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Abstract—We introduce RFEye, a generalized technique to locate signals independent of the waveform, using a single Unmanned

Aerial Vehicle (UAV) equipped with only one omnidirectional antenna. This is achieved by acquiring signals from uncoordinated

positions within a sphere of 1-meter radius at two nearby locations and formulating an asynchronous, distributed receiver beamforming

at the UAV to compute the Direction of Arrival (DoA) from the unknown transmitter. The proposed method includes four steps: 1) Blind

detection and extraction of unique signature in the signal to be localized, 2) Asynchronous signal acquisition and conditioning, 3) DoA

calculation by creating a virtual distributed antenna array at UAV and 4) Obtaining position fix of emitter using DoA from two locations.

These steps are analyzed for various sources of error, computational complexity and compared with widely used signal

subspace-based DoA estimation algorithms. RFEye is implemented using an Intel-Aero UAV, equipped with a USRP B205

software-defined radio to acquire signals from a ground emitter. Practical outdoor experiments show that RFEye achieves a median

accuracy of 1.03m in 2D and 2.5m in 3D for Wi-Fi, and 1.15m in 2D and 2.7m in 3D for LoRa (Long Range) waveforms, and is robust to

external factors like wind and UAV position errors.

Index Terms—Localization, Beamforming, Direction of Arrival, Blind Detection, UAV.

✦

1 INTRODUCTION

Locating wireless signals in outdoor environment is necessary

for various applications like locating rogue emitters for enforcing

spectrum policies, pin-pointing targets in search and rescue oper-

ations and tracking the movement of agents in electronic warfare.

Acquiring such signals is the first step, which often requires

patrolling large distances over varied terrain and can be limited

if terrestrial methods, like autonomous vehicles, crowdsourcing or

fixed receiver arrays are used. Also, the signal acquired by terres-

trial means can be severely attenuated or impaired due to Non-

Line-of-Sight (NLOS), shadowing and other unknown factors.

Signal acquisition using UAVs can overcome such limitations by

flying to advantageous locations but are constrained on resources

like power, RF front-end, antenna, processing and storage. RFEye

is the first of its kind, that computes accurate location of a wireless

emitter using only one UAV, equipped with only one antenna,

acquiring no more than 20 packets in only two locations, separated

by few meters without any precise maneuvering of the UAV.

Figure 1 shows the operation of RFEye. The UAV flies to an

initial location of interest (Location 1) and hovers within a sphere

of radius 1 meter, collecting signals using one omnidirectional

antenna at various positions within the sphere. Then, the UAV

moves to Location 2, a few meters away, and repeats the same

procedure. These sets of signals acquired in each location are

fused using a novel alignment technique while preserving the

phase offsets between the signals acquired at different positions.

The novelty of RFEye is in leveraging the normal movement of

the UAV to acquire wireless signals without prior knowledge of

the signal type or its transmit power and then align those in time

to obtain the benefits of synchronous reception from spatially

distributed antenna elements. All of this is achieved without

the overhead of synchronous reception from multiple receiver
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Fig. 1: RFEye in action: One UAV equipped with only one

antenna hovers at two locations to acquire signals from a remote

emitter to localize it.

front-ends. The temporal alignment is crucial to beamform using

random acquisition points and to calculate the DoA (φ=Azimuth,

θ=Elevation) from the emitter by searching the beamspace for

the most likely direction of the signal. Further, by combining this

information from two locations, as shown in Figure 1, an accurate

fix is obtained using trigonometric identities.

RFEye is designed to be highly portable to any UAV where

reducing power consumption and payload is a priority. Instead of

spending prohibitive amount of power to position the UAV on

specific coordinates [1], RFEye embraces the normal movement

of the UAV to acquire signals, including displacement due to wind,

thus emulating a distributed antenna array. Wireless signals, espe-

cially waveforms used for communication purposes, often contain

repetitive patterns (e.g., cyclostationary features embedded in

preambles of physical layer packets) that are repeated periodically

for error-free communication. Careful detection and alignment of
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such repetitive patterns embedded in these signals is used to extend

the mathematical foundation of distributed synchronous arrays to

design robust DoA algorithms in RFEye for uncoordinated and

asynchronous arrays. Therefore, the contributions of this work are

as follows:

1) Resource saving signal acquisition using single UAV –

RFEye relies on a single UAV equipped with one antenna, with no

precise control for positioning of the UAV. This greatly simplifies

the payload and reduces the power requirement for the carrier.

Furthermore, we design a computationally lightweight algorithm

for on-board signal processing.

2) Waveform independent signal acquisition – By utilizing

repetitive patterns embedded at the start of packet, RFEye im-

plements a novel blind signature detection algorithm that removes

any dependency on the emitter waveform.

3) Asynchronous distributed receiver beamforming – We em-

ulate a distributed virtual phased array receiver that combines the

measured positions of the UAV and time aligned features to com-

pute the beampattern in each of the 360◦ along the azimuth and

elevation. The direction that provides the maximum accumulated

power in the beampattern, yields the DoA.

4) Error minimization using clustering – We explore the

beamspace by combining a small subset of the captured signal

each time, yielding a larger number of candidate DoAs. We use

clustering to choose the median of the dominant cluster as the

DoA. Furthermore, we analyze the sources of errors in RFEye

and compare that with subspace-based DoA algorithm [2].

5) Hardware platform using COTS (Commercial off-the-shelf)

devices – RFEye is a fully deployable platform, equipped with

all the software components necessary to acquire signals in the

field. The hardware architecture includes Intel Aero UAV, USRP

B205-mini software-defined radio, Raspberry Pi and RTK-GPS

modules. The research has been validated with extensive outdoor

experiments using this platform.

2 RELATED WORK

Precise localization of an emitter in indoor or outdoor settings

has been studied for decades [11]. In this section, we discuss the

literature that is most relevant to this work. A broad comparison

of RFEye to state-of-the-art RF localization technique is shown

in Table 1. The key difference of RFEye is that, unlike other

methods, it is able to localize any RF source (that transmits signals

with repetitive patterns in it), by using a single receiver with only

a single antenna, and achieves reasonable localization accuracy.

Distinction between SAR and distributed beamforming: Syn-

thetic Aperture Radars (SAR) use coherent detection of signals

reflected from a target to emulate an antenna aperture to generate

remote sensing imagery or locate the target. In contrast, RFEye

has the advantage of localizing an unknown emitter itself using

the signals captured at multiple locations using a single UAV.

