor si, the validator determines an annular
region which should contain the sensor, and 2. if the sensor’s
reported location lies outside the estimated annulus, it is
considered an anomaly.

A. Estimation of the annulus validation zone

Using the reported SNR, SNRi the validator evaluates the
received power, (Pr,si) experienced by the signal transmitted
from the target at each sensor si. The average noise floor
(NF ) for a short range communication, similar to 802.11a/g,
is approximately −96dBm [13]. Thus, (Pr,si) is given by,

Pr,si(dBm) = SNRi(dB) +NF (−96dBm) (1)

The validator estimates the distance to the target using the
Log-distance path loss model [14],

PLsi = PLvj + 10γ log10
dsi
dvj

+ χ (2)

where PLsi and PLvj is the path loss experienced by the
transmission from the target at sensor si and validator vj
respectively, and dsi is the true distance to the sensor from
the target. γ is the path loss exponent and χ is a zero-mean
gaussian random variable to account for the shadowing effect.
Since the path loss is equal to the difference between the
transmitted and received powers, and the transmitted power
(of the target) remains constant during the sensing phase, we
can rewrite (2) in terms of the received power as,

−Pr,si = −Pr,vj + 10γ log10
dsi
dvj

+ χ (3)

where Pr,vj is the received power from the signal transmitted
from the target at the validator vj . Note, that since the estimate
of dvj is erroneous, the estimate of dsi from (3) will lie within
a range, [dmin

si , dmax
si ]. The distance from the target to each

sensor si, denoted by d̂si is estimated as the euclidean distance
between the estimated location of the target, LocT and the
reported location of the sensor, Loci (line 8).
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Fig. 2: Anomaly detection: When reported sensor location is
outside the annulus it is detected as an anomaly else it is
associated with a confidence score to represent its truthfulness.

The annular region estimated for sensor si by validator vj
is centered at the location of the target, LocT and defined by
the inner and outer radii, dmin

si and dmax
si respectively. dmin

si
and dmax

si is calculated from (3) as,

dmin
si = (dvj − derr)× 10

(
Pr,vj

−Pr,si−Xg
10γ

)

dmax
si = (dvj + derr)× 10

(
Pr,vj

−Pr,si−Xg
10γ

)
(4)

The thickness of the annulus is given by (dmax
si − dmin

si ). By
considering the minimum and maximum values of dvj in (4),
we account for the impact on the annulus, by the error in the
estimated and true location of the target. i.e., when the target
is located anywhere within the circle as shown in figure 1a,
the distance from the target to the sensor is bounded in the
interval [dmin

si , dmax
si ]. This is because dmin

si , dmax
si represent

the distance to the sensor from the closest and furthest
possible location of the target respectively. The annular regions
estimated by a validator v1 for several sensors is shown in
figure 2.

B. Anomalies and confidence score

Any falsification in the reported [SNR,Loc]i can be iden-
tified in two steps:

• If the validator received a report from a sensor si, whose
reported location, Loci is outside the range of the valida-
tor, it is flagged as an anomaly. i.e., if (dsi − dvj ) > R,
then sensor si must have falsified.

• If the reported location of the sensor does not exist in the
estimated annulus computed by the validator based on the
reported SNRi, then it is also flagged as an anomaly. i.e.,
if d̂si < dmin

si or d̂si > dmax
si , then sensor si must have

falsified. In figure 2, s2 is detected as a falsifying sensor.

Note that, it is only important to detect falsifications in
the sensor report, it is not required to identify the type of
falsification (i.e., whether a sensor falsified in its reported SNR
or location or both).

If dmin
si ≤ d̂si ≤ dmax

si , the sensor report may have been
truthful with a confidence level. In figure 2 reports from s1
and s3 are not detected as anomalies. Since annulus estimated
for s3 is smaller, and the reported location of s3 is within
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Fig. 3: The validators create a valid block by aggregating all
transactions from sensors and calculating a hash less than the
target based on the difficulty.

the annulus, s3 must have reported the truth or falsified
by an insignificant amount. Thus, s3 is more likely to be
truthful than s1. The larger the thickness of the annulus, the
higher uncertainty in the truthfulness of the sensor. Thus, the
thickness of the annulus serves as a measure of the confidence
on the truthfulness of the sensor. The confidence score of
a sensor si, denoted by Ssi is defined as, the normalized
thickness of the annulus,