Localization based on SAR also leverage the movement of a

device acting as a receiver to localize itself using signals captured

from multiple transmitters [6]. Whereas in RFEye, a single mobile

receiver can locate a target emitter, which eliminates the need for

multiple transmitters.

Signal localization from UAVs: RFEye is one of many applica-

tions enabled by UAVs [12], [13]. TrackIO [14] uses an outdoor

UAV to localize mobile indoor nodes using Ultra Wideband

(UWB) signals, trilateration and ranging protocols. Authors in

SensorFly [15] propose an indoor aerial sensor network of small

UAVs that can self-locate using anchor nodes, which is an added

infrastructure. In [16], the transmitter’s location is derived by using

UAV’s GPS and Time of Flight (ToF) data using multilateration.

Alternately, authors in [17] use a UAV mounted 3D antenna

array to maximize directivity, while in [18], a single portable

helicopter based localization system is presented using the Re-

ceived Signal Strength Indicator (RSSI) for localization, which

fundamentally limits the accuracy of the derived location. In [19],

authors use directional antenna to find the direction of arrival of

the source. However, directional antennas limit visibility of the

radio environment often leading to blind spots and misdetection

of unknown signals. Authors in [20] use a network of UAVs

to localize GPS jammers similar to military applications, where

multiple UAVs [21], [22] are used to scan in different channels to

avoid jammers. Evidently, all of these methods require additional

resources to be deployed for the system to work. Simultaneous

localization of UAV and RF sources is proposed in [23], that

also include terrain information [24] to improve accuracy. UAV

wireless channel models are shown to be complicated and are

extensively studied [25]. However, we obviate any dependence

on such deterministic or empirical models of the channel, by

employing the geometry of distributed beamforming. Finally,

RFly [7] uses an RFID reader and RFID relay on a UAV to

locate RFID tags by emulating an antenna array using SAR. In

contrast RFEye localizes any source that emits a waveform with a

repetitive pattern, which is widely known to be a common feature

in communication signals.

Indoor signal localization: Almost all indoor localization tech-

niques, including ArrayTrack [3], ToneTrack [4], PinPoint [26],

Spotfi [5], primarily employ commonly known signal subspace-

based methods (like MUltiple SIgnal Classification (MUSIC) [2])

either to derive Angle of Arrival (AOA) or Time Difference of

Arrival (TDOA) and also require multiple antennas and wide

bandwidths for accuracy. However, accuracy of DoA estimation

using subspace methods are shown to severely degrade in the

presence of array uncertainties such as errors in element position

and synchronization [11], [27]. Chronos [8] uses ToF data and

relies on a MIMO access point (AP) to localize a transmitter

associated with it. Ubicarse [6] relies on the movement of a

mobile, MIMO receiver (with at least two antennas) to emulate

an antenna array and uses SAR techniques on the signals emitted

from multiple transmitters to localize the receiver. This requires

additional hardware (multiple antenna) for locating a single de-

vice, which may not be available in outdoor environments and not

suited for resource constrained devices. Moreover, it relies on the

channel states measured by a Wi-Fi network card that cannot be

used to localize other waveforms. In contrast, RFEye leverages

only one antenna on a single receiver and uses receiver distributed

beamforming on the repetitive patterns extracted from signals

captured at various positions, to localize a remote RF transmitter.

Outdoor signal localization: Literature on outdoor localization

predominantly relies on GPS based self-positioning, which can

help a source to locate itself within ≈3−5m 2D location esti-

mates [28]. In contrast, if that source wants to be located by other

services, it can transmit its GPS location. This is only possible if a)

the GPS receiver is available on the source consuming additional

power, b) the source is not in a GPS-denied environment, and

c) the source broadcasts its GPS coordinates. However, there are

many applications where these assumptions may not hold. For

example: 1) In search and rescue missions, the rescuee to be

tracked can be located in GPS-denied environments (e.g., debris,

foliage, underground, etc.). Also, backpackers and hikers prefer
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TABLE 1: Comparison with state-of-the-art RF localization systems

System Metric Method
Accuracy

(Median)

Number of

Receivers

Number of

Antennas
Bandwidth Generality

ArrayTrack [3] AOA MUSIC
0.23m (2D)

(6 APs, 8 antenna)

3

(min)

4

(min)
40MHz Limited to Wi-Fi

ToneTrack [4] TDOA MUSIC
0.90m

(4 APs, 3 antenna)

3

(min)

3

(min)

3 of 20MHz

channels
Limited to Wi-Fi

SpotFi [5]
AOA,

ToF
MUSIC

0.4m (2D)

(6 APs, 3 antenna)

3

(min)
3 40MHz Limited to Wi-Fi

Ubicarse [6] AOA SAR
0.39m

(5 APs)

3

(min)
2 20/40MHz Limited to Wi-Fi

RFly [7] AOA SAR 0.19m (2D)
1 Reader,

1 Relay

1 on Reader,

4 on Relay
Limited to RFID

Chronos [8] ToF ToF Ranging 0.65m (2D) 1 3
Multiple 20MHz

channels
Limited to Wi-Fi

SAIL [9] ToF
ToF Ranging,

Deadreckoning
2.3m (2D) 1 3 40MHz Limited to Wi-Fi

System in [10] RSSI Trilateration
0.83m

(for distance≤2.5m)
3 1

Any

Bandwidth

Known Tx power

Any waveform

RFEye AOA Distributed Wi-Fi: 1.03m (2D) 1 1 Any Any waveform

Receiver 2.50m (3D) Bandwidth with repetitive

Beamforming LoRa: 1.15m (2D) pattern

2.70m (3D)

gear that are wearable, energy efficient and long-range, which

are reliable in variety of terrain and infrastructure [29], [30],

over more expensive, bulky and power-hungry GPS devices. 2)

In locating rogue emitters for spectrum policy enforcement and

in electronic warfare, the devices will not broadcast their GPS

coordinates to preserve privacy and security. In such cases, RFEye

accurately locates any unknown remote source by capturing its

transmitted signals from an UAV without prior knowledge of

the signal structure and is robust to a variety of terrain and

infrastructure.

High frequency and wideband techniques: Prior work have used

other frequencies and wider bands to locate sources. For example,

[31] uses UWB to locate mobile tags using a single anchor along

with a crude floor plan while [32] provides 3D indoor location by

exploiting the small wavelength and directional communication

of mm-wave networks. Authors in [33] introduce a multi-band

backscatter technique to locate low power devices in non-line-of-

sight scenarios and visible light is used in [34]. However, many

of these approaches are not feasible for localization of sources

located at longer distances using a radio resource constrained

receiver, which is why RFEye has been designed to operate in

sub-6GHz bands with only 5 to 20MHz signal bandwidth.