Ssi=


1− (dmaxsi

−dminsi
)

d0
, if (dmin

si ≤d̂si≤dmax
si ) &

(dmax
si −dmin

si <R)

0 , otherwise

(5)

where, d0 is a reference distance (the diameter of the region
of interest) used for normalization. When a sensor falsifies
information and it is flagged as an anomaly it would be
assigned a confidence score of 0. When most of the sensors in
the validator range are truthful, the thickness of the estimated
annulus would be very small (since derr is small), and the
confidence in the truthfulness of the sensors increases (i.e.,
Ssi is close to 1). If most of the sensors falsify, the thickness
of the annulus is large (since derr is large) and the uncertainity
in the truthfulness increases. i.e., a falsifying sensor may not
be detected as an anomaly. However, in this case, the score
assigned to the falsifying sensor would be smaller than 1.

IV. SENSECHAIN : BLOCKCHAIN BASED REPUTATION

Algorithm 2 describes the blockchain related functionality
of each validator. For each sensing report, the validators
prepare a transaction, by including a transaction id, a sensor id,
the sensing report [SNR,Loc]i and the confidence score for
that report, as shown in line 4 and figure 3. The transactions
for all the sensors are aggregated (line 6) and are ready to be
inserted in to a block. The process of creating a block is called
mining and is outlined in lines 7 and 8. Figure 4 depicts the
structure of the Blockchain and its key features. Each block is
composed of a block header and a block body which contains
the list of transactions from the sensors. The block header
includes the hash of the block, the hash of the previous block,
the difficulty target for that block, a nonce and a timestamp.
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Algorithm 2: Blockchain based Reputation Algorithm
1 Function Reputation(Ssi∀si∈S, [SNR,Loc], N , Blockchain)
2 nvj = count([SNR,Loc]);
3 for i=1:nvj do
4 transaction =

< transID, sensorID, [SNR,Loc]i, Ssi >;
5 end
6 transactions = Aggragate all transactions;
7 Evaluate Difficulty of vj , Dvj from (6);
8 Block = CreateBlockwithDifficulty(transactions,Dvj );
9 CandidateBlockchain = Add Block to Blockchain;

10 Broadcast CandidateBlockchain to all validators;
// Consensus on Most-Difficult-Chain

11 Wait for Block-wait-time (τB) = 7s;
12 Receive all Candidate Blockchains;
13 Blockchain = Select Most Difficult Blockchain;
14 for i=1:N do
15 Evaluate Reputation of si, Rsi from (7);
16 end
17 return R, Blockchain;
18 end

The merkle root field represents the hash value of the current
block. Merkle tree hashing is commonly used in distributed
systems and P2P networks for efficient data verification [15].
The nonce field is used for the proof-of-work algorithm, and it
is the trial counter value that produced the hash with leading
zeros. The difficulty target specifies the number of leading
zero bits that the hash should contain to be considered valid.
The implementation details are outlined in Section VI.

A. Difficulty of mining

When a new validator joins a network of validators, it gets
a copy of the current blockchain. In addition to anomaly
detection, validators also perform the functions of a blockchain
miner [10]. Each validator generates a block B by aggregating
the transactions, iterating over a nonce value and calculating
the hash of a block with the nonce value included [9]. For
the block B to be considered valid, a value of a hash function
has to be less than a target T , i.e., hash(B) < T, where hash
is a cryptographic hash function. The process of creating a
valid block, typically requires a large amount of effort, which
serves as a Proof-of-Work for the validators. The difficulty is
a measure of how hard it is to find a hash below a given target
T [16]. Unlike in many blockchain implementations we use
a heterogeneous difficulty assignment mechanism, where each
validator is assigned a different difficulty target. We define the
difficulty of each validator vj ∈ V as,

Dvj =

⌈
Dmax ×

nvj
N

⌉
∀vj ∈ V (6)

where nvj is the number of sensors within the Validator Range
R for validator vj , and Dmax is the maximum difficulty
(designer’s choice). The difficulty assumes an integer value in
the interval [1, Dmax], and represents the number of leading
zero bits in the target T . An example of valid blocks (with
valid hashes) created by validators with different difficulty
targets is shown in figure 3.
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Fig. 4: Blockchain structure showing chained blocks with
header fields and body. The target difficulty changes from
block to block depending on the most difficult block that was
successfully mined.

Blockchain Structure: The average time for a validator to
create a valid block is directly proportional to the difficulty
of the target and inversely poroportional to the average hash
rate [17]. All the validators are assumed to have the same
mining power (hash rate). Thus, a validator assigned with a
higher difficulty target would on average, take a longer time to
mine a block compared to a validator with a lower difficulty
target. Validators are rewarded according to their effort (the
difficulty). Each validator contends with all the other validators
in the entire area in creating a valid block.

Lines 7-10 describe the validators’ functions in creating a
blockchain with a valid block. Each validator first determines
it’s mandated difficulty level using (6). Then the validator
creates a valid block with the assigned difficulty level as
discussed above, by incorporating the pool of transactions.
Once a valid block is created it is added to the current
blockchain and broadcasted. To provide sufficient time for all
validators (with different difficulty levels) to generate a valid
block, the validators wait for a fixed amount of time (referred
to as the ‘Block-wait time’ denoted by τB) to receive all the
broadcasted candidate blockchains. The block time is set by
design to account for the block mining time, the propagation
time of blocks to reach all validators, and for all validators to
reach a consensus. Since, the propogation time is much less
than the block mining time, the value of τB is determined
empirically, as the average time required to mine a block with
a difficulty of Dmax. All the validators in the network receive
the candidate blockchains. The validators wait till the end of
the ‘Block-wait time’, τB, and select the candidate blockchain
with the most difficulty as the valid blockchain as discussed
in the following section.
Choice of Maximum Difficulty (Dmax): A higher maxmi-
mum difficulty (Dmax), sets a lower target value for the
calculated hash [9] and determines the value of τB. For a
lower Dmax (a high target value), validators can generate a
valid block faster, with low computation cost, so the delay in
disseminating the information (reputation) is less. However,
blockchain forks may occur more frequently and the security
(immutability) of the blockchain itself is lowered. This is
because the amount of computation required by validators to
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generate a valid block is also less. Thus, there is a tradeoff
between the computational power (or the delay in settlements)
and the level of security.

B. Most-Difficult-Chain consensus

The validators select the candidate Blockchain with the
highest difficulty, which is termed as the Most-Difficult-Chain
rule (unlike the Longest-chain rule in Bitcoin [10]). In the
event that multiple validators succeed in creating a block, the
blockchain may fork. Even if a blockchain fork occurs, the
blockchain would converge, because each validator selects the
chain with the highest aggregate difficulty and generate a new
block following the most difficult blockchain. Even though
blocks are mined and may arrive at the validators at different
times, the chain can be synchronized by exchanging status
messages between the validators similar to [18].

The difficulty defined in (6) is proportional to the number
of sensors within the range of a validator. Thus the most
difficult block corresponds to the validator with the most
number of sensors, which makes the most credible inference
by harnessing the power of the crowd. Since the validator
creates one transaction for each sensor within it’s range,
the difficulty of a block is proportional to the number of
transactions in the block. Hence, the most difficult chain is
the blockchain with the most number of transactions (scores
and sensing data). The reputation of sensors’ are assigned
based on their transactions. Thus, the most difficult blockchain
would contribute to the most credible assignment of reputation
for sensors and would contribute to reliable inference using
sensing data. Figure 5 shows an example of the consensus
on the most-difficult blockchain among 5 validators. Before
round l, a majority of the validators arrive at consensus on
a blockchain. Each round involves a sensing, validation and
a blockchain exchange phase. In round l, a valid block is
created by validators v1, v3 and v4. Note that validators v2 and
v5 were unable to create a valid block within time τB. Each
validator adds its own block to the blockchain and multicasts

it to all other validators. Due to the various delays in mining
and propogation time, the validator’s may have different local
views of the blockchain state. To guarantee the consensus
properties and thus convergence to one canonical blockchain
state, the SenseChain protocol relies on the assumption
that the majority of the consensus validators follow the most-
difficult chain. Thereby, in round l the blockchain with the
highest aggregate difficulty, i.e., the blockchain from v4 is
agreed upon as the canonical blockchain state by the majority.
Similarly, in rounds l + 1 and l + 2 the blockchains from v2
and v3 respectively, represent the canonical blockchain states.