3 BACKGROUND

Fig. 2: Distributed transmitter beamforming

Distributed beamforming [35], [36] has been applied for trans-

mitter beamforming by a cluster of distributed transmitters to a

distant base station by emulating the properties of a synchronous

antenna array. This requires precise timing and carrier frequency

synchronization for collaborative transmissions. Figure 2 shows

the geometry of a receiver (in blue) in far field and the synchronous

transmitters (in red) that are randomly distributed in a three dimen-

sional space. Since, the receiver is in far field, the electromagnetic

waves emerge from the transmitter array in parallel, which is

also the direction of arrival of the signal at the receiver. The

position of the kth transmitter in spherical coordinates is given

by (ak, φk, θk) and the first node located at (a1, φ1, θ1) is taken

as the origin, without loss of generality. The location of the remote

receiver is given by (r, ψrx, ζrx) and the angles, ψrx ∈ [−π, π]
and ζrx ∈ [−π, π] denote the azimuth and elevation of the

receiver respectively. Assuming perfect synchrony among the

transmitters to eliminate any frequency offset or phase jitter, the

Euclidean distance between the kth transmitter at (ak, φk, θk) and

any point at (r, ψ, ζ) is given by (1),

dk(ψ, ζ)=[r2+a2k−2rak(sinψ sinφk cos (ζ−θk)

+ cosψ cosφk)]
1

2

≈ r − ak (sinψ sinφk cos (ζ − θk) + cosψ cosφk)
(1)

where r ≫ ak in the far-field region.

Therefore, the phase of the incident signal at (r, ψ, ζ) due to

the transmission from the kth transmitter is given by the complex

exponential, ej
2π
λ
dk(ψ,ζ). In order for the k transmitted waveforms

to coherently add only at the far receiver, each signal is multiplied

by the conjugate of the complex exponential (or weights), which

provides the necessary phase rotation for directing the beam

from the distributed array. Therefore, the beamforming weights

of each transmitter, k∈{1, 2, . . . , N} for a known receiver at

(r, ψrx, ζrx) is set to wk(ψrx, ζrx)=e
−j 2π

λ
dk(ψrx,ζrx), where λ

is the wavelength of the carrier.

The corresponding array factor, given the transmitter locations

a = [a1, a2, . . . , aN ], φ = [φ1, φ2, . . . , φN ]∈[−π, π]N , and

θ= [θ1, θ2, . . . , θN ]∈[−π, π]N is defined by (2),

3
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F (ψ, ζ|a,φ,θ) =
1

N

N
∑

k=1

[wk(ψrx, ζrx)] e
j 2π

λ
dk(ψ,ζ)

=
1

N

N
∑

k=1

ej
2π
λ

[dk(ψ,ζ)−dk(ψrx,ζrx)] (2)

The corresponding far-field beampattern is defined by (3),

P (ψ, ζ|a,φ,θ) , |F (ψ, ζ|a,φ,θ)|2 (3)

Consequently, the beampattern is maximum when (ψ, ζ) =
(ψrx, ζrx), i.e. along the true direction of the receiver. This is

because the phase components of the weights and the impending

signal at the receiver in (2), are exactly opposite in phase, and

therefore add up constructively when (ψ, ζ)=(ψrx, ζrx), and add

up destructively when (ψ, ζ) deviates from (ψrx, ζrx).

4 DISTRIBUTED RECEIVER BEAMFORMING

RFEye uses a novel formulation of distributed receiver beamform-

ing to perform DoA estimation that is distinct from transmitter

beamforming (Section 3) in the following ways:

Fig. 3: Distributed receiver beamforming

• Distributed transmitter beamforming forms a phased array

when multiple nodes transmit synchronously to a known

receiver. In contrast, RFEye creates a virtual phased array

at the receiver by capturing signals from a remote, unknown

transmitter at multiple distributed positions to estimate the

DoA and its location.

• Transmitter beamforming relies on the knowledge of two

parameters: a) The exact location of the far-field receiver

(r, ψrx, ζrx) and b) Precise locations of the transmitter

nodes (ak, φk, θk) to determine the beamforming weights. In

RFEye, these variables are unknown and require additional

signal processing for receiver beamforming to be practical.

• Transmitter beamforming requires precise timing and carrier

frequency synchronization for collaborative transmissions. In

RFEye the signals are captured asynchronously by a single

receiver and aligned in time to create a synchronous, virtual

array.

To overcome these challenges, we formulate a beamform-

ing algorithm with asynchronous reception from an unknown

transmitter using measurable but imprecise positions of spatially

distributed array elements. Figure 3 shows a far-field transmitter

and randomly distributed reception points and without loss of gen-

erality, we consider the first position of the UAV as the local origin

for DoA estimation. Keeping the notation in accordance to Section

3, the coordinates of the UAV is denoted by posk=(rk, ψk, ζk),
where 0≤rk<R, −π≤ψk, ζk<π, and R is the radius of the

sphere within which the UAV hovers at each location as shown

in figure 1. posk is measured using an on-board high precision

GPS described in Section 8. Similarly, the transmitter is located

at (a, φtx, θtx), where a is the Euclidean distance between the

transmitter and the assumed local origin. Therefore, the Euclidean

distance between posk and any node at (a, φ, θ) is given by (4),

dk(φ, θ) ≈ a−rk (sinφ sinψk cos (θ−ζk)+ cosφ cosψk)

≈ a−d′k(φ, θ) (4)

where, d′k(φ, θ) is variable and depends on posk, and the angles

(φ, θ). In order to determine the receiver beamforming weights,

d′k(φ, θ) is used, since a is unknown and also because it does not

impact the DoA and the eventual fix of the transmitter. We discuss

this in Section 5.3.

The phase of the received signal: There are two factors that

affect the phase of the signal received at each posk: a) The

phase-shift due to different propagation distances, dk(φtx, θtx)
given by the complex exponential, ej

2π
λ
dk(φtx,θtx), and b) Com-

mon phase noise induced by carrier frequency offset, frequency

selective fading and other native receiver non-linearities. Since

the UAV captures distinct packets at different positions, it is

necessary to preserve only the phase changes due to propaga-

tion delays between the positions (figure 3). This is achieved

by identifying and extracting a unique signature embedded in

the signal to align the signals captured at different reception

points as explained in Sections 5.1 and 5.2. The time aligned

signals collectively form a synchronous, virtual array where

the phase of the signal at posk is given by 2π
λ
dk(φtx, θtx).