V. HISTORICAL REPUTATION AND PROVENANCE

The reputation of a sensor si is calculated from the infor-
mation stored in the blockchain. Let l = 1, . . . , L represent the
L blocks in the blockchain. For a blockchain of length L, the
reputation is defined by the non-linear sigmoid function [19],
whose exponent is the weighted average of the difficulty of the
block, Dl and the confidence scores of the sensor recorded in
that block, Ssi,l (from the genesis block) and is defined as,

Rsi =
1

1 + e−expsi
(7)

where, expsi =
∑L

l=1 ai,lDlSsi,l

L.Dmax

∑L
l=1 ai,l

where ai,l represents the association of sensor si with block
l. ai,l=1 if block l contains information about si, and ai,l=0
otherwise. Note that the reputation of each sensor is calculated
by the validator, by using the most-difficult-chain, scanning
through all the blocks, extracting the the confidence scores and
difficulties of each block. The exponent represents a historical
average of the confidence in the sensors’ reports and the
difficulty with which the corresponding block was mined.
Even though a malicious validator may forge information
in its current block, since the reputation calculation relies
on all the records from the genesis block and due to the
immutability property of the blockchain, the impact on the
calculated reputation will be very small as the blockchain
grows.

The reputation Rsi assumes a value in between 0 and 1.
When a sensor continuously acts truthfully (or maliciously),
the confidence scores recorded for that sensor in each block
would be close to 1 (or 0), asymptotically driving the repu-
tation Rsi to a value of 1 (or 0) respectively. The nonlinear
nature of the reputation function ensures that a sensor which
engages vastly in either truthful or false behaviour would have
a reputation of 1 or 0 respectively. Over time, this allows
the validators to identify sensors that are always truthful
or always malicious. Reputation of sensors that frequently
alter their behaviour is subject to more pronounced variation.
Thus, the reputation of a sensor serves as a measure of the
credibility of it’s reports. The validators use the reputation of
sensors assimilated over time to perform weighted fusion of
the sensing data in order to accurately detect and localize the
target (see Section II).
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VI. EVALUATION AND RESULTS

A. Simulation Framework

SenseChain is evaluated on a mobile sensing and
Blockchain simulator built on Matlab. The simulation param-
eters are shown in table I. We analyze the various facets of
SenseChain using practical simulations.

1) Sensing Environment: We consider a random network
topology with several Sensors, Validators and a single mobile
target (T ). Random Waypoint mobility is chosen for move-
ment of the various entities in the area of interest and each
node is equipped with omnidirectional antenna. The target
continuously transmits a signal at a fixed transmit power (40
mW). During the sensing phase, all the sensors receive the
signal and compute their SNR from the received power (using
(1) and NF = -96 dBm [13]). The sensors broadcast their
reports ([SNR,Loc]) to the validators. Malicious behaviour
of a sensor is emulated as a random variation (referred to
as the degree of falsification) about the true SNR and true
location of that sensor. Sensors exhibit malicious behaviour
with varying probabilities and varying degrees of falsification.
The validators receive reports only from sensors within the
broadcast range (100 m). The diameter of the network, d0 is
424 meters. The validators assign a confidence score to the
sensing reports as in Algorithm 1.

2) Blockchain Simulator: The blockchain environment in
this work is different from typical implementations in two
ways: 1) Heterogeneous difficulty assignment: The difficulty
varies for each validator and in each mined block in the
blockchain. 2) Consensus: The validators arrive at consensus
on the Most-Difficult-Chain to avoid forking. The simulation
works as follows. For each sensing report, the validator creates
a transaction by inserting the sensor id, the sensing report
([SNR,Loc]) and the confidence score. The sensor id is an
integer index in the interval [1, N ], to represent the N sensors
(e.g., sensor id of si is i). The transaction id is created by
hashing transaction data through SHA-256 [20] twice, similar
to typical blockchain implementations. The timestamps refers
to the time at which the block was created, encoded as a
Unix Epoch timestamp. The hash function used to generate
the block id is SHA-256. The genesis block is created without
any transactions by including a timestamp and creating a block
with a hash corresponding to difficulty Dmax.

At each round, each validator generates a block by aggre-
gating the transactions, iterating over a nonce value (a random
integer) and calculating the hash of the block. Each block is
mined with a different difficulty (see Section IV-B). The block
is considered valid, when its hash is less than a target T that
depends on the difficulty. This is verified by checking whether
the hash of the block has at least as many leading zero bits as
T , for that validator. Once a valid block is created it is added
to the blockchain and multicast to the Validators. Note that
the size of the block (the number of transactions) is not fixed
as it depends on the number of sensor being validated. All the
validators receive the candidate blockchains within τB time

TABLE I: Simulation Parameters

Parameters Value/Model

Area 300m × 300m
Node Distribution Uniform Distribution
Mobility Model Random Waypoint

Propagation Model Log-distance propagation model [14]
Path-loss exponent (γ) 3 (urban area)
Carrier Frequency (f) 600 MHz
Number of Validators 5
Number of Sensors 20

Antenna Type Omnidirectional
Broadcast Range 100

Maximum Difficulty (Dmax) 16
Block-wait Time (τB) 7 s

Target location error (derr) Uniformly distributed in [20,30] m

(7 seconds). Each validator calculates the total difficulty of
each candidate blockchain, and selects the one with the highest
aggregate difficulty. Thus, the validators arrive at consensus on
the Most-Difficult-Chain. A total of 1000 blocks were mined
for each analysis presented below. For each sensor si ∈ S, the
validators scans through each block in the blockchain to extract
the entries corresponding to its sensor id i. The validators then
compute the reputation of each sensor using (7).

B. Performance of anomaly detection

A falsifying sensor is detected as an anomaly, when its re-
ported location lies outside the annulus (see Section III), else a
confidence score is associated with the sensor report, to reflect
the confidence in the truthfulness of the sensor. The smaller
the thickness of the annulus the more confident the validator
will be on the truthfulness of the sensor. The thickness of
the annulus is defined in Section III-A and is a measure of
the confidence score. Figure 6a shows the dependence of the
thickness of the annulus on the SNR reported by the sensors.
When the reported SNR is low, the annulus is wider, and the
confidence in the truthfulness will be low. Since the thickness
is high, a falsifying sensor may go undetected (as shown in
figure 2), but would only be validated with a low confidence
score. When the sensor reports a high SNR, the thickness of
the annulus estimated by the validator is small. A sensor that
falsifies by reporting a high SNR value is more likely to be
detected as an anomaly since the the thickness of the annulus
is very small (and the reported location is likely to lie outside
the annulus). For a sensor that falsely reports a low SNR value,
the thickness of the estimated annulus would be large. Hence,
it is possible for the reported location to lie within the annulus.
But the confidence score for such sensors would be very low
due to the large thickness.

Figure 6b shows the dependence of the thickness of the
annulus on the distance between the validators and the reported
location of the sensor Loci. Consider two validators v1 and
v2, with dv1 < dv2 . When the sensor is located closer to T
than either validator, the thickness of the annulus estimated
by v1 would be less than v2. That is v1 would be able to,
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(a) Variation of annulus width
with reported SNR

(b) Annulus width with Sensor
to Validator distance

(c) Pd with varying falsification
in SNR (dB) and Location (m)

(d) Pf with varying falsification
in SNR (dB) and Location (m)

Fig. 6: Performance of Anomaly Detection. (a) and (b) show the dependence of the thickness of the annulus on the SNR of the
sensor and the distances from the target to the validator and the sensor. (c) and (d) show that when the degree of falsification
is high, a validator is more likely to detect an anomaly, however the false alarms are also high.

more accurately assess the truthfulness of the sensor. When the
sensor is located further away from T than either validator, the
thickness of the annulus estimated by v2 would be less than
v1. In this case v2 would be able to, more accurately assess
the truthfulness of the sensor.