Therefore the array factor, given the reception points r =
[r1, r2, . . . , rN ]∈[0, R]N , ψ = [ψ1, ψ2, . . . , ψN ]∈[−π, π]N ,

and ζ = [ζ1, ζ2, . . . , ζN ]∈[−π, π]N , is given by (5),

F (φ, θ|r,ψ, ζ) =
1

N

N
∑

k=1

[wk(φ, θ)] e
j 2π

λ
dk(φtx,θtx) (5)

The corresponding beampattern is given by (6),

P (φ, θ|r,ψ, ζ) , |F (φ, θ|r,ψ, ζ)|2 (6)

Furthermore, the complex weights wk(φ, θ) = ej
2π
λ
d′k(φ,θ), when

multiplied with the received signal, rotates the phases of the

received signals to constructively and coherently overlap in space,

maximizing the beampattern in (6) in the direction of the remote

transmitter (φtx, θtx), which is also the DoA of the signal. The

complex weights are explained in Section 5.3.

5 SYSTEM DESIGN

Localization using RFEye has four distinct stages: a) Blind

Signature Detection: The UAV flies to an area of interest and

captures the first signal to find a repetitive signature. b) Signal

Acquisition and Conditioning: UAV hovers to collect signal traces

from multiple positions while recording it’s own coordinates. c)

Estimation of DoA: These signals are used to determine the DoA

using the method described in Section 4 along with a fusion

algorithm to maximize its accuracy and finally, d) Transmitter

Localization: The DoA from two nearby locations are used to

calculate the coordinates of the unknown transmitter.

4
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5.1 Blind Signature Detection

Random access based packet transmission is common in many

modern wireless protocols, like 802.11 [37], LoRa [38] and Sig-

fox [39]. These protocols use repetitive pattern in the preamble of

the packet, which can be detected and extracted by blind detection

methods. This makes RFEye applicable to a wide variety of

waveforms unlike prior art [4], [5], which require specific signal

structures. Also, RFEye works without a repetitive pattern as long

as the signature (preamble) is known to the receiver. In such cases,

the blind signature detection is not required.

Let the signal captured at the first position be y1[n]. The goal

is to extract a signature, ysig[n] (e.g., short preamble in 802.11

or chirp preamble in LoRa) embedded within y1[n] that appears

in signals captured at all the positions. In random access packets,

the signature is constructed by repeating a pattern, yp[n] (e.g.,

one symbol of short preamble in Wi-Fi or a single up-chirp in

LoRa). We present a blind detection scheme, which first extracts

the pattern from the signal received at the first position, pos1 of

the UAV and then use it to extract the signature. This is shown in

figure 4 and works in three steps:

Step 1: The energy envelope of the signal y1[n] is calculated and

the first L samples of the envelope above a threshold are extracted,

denoted by u[n] in (7),

u[n] = y1 [n̂−L : n̂] where, (7)

n̂ = min

{

n :

(

1

L

L−1
∑

i=0

∣

∣

∣y1[n− i]
∣

∣

∣

2
)

≥ η1

}

where, n̂ is the smallest index at which the energy envelope

exceeds a decision threshold, η1 (depends on the lowest target

SNR of RFEye). The value of L (200 in this work) is selected

so that u[n] contains at least one instance of yp[n] in an arbitrary

waveform.

Step 2: u[n] is cross-correlated with the signal y1[n] to determine

the exact indexes of yp[n] = y1[m1:m2] using (8),

Ru[m] =

∑L−1
i=0 y1[m+ i]u∗[i]
∑L−1
i=0

∣

∣u[i]
∣

∣

2 (8a)

m1 = min ({m : Ru[m]≥η2}) (8b)

m2 = min ({m : m 6=m1, Ru[m]≥η2}) (8c)

Where, m1 and m2 denote the two consecutive lowest sample

indices at which the normalized cross-correlation Ru[m] exceeds

a threshold η2 (set to 0.5 in this work to minimize false positives).

The normalized cross-correlation is used for η2 to be independent

of the power level of y1[n]. The correlation also reveals the width

of yp as Wp=m2−m1. The cross-correlation for Wi-Fi and LoRa

is shown in figure 4 along with the periodic pattern yp[n].
Step 3: The pattern yp[n] is then cross-correlated with the signal

y1[n], to extract the signature ysig[n]=y1[m3:m4 +Wp] using

(9),

Rp[m] =

∑L−1
i=0 y1[m+ i]y∗p [i]
∑L−1
i=0

∣

∣yp[i]
∣

∣

2 (9a)

m3 = min({m:Rp[m] ≥ η2}) (9b)

m4 = max({m:Rp[m] ≥ η2}) (9c)

Where, m3 and m4 denote the lowest and highest sample indices

at which the cross-correlation Rp[m] exceeds the threshold η2.

Fig. 4: Blind detection and extraction of embedded signature

ysig[n] for Wi-Fi (left) and LoRa (right)

This also reveals the width of the signature, Wsig=m4+Wp−m3

and number of repetitions of yp. In figure 4, the cross-correlation

of the signal with yp[n] reveals the complete signature, which

contains 10 repetitive patterns for Wi-Fi and LoRa. This signature,

ysig[n] is used to align the asynchronously received signals in time

to apply receiver beamforming to compute the DoA.

5.2 Signal Acquisition and Conditioning

Signal and position capture: Signal acquisition is performed by

the UAV in several positions within a radius of 1m around a

location, which are recorded using a high accuracy RTK-GPS [40]

positioning system. The signal captured at each position is denoted

by yk[n] and the instantaneous position is denoted by posk.

By not associating to an uniform linear array, RFEye removes

the requirement for precise control and movement of the UAV,

specially in presence of external factors like wind. The output of

this process is a set of captured signals along with high-precision

GPS locations associated with it for further signal processing.

Temporal alignment: The UAV captures a continuous stream of

the signal transmitted from the remote source at various positions.

In each position the signal may contain a packet along with the

preamble, but the start of the packet is unknown. To utilize the

distributed beamforming technique from Section 4, synchronous

reception of the same transmitted signal from multiple positions is

required. Since we do not use multiple receivers, we emulate this

by finding the exact indices of ysig[n] within the signals captured

from each position and aligning those in time, to generate signals

as captured by synchronous receivers. Figure 5 shows the timing
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Fig. 5: Temporal alignment of yk[n]

alignment by cross-correlating the captured signal, yk[n] with the

signature, ysig[n] detected in Section 5.1. For each position the

value of τk for which the cross-correlation in (10) is maximum, is

the time-lag of the signal yk[n],

τk = argmax
τ





Wsig−1
∑

i=0

yk[τ + i]y∗sig[i]



 ∀k ∈ {1, . . . N}

(10)

Now, each signal instance captured at each position can be

aligned in time domain by shifting the signal instance in time

domain by −τk. This is the same as extracting candidate signals,

yk=yk[τk:τk+Wsig] that emulate synchronously received signals

necessary for receiver beamforming. Since, asynchrony corrupts

the ToF information of the signal, any approach that relies on

ToF information for DoA estimation cannot be employed in this

scenario.

Carrier frequency offset: Since, the same receiver (UAV) is used

to capture all the signals, the carrier frequency synchronization is

inherently ensured across all signal instances. This obviates the

removal of any carrier frequency offset (CFO) between multiple

signals, which is critical in multi-receiver distributed beamform-

ing. However, CFO may exist between the transmitter and receiver

which is estimated and removed using standard techniques [41]

at the first reception point. All captured signals are corrected

accordingly by the same offset.

5.3 DoA Calculation

As explained in Section 4, in distributed receiver beamforming

the signal instance at each position is multiplied with an unique

complex exponential, wk(φ, θ). These weights are a function

of the intended direction of the beam (φ, θ) and the relative

position of the reception point (rk, ψk, ζk). Since, the phase

of the time aligned signal, yk is given by ej
2π
λ
dk(φtx,θtx) the

weights are chosen to be wk(φ, θ)=e
j 2π

λ
d′k(φ,θ). Multiplying yk

with the complex weight adjusts the phase in a way that the

overall beampattern formed by the emulated distributed array is

steered in the direction (φ, θ). Now, if this beam is swept in

all possible values of (φ, θ) where −π≤φ, θ<π, the received

energy is maximum in the direction of the unknown transmitter

(φtx, θtx). The array factor is calculated using (5),

F (φ, θ|r,ψ, ζ) =
1

N

N
∑

k=1

ej
2π
λ [d′k(φ,θ)+dk(φtx,θtx)]

=
1

N
ej

2π
λ
a
N
∑

k=1

ej
2π
λ

[dk(φtx,θtx)−dk(φ,θ)] (11)

Algorithm 1: RFEye: Direction of Arrival

Data: N , Nmax, Rth, set of signals and positions
{yk, posk}

j , for location j∀{1, 2}, where k∀{1..N}
Result: (φ̂tx,j , θ̂tx,j) = Direction of arrival at location j
for each location j ∈ {1..2} do

D = [ ]
for M = (N−2):−1:

⌈

N/2
⌉

do

tmp = ∞, exit = 0
for n = 1 : Nmax do

Extract Fn={yk, posk}, a subset with M
elements from {yk, posk}

j

for each (φ, θ) ∈ {−π..π} do
Calculate P (φ, θ) corresponding to Fn using

(6)
if −3dB ≤ P (φ, θ) ≤ 0dB then

Append (φ, θ) to D
end

end

[φ̄r, θ̄r, Rr]r=dominant_cluster =
k-means-clustering(D)

if Rr < tmp then
tmp = Rr

(φ̂tx,j , θ̂tx,j) = [φ̄r, θ̄r]r=dominant_cluster

end
if tmp < Rth then exit = 1, break

end
if exit = 1 then break

end
end

The term ej
2π
λ
a is a constant residual phase in the received signal

that does not contribute to the magnitude of the array factor and

the corresponding beampattern in (6). Hence, it has no bearing

on the DoA estimation and can be safely ignored. The signals

received at the UAV position, (r,ψ, ζ) are used to create a far-

field beampattern P (φ, θ|r,ψ, ζ) and the angles corresponding to

its maximum value is the DoA estimate (φ̂tx, θ̂tx) given by (12),

(φ̂tx, θ̂tx) = argmax
φ,θ

P (φ, θ|r,ψ, ζ) (12)

Figure 6a shows an example realization of RFEye with 20 random

positions. Figures 6b and 6c show the beampattern formed by

yk and posk, where k∈{1:N} for a source transmitting from

direction (φtx, θtx) = (70◦, 60◦). The beampattern is maximum

when the sweep angle matches true direction of arrival of the

signal, when there exists a direct path of the signal between the

source and the UAV.

5.3.1 Improving the DoA Accuracy

It is common for the DoA estimate to be influenced by multi-

path and shadowing effects leading to ambiguous location. The

accuracy is improved by employing the following steps: a) Using

different subsets of yk to produce multiple DoA estimates, b)

Including all beams that are within 3dB of the maximum beam

obtained from (12) and c) Collectively, this creates a much larger

search space for the DoA that can be iteratively inferred using a

clustering algorithm.

a) Expand DoA estimates: Since, (12) incorporates the phase

from all the signals yk, it is impossible to isolate the effect of

errors introduced by one or more of these signals in the final DoA

estimate. Instead, choosing M random yk’s out of the available

N signals the number of DoA estimates can be vastly increased

which leads to more accurate location. This produces N=
(

N
M

)

6
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Fig. 6: Beampattern for asynchronous distributed receiver array

(a) Beampattern with side lobes (b) Clustering of DoA

Fig. 7: (a) Include lobes between 0 to -3dB levels. (b) Median of

dominant cluster is the final DoA.

unique subsets each containing M signals that yield N DoA

using (12). The value of M is a trade-off between the accuracy

of the individual DoA and the total number of DoA estimates

while the value of N is a design choice depending on how fast

the DoA estimate is required. Generally, under perfect time and

phase synchronization of the signals and error-free positions of the

UAV, the directivity the distributed array increases with M [35],

leading to a more accurate DoA estimate. However, the value of

N is maximum at M=
⌈

N/2
⌉

, which limits the range of M to

[
⌈

N/2
⌉

, N ]. For each M , we define N unique subsets denoted

by Fn={yk, posk} where, n∈{1:N}, k∈{1:N}, |Fn|=M and

estimate the DoA for each set. However, to limit on-board compu-

tation the number of DoA calculations can be limited to specific

number Nmax, which is determined empirically in Section 9.1.

b) Consider multiple beam directions: In the presence of

multipath and shadowing effects in non line-of-sight (NLOS)

scenarios, the sidelobes can often lead to ambiguous DoA.