The performance of the anomaly detector with varying
degree of falsification is shown in figures 6c and 6d. Figure 6c
shows the probability of detection (Pd) and figure 6d shows
the probability of false alarms (Pf ) in detecting anomalies
in the sensing reports. Recall that the annulus for a sensor
is estimated using the reported SNR. If the sensor reports
its true location and SNR, it will exist within the annulus.
First, consider the effect on Pd and Pf with the degree of
falsification in the reported SNR (i.e., the difference in the
reported SNR and the true SNR) but reported location is true.
When the degree of falsification in SNR increases, the reported
location of the sensor is more likely to be outside the annulus.
Hence, Pd increases with the degree of falsification. Even for
low degrees of falsification in SNR (5-15 dB), Pd is relatively
large (≈ 0.86). However, when a sensor falsifies to a higher
degree, the possibility of flagging truthful sensors as anomalies
increases. i.e, Pf also increases. Since the falsifying sensor
is included in the distributed localization of T (as explained
in §III), a higher degree of falsification leads to a higher
possibility of error in the location of T . Consequently, this
leads to errors in the estimated annulus and truthful sensors
may be detected as anomalies. However, Pf is very low (less
than 10−2) even for higher degrees of falsification in SNR.

Consider the effect on Pd and Pf by degree of falsification
in the reported location while the reported SNR is true. When
the degree of falsification in location increases, the more
likely is the reported location of the sensor to be outside the
annulus, and it is more likely to be detected as an anomaly.
Hence, Pd increases with degree of falsification. Since the
degree of falsification affects the distributed localization of
T , the possibility of flagging truthful sensors as anomalies
also increases. i.e, Pf also increases. Overall, we see that
Algorithm 1, achieves high probability of detection (≥ 0.86)
even for low degrees of falsification and a low probability of
false alarms (≤ 0.01) even for high degrees of falsification.

C. Performance of Blockchain based reputation

Blockchain performance: The performance of mining is
shown in figure 7. Figure 7a shows the variation in the block
mining time with varying difficulty of validators. The dotted
line shows τB, i.e., the block-wait time which is equal to the
average block time to mine a block with maximum difficulty
(Dmax = 16). When the difficulty level is high, the average
time required to mine a block is more, since more amount
of hashes are required on average, to find a hash value less
than the target. The validators with a less difficulty target
have a higher probability of mining a block within τB. The
probability that a block is mined by a validator vj within τB,
when Dvj = 12, Dvj = 14 and Dvj = 16, is 92%, 78%
and 50% respectively. Even though validators with a lower
difficulty have a higher probability of mining a block within
τB, only the most-difficult block mined within τB is added to
the chain. This gives all the validators a chance to contribute
to the blockchain and get rewarded.

The average time required to mine a block is proportional
to the difficulty level and inversely proportional to the mining
power of the validators [17]. Figure 7b shows the amount of
time required by each validator to generate a valid block in
each mining round. The block added to the blockchain at each
mining round is determined by the most difficult block mined
within the wait time of τB = 7s. The validators contend with
all other validators in the area. As shown in the figure, in the
first mining round v5 is assigned the highest difficulty (Dv5 =
10) and generates a valid block within τB. Thus, the block
from v5 leads to the most difficult blockchain (as detailed in
§IV-B), and is agreed upon as the canonical blockchain. In
the second mining round, a block is mined with the highest
difficulty by v3 (Dv3 = 13) and is added to the blockchain. In
the third mining round, even though v2 has a higher difficulty
(Dv2 = 13) it is unable to mine a block within τB. The block
mined within τB with the highest difficulty is from v1 and it
is added to the blockchain. Note that in the second and third
mining rounds, v2 and v5 respectively are unable to create a
valid block within τB. Figure 7c shows the number of hashes
generated by the winning validators (whose blocks are added
to the blockchain) in each mining round. This serves as a
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(a) Block mining times of valida-
tors with varying difficulty targets

(b) Block mining time per validator
and winning block in each round

(c) The number of hashes generated
by the winning validator

Fig. 7: Impact of the difficulty of mining on the block mining time and the winning block. In (b) each color bar represents
the blocks mined by each validator in order from v1 to v5. The numbers on the top of the color bar indicates the difficulty
with which the block was mined. The winning block in each mining round are annotated by the red circles.