For example, figure 7a shows spurious lobes other than

the main lobe at (φ̂tx, θ̂tx) = (70◦, 60◦), which can also

be inferred as the true direction. To alleviate this error

we choose all the beam directions that satisfy −3dB ≤
P (φ, θ) ≤ 0dB (max), denoted by the set D={(φ̂itx, θ̂

i
tx)},

where, i∈{1:number of side lobes satisfying the inequality}.

c) Clustering to improve DoA accuracy: From the above discus-

sion, we find that the number of potential DoA can be significantly

increased with limited number of signals (N ). However, the DoA

may vary for different Fn because of wireless propagation effects,

hardware impairments, timing misalignment or error in UAV

coordinates. Therefore, identifying clusters of (φ̂itx, θ̂
i
tx) using K-

means algorithm reveal regions of high affinity and choosing the

median of the dominant cluster provides the most accurate DoA

given the N measurements in a location. Algorithm 1 outlines the

steps of clustering, represented by the objective function in (13),

L=
K
∑

r=1

Lr where, Lr=

|D|
∑

i=1

air

(

∥

∥

∥φ̂itx−φr

∥

∥

∥

2
+
∥

∥

∥θ̂itx−θr
∥

∥

∥

2
)

(13)

Where, K is the number of clusters and is kept constant at 3 and

(φr ,θr) is the centroid of the rth cluster. Here, air=1 if (φ̂itx, θ̂
i
tx)

belongs to cluster r and 0 otherwise. This objective function is

minimized in polynomial time using the algorithm in [42] and

the cluster with the smallest radius is considered as the dominant

cluster. The centroid of this cluster is the most accurate estimate

of the DoA as shown in figure 7b.

At each iteration of Algorithm 1, the radius of the dominant

cluster determined by Rr =
√

Lr/Nr . where Lr is from (13)

and Nk is the number of points in the dominant cluster. As this

radius gets iteratively smaller with the addition of new elements

to the set D, it is compared with a threshold, Rth (determined

empirically in Section 9.1) to avoid redundant iterations that may

consume resources on the UAV. Finally, This algorithm is repeated

for both locations to get the most accurate DoA possible from the

available measurements and is reported in (φ̂tx,j , θ̂tx,j).

5.4 Transmitter Localization Using DoA

Calculated source location

UAV locations

Fig. 8: Localization from the UAV

The unknown transmitter is localized with the DoA obtained

from two locations as shown in figure 8. The UAV flies to a

Location 1 and calculates the DoA (φ̂tx,1, θ̂tx,1) as described in

Section 5.3.1. Without loss of generality, this location is assumed

7

Authorized licensed use limited to: UNIVERSITY AT ALBANY SUNY. Downloaded on November 23,2020 at 20:52:21 UTC from IEEE Xplore.  Restrictions apply. 



1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.3038886, IEEE

Transactions on Mobile Computing

as the origin with the axes aligned to the GPS axes [11]. Then,

it moves to Location 2 and calculates the DoA (φ̂tx,2, θ̂tx,2).
Let the coordinates of Location 2 with respect to Location 1

(the assumed origin) be (d, ϕ, ϑ). Since the two locations are

known from the RTK-GPS module (Section 8) the coordinates

of transmitter is obtained at the intersection of the two lines at

angles (φ̂tx,1, θ̂tx,1) and (φ̂tx,2, θ̂tx,2) as shown in Figure 8. The

spherical coordinates of the transmitter with respect to the origin,

is given by ptx = (â, φ̂tx,1, θ̂tx,1), where the range is given by

(14),

â =
d. sin(ϑ). tan(ϕ−φ̂tx,2)

(

tan(φ̂tx,1−ϕ) + tan(ϕ−φ̂tx,2)
)

cos(φ̂tx,1−ϕ) sin(θ̂tx,1)
(14)

Now, if the GPS coordinates of Location 1 is p1, then the GPS

coordinates of the transmitter is given by p1 + ptx. This does not

require the transmit power of the source to remain constant unlike

commonly required in RSSI based trilateration approaches [11].

6 ERROR ANALYSIS

The accuracy of RFEye depends on two major sources of errors:

a) Imperfect temporal alignment of signal instances yk and b)

Position errors of the UAV. Apart from analyzing the impact of

these sources of errors, we also compare the error performance

between RFEye and signal subspace based methods [2].

a) Imperfect temporal alignment: Imperfect temporal alignment

of signal instances manifests as a residual phase error and distorts

the beampattern, leading to errors in the DoA. For example in Wi-

Fi signals, 1 sample misalignment corresponds to a time shift of

50ns and 200ns at sample rates of 20MHz and 5MHz respectively.

Thus the error due to imperfect time alignment is less when

the sample rate is high. Since the alignment is based on cross-

correlation, its accuracy also depends on the SNR of yk and

therefore can cause unwanted correlation peaks using (10) at lower

values. Figure 9a shows the misalignment of signal instances with

SNR for an outdoor pedestrian channel with Rayleigh multi-path

fading profile [43]. It is evident that the effect of the channel is

minimal for SNRs where the packets are actually decodable. Any

residual error due to misalignment is eventually removed by the

clustering in Algorithm 1.

b) Position errors of the UAV: The DoA also relies on correct

positions of the UAV, measured using the RTK-GPS. Now, values

of posk can be impaired due to error in RTK-GPS measurement

itself, which typically has a cm-level accuracy and precision.

Figure 9b shows the measured positions of the UAV versus the

true positions for a random trajectory where the error is greater

than the documented accuracy of 2.5cm. Figure 9c shows the

position error over time. Unlike inertial measurement unit (IMU)

positioning systems the drift is not large enough to cause errors in

the DoA. Furthermore, the RTK-GPS logs the position 5 times per

second. Since, the UAV is in continuous motion during hovering,

the exact position may deviate from the last reported value. Since

the last reported position is chosen for DoA calculation it can

introduce unknown errors. However, RFEye successfully cancels

these effects by clustering the potential DoA.

6.1 Error Comparison Between DoA Algorithms

There are two major classes of techniques employed for DoA

estimation in RF systems: a) Signal decomposition and b) Array

geometry. Algorithms using signal decomposition include the De-

lay and Sum (DAS) method [44], Minimum Variance Distortion-

less Response (MVDR) beamformer [45], Estimation of Signal

Parameters via Rotation Invariance Techniques (ESPRIT) [46],

MUltiple SIgnal Classification (MUSIC) [2], Joint Angle and

Delay Estimation (JADE) [47], Space-Alternating Generalized

Expectation-maximization (SAGE) [48], etc. MUSIC has been

widely used in state-of-the-art RF localization systems due to

its ability to perform high resolution direction estimation at low

SNR. However, it is extremely sensitive to receiver location, gain

and phase errors and it requires careful calibration for accuracy.

Additionally, the requirement to perform Eigen decomposition and

to scan through all the angles is computationally expensive [49].

This makes the state-of-the-art indoor localization approaches

ineffective in resource-constrained agents. In contrast, RFEye is

a light-weight, online and robust algorithm for DoA estimation.

Distributed beamforming [50] has been theoretically studied in

the context of time-synchronized wireless sensors [51], [52], [53],

[54] for uniform [35], gaussian [55] or arbitrary [56] spatial

distributions. We analyze the impact of position error of the UAV

on the DoA estimation accuracy based on our formulation of

distributed receiver beamforming and compare it to subspace-

based techniques like MUSIC.

6.1.1 RFEye Algorithm

Let posk is represented in rectangular coordinates (assuming

coplanar points) by (xk, yk), k=1, . . . , N is jointly Gaussian with

zero mean and variance σ2. Due to the error in the measured

positions, the actual coordinates are (x′k, y
′
k) , k = 1, . . . , N ,

where x′k=xk+∆xk and y′k=yk+∆yk. Here (∆xk,∆yk) is

also jointly Gaussian with zero mean and variance σ2
∆. Thus, the

measured coordinates are jointly Gaussian with zero mean and

variance σ′2=σ2+σ2
∆. In practice, σ2

∆ ≪ σ2 because the UAV

hovers over a larger radius (1m), compared to the magnitude of

the error term. Thus, the variance of posk is dominated by σ2. The

corresponding polar coordinates, (r′k, ψ
′
k), where r′k=

√

x
′2
k +y

′2
k

is Rayleigh distributed and ψ′
k=tan−1 yk

xk
, is uniform in [−π, π],

fr′
k
(r′)=

r′

σ′2
e
− r

′
2

2σ
′2 , 0≤r′<∞ and fψ′

k
(ψ′)=

1

2π
,−π≤ψ′<π.

For analysis, assume without loss of generality that

(φtx, θtx)=(0, π/2) similar to [55]. The array factor and the

average beampattern over all realizations of (r,ψ) is given by

(15),

Pav(φ) =
1

N
+

(

1−
1

N

)

∣

∣

∣

∣

∣

e−
(4π sin(φ

2 ))
2
σ
′
2

2λ2

∣

∣

∣

∣

∣

2

(15)

The main lobe of the average beampattern is represented by the

second term in (15), which is a function of N , the steering angle φ
and the distribution of the measured UAV coordinates. Even in the

presence of position errors, the average beampattern is maximum

when φ=0, i.e., when φ matches the actual DoA φtx, showing the

robustness of RFEye in the presence of errors.

The main lobe in (15) decays exponentially with a rate pro-

portional to the variance σ
′2. Two important observations can be

made from this: 1) A narrow distribution of posk, i.e., small σ2

yields greater power in the main lobe of the beampattern and

more accurate DoA and 2) Since the power of the main lobe is

dominated by σ2 distributed receiver beamforming is resilient to

position errors. However, if posk are farther apart (higher σ2), it

will decrease the power in the main lobe but will have less error in

the beampattern. Thus, the variance of posk is a design trade-off

in RFEye.
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(a) Inaccuracies in temporal align-
ment of signals (yk)

(b) RTK-GPS: Position error in
random trajectory

(c) RTK-GPS: Drift in accuracy
over time

(d) Error in MUSIC & RFEye

before clustering

Fig. 9: Error Analysis in RFEye

USRP B210Amplifier

Antenna

(a) RF source with USRP B210 and 10dBi an-
tenna

(b) Intel Aero UAV with USRP
B205 mini

Ground Plate

GPS Antenna

RTK-GPSUSB to UART 

Converter

(c) RTK Base with RTK-GPS and GPS antenna on
ground plate

Fig. 10: Experimental hardware setup of RFEye

6.1.2 MUSIC Algorithm

The MUSIC spectrum [2] measures the distance between the

steering vector, a(φ, θ) (the vector of complex weights to steer the

beam in direction (φ, θ)) and the noise subspace En determined

by Eigenanalysis of yk. to calculate the DoA using (16),

PMUSIC(φ, θ) =
1

a(φ, θ)HEnE
H
n a(φ, θ)

(16)

where, a(φ, θ) = [w1(φ, θ), . . . , wN (φ, θ)]

PMUSIC(φ, θ) generate peaks when the steering vector is exactly

orthogonal to the noise subspace vector, which happens only

when (φ, θ) coincides with the DoA of the incoming signal.

Hence, the accuracy depends on the orthogonality of En and the

steering vector a(φ, θ) which is sensitive to the values of posk
that are prone to measurement fluctuations and errors as shown

in figure 9a-c. This leads to a bias in the DoA estimate from

MUSIC proportional to the variance σ2
∆ [57]. Figure 9d shows

better accuracy of RFEye over MUSIC without clustering even at

smaller values of error in posk.

7 COMPUTATIONAL COMPLEXITY OF RFEYE

The computational complexity of RFEye is determined by the

four steps in Section 5. It is straight-forward to conclude that the

blind detection in Section 5.1 runs in constant time due the fixed

correlation window (L), and the temporal alignment in Section 5.2

has a linear time complexity of O(N). DoA calculation in Section

5.3 involves extracting Fn and clustering the potential DoA

according to Algorithm 1. The second loop repeats for a maximum

of (N−2)−
⌈

N/2
⌉

times for each location j and the third loop

iterates for a maximum of Nmax times for eachM . Extracting Fn
has a linear complexity of O(N). Let, G=360o×360o denote the

search space for the azimuth (φ) and elevation (θ). Computing

the array factor and beampattern using (5) and (6) for each G
and M reception points (|Fn|) has complexity O(MG) and

determining the direction of maximum power using (12) with

O(G). Therefore, RFEye computes the DoA in linear time of

O((MG+G)≈O(MG). In contrast, MUSIC has a quadratic

complexity in M , O(M2G+M2)≈O(M2G) [49]. Since, DoA

calculation in RFEye has a lower complexity than MUSIC it

can execute in real-time on resource-constrained devices like

UAV. The clustering uses a low complexity k-means algorithm

that executes in O(KNmax)≈O(Nmax) time [58], where K=3.