(a) Reputation with degree of
falsification by the Sensors

(b) Reputation of falsifying Sen-
sors over time

Fig. 8: Reputation assignment with varying degree of mali-
cious activity over time

measure of the amount of computation performed, time spent
and power consumed by the validators in each round. Even
though there are occasional spikes in the computational power
(high number of hashes), most of the time the computational
power is consistent. On average about 9.7 million hashes are
calculated in each mining round.
Reputation Assignment: Figure 8 shows the reputation
assigned to nodes, with varying degrees of malicious ac-
tivity. Figure 8a shows the nonlinearity of the reputa-
tion function. Sensors that predominantly exhibit good be-
haviour (falsification<10%) by truthfully reporting sens-
ing information asymptotically accumulate a reputation of
1. Sensors that continuously falsifies sensing information
(falsification>90%) will accumulate a reputation close to
0. The reputation of sensors that arbitrarily alter their (truthful
or malicious) behaviour by falsifying reports with a certain
probability, are more susceptible to change based on their
relatively dominant behaviour. The reputation of sensors which
exhibit falsification between 20% to 80% fall within the
linear range of the sigmoid function. The reputation of these
sensors are more likely to change depending on their dominant
(truthful or malicious) behaviour.

The variation in the reputation of sensors over time is
shown in figure 8b. Sensors create malicious reports with
a probability equal to their percentage of falsification. Over
time, the reputation values of sensors that exhibit consistently,

either truthful or malicious behaviour settle much quicker,
compared to sensors that exhibit alternating behaviour. It
is clear that after about 30 blocks the reputation of nodes
settle to within 10% of their steady state reputation. It is
important to note that even in the presence of a malicious
validator the impact on the reputation is minimal. This is
because, the reputation of any node is assimilated from the
entire blockchain. Even if a malicious validator creates valid
blocks with forged information, the impact on the reputation
by these forged blocks, decreases significantly with the number
of validators and the length of the blockchain.

VII. RELATED WORK

We categorize the related literature into two groups:
Anomolous behaviour Detection: Trust and reputation based
models for malicious sensor identification have been widely
studied in the context of wireless sensor networks [21]. [22]
uses a neighbor weight trust algorithm, in the problem of
malicious node detection. [23] proposed a new trust man-
agement scheme based on D-S (Dempster-Shafer) evidence
theory, by considering the spatio-temporal correlation of data
collected by neighbouring sensors. These models rely on local
inferences from neighbours, which needs to be disseminated
throughout the network of trustless entities. In our work we
achieve distributed consensus among nodes by sharing infor-
mation on a blockchain. [24] proposed a malicious node recog-
nition model to resist malicious behavior of high-reputation
nodes in existing WSNs. [25] proposes an abnormal sensor
identification using the pairwise similarity of sensing results
of helpers. Trust has been investigated in the context of crowd-
sensing and collaborative spectrum sensing [7], [26]. Most of
these approaches rely on centralized fusion of information,
which is both vulnerable and does not scale well. In contrast,
we propose anomaly detection in a purely distributed manner
using only the SNR and the location of sensors, and the
dissemination of information using the blockchain to assign
reputation of sensors.
Blockchains for sensor networks: DLTs like blockchain
have gained immense interest in various application domains
in wireless sensor networks [2]. Blockchains have been em-
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ployed for dynamic spectrum access [27] and to achieve
secure routing among malicious nodes [28]. Blockchains have
been used to establish a trust model and for the detection of
malicious nodes in [21]. [29] proposed a smart contract based
framework to solve the problems of trusted access control and
distributed in the IoT. [30] addresses the problem of distribut-
ing trust and reputation among trustless nodes, by employing
collaboration among miners. [31] proposes spectrum sensing
as a service using a smart contract to describe the sensing
service parameters and helpers are rewarded only if they
perform sensing accurately. In contrast to these approaches
we employ peer-based anomaly detection algorithm and a
heterogeneous difficulty assignment and Most-Difficult-Chain
rule to diversify the efforts and rewards of miners.

VIII. CONCLUSION

In this paper, we proposed an anomaly detection and repu-
tation assignment scheme called SenseChain, based on the
reputation information disseminated via a blockchain. Through
simulation and analysis we draw the following conclusions:
1) anomalies in sensing reports can be detected with high
accuracy in a distributed manner, 2) the Most-Difficult-Chain
rule enables distributed consensus among spatially distributed
nodes, 3) the non-linear function to aggregate historical con-
fidence scores and corresponding Difficulty, enables the rep-
utation assignment based on a sensors’ degree of truthful (or
malicious) behaviour. Thus, the distributed anomaly detection
by validators and the use of the Most-Difficult-Chain to capture
and disseminate the behaviour of sensors, provides a fast and
tamper-proof means to arrive at distributed consensus on the
reputation of sensors, among trustless entities.
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