Therefore, the overall complexity of RFEye is given by (17),

O({N−2−
⌈

N/2
⌉

}Nmax{N+MG+Nmax})

≈ O(NNmax(N+MG+Nmax)) (17)

Since, Nmax is constant and M<N , the overall complexity

is O(N(N+NG))≈O(N2G). For resource constrained devices,

M can be fixed empirically (explained in Section 9.1) and in

practice N≪G, which leads to a complexity of O(NG) from

(17). Further, the complexity of scanning the search space G, can

be improved by first scanning at a low resolution and iteratively

scanning at higher resolutions only at angles at which the beam-

pattern is maximum, yielding a logarithmic search complexity of

O(log2G) [6]. Thus, the complexity of RFEye is O(Nlog2G).

8 IMPLEMENTATION & EXPERIMENTAL SETUP

8.1 Transmitter and UAV hardware

The transmitter consists of a USRP B210 [59] with a 10dB RF

amplifier and 6dBi antenna to transmit a signal with a repeti-

tive pattern. For experimental purposes the Wi-Fi preamble was

continously transmitted which served as the embedded signature,

ysig[n]. For over-the-air experiments an unused Wi-Fi channel

was used. The amplifier boosts the B210 signal to 26dBm which
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Fig. 11: RTK Setup Block Diagram

was sufficient to conduct outdoor experiments but much lower than

commercial Wi-Fi access points and the FCC’s recommendation

of 4W in 2.4GHz unlicensed spectrum. Figure 10a shows our

hardware setup of the transmitter.

For the UAV, we use one Intel Aero [60] as the main compo-

nent of RFEye running Ubuntu. Complex digital samples, yk[n]
are acquired using a USRP B205 mini [61] with a single antenna

mounted on the chassis as shown in figure 10b. The signal is

sampled at 5, 10 and 20MHz and streamed to the RAM disk

[62] memory over USB 3.0. The UAV hovers within a sphere

of 1m radius and we conduct flight experiments in both windy

and calm days to show the performance in all possible scenarios.

The USRP B205 mini is suitable for its small form factor but

has a lower resolution of ADC (12-bit) and higher noise floor

(≈8dB), compared to off-the-shelf Wi-Fi access points, typically

between 2-4dB. The B205-mini is powered by the UAV battery

with the additional accessories mounted on the chassis as shown

in figure 10b. The total additional payload is approximately 5oz.

and achieved an average flight time of 15 minutes.

8.2 UAV positioning system

Coordinates of the UAV, posk is obtained by the Real-time

kinematic (RTK) positioning system. RTK is used to enhance the

precision of the fix derived from global navigation and satellite

systems like GPS, GLONASS, etc. It combines the phase of

the GNSS carrier, its information content and the signal from

a reference station to provide real-time correction that yields

centimeter level accuracy of the fix. With the advent of low cost

RTK receivers like CUAV C-RTK GPS, Drotek XL RTK GPS,

etc. supported by open source community [63], it has become

essential for precise navigation of UAVs. Although many off-

the-shelf modules exist, SparkFun GPS-RTK Board [64] based

on u-blox NEO-M8P-2 [65] module is best suited for its small

form factor and ease of use. This unit reports GPS location with a

precision of 1cm and accuracy of 2.5cm, but may vary as seen in

Figure 9c. Figure 10c shows the RTK-GPS setup used as the base

connected to a laptop. A similar setup acts as rover, connected to

on-board Raspberry Pi.

Figure 11 shows the block diagram of the base and the rover

units in our setup. The base is the static unit, which transmits phase

correction stream over a direct Wi-Fi link to the rover mounted on

the UAV. The base unit is configured to transmit RTCM (Radio

Technical Commission for Maritime Services) v3 messages that

the rover forwards to the RTK-GPS unit, which calculates high

precision location. We use a laptop for the base and a Raspberry Pi

as the rover due to its small size and powered it with an on-board

battery. The Raspberry Pi stores the coordinates and the GPS time

as a tuple during the flight, which is used for DoA calculation.

8.3 Total Time for Localization

The time taken by RFEye to determine the location of the

source is determined by: 1) the time for signal acquisition, and

2) the processing time. However, the processing time is negligible

compared to the signal acquisition time, due to the logarithmic

run time complexity of RFEye in Section 7. The time for signal

acquisition is determined by: a) the time required to capture the

signal at each position, and b) the traversal time of the UAV.

The duration of a Non-High Throughput (Non-HT) legacy Wi-

Fi short preamble is only 8µs, while the duration of a standard

preamble in LoRa transmission with a spreading factor of 7 is

10ms [66]. Therefore, for the experimentation, an effective packet

capture time of 10ms suffices for each position of the UAV to

capture either Wi-Fi or LoRa preambles. The time required to

capture N such signal instances for DoA estimation at each

position is given by 10N ms and is in the order of milli-seconds.

Thus, the total duration of the signal captured at two locations is

2×10N=20N ms. For example for N=20, the total duration of

the captured signal is only 20×20=400ms. The UAV traversal

time is determined by the time to travel to each reception position

within a sphere of radius R at each location and the time to

traverse from one location to another which are separated by a

distance d, as shown in figure 1. In practice since d≫R, the total

traversal time is determined by d and for a UAV traversing at a

speed of v, this time is given by ≈ d
v

and is in the order of seconds.

Therefore the total time required for localization is ≈ d
v

, which

represents the theoretical minimum amount of time required by

RFEye to locate a source. For example, for DoA estimation and

localization from two locations separated by d=20 meters for a

UAV traversing at a nominal velocity of 10m/s [67], the total time

for localization is ≈ d
v
=2 seconds.

9 EVALUATION

The performance of RFEye is investigated with varying parame-

ters in different scenarios. We present the results in four categories:

1) Exploring the internal parameter space, 2) Evaluating the exter-

nal factors, 3) DoA and location accuracy for a Wi-Fi transmitter

and 4) Localizing a LoRa transmitter. For the evaluation using

Wi-Fi signals, we used non-high throughput legacy preamble at

20MHz bandwidth (unless otherwise specified). The total number

of reception points, N for each location is fixed at 20 for all

experiments.

9.1 Impact of Internal Parameters

In this experiment, the UAV hovers ≈20m away from the source

such that the average received SNR of the signals about 11dB.

The purpose of this experiment is to evaluate the role of various

parameters in RFEye at moderately low SNR. We discard all the

signals captured ≤10.5dB and ≥11.5dB. Figure 12 shows the error

in DoA for different tunable parameters of RFEye. Figure 12a

shows the effect of increasing number of reception points M
on DoA accuracy with a median error of <6◦ in azimuth at

moderately low SNR with M=16. We notice a diminishing return

beyond 16 points and therefore can be kept constant for resource

constrained UAV. The effect of the radius of the dominant cluster

on the accuracy of the DoA is shown in Figure 12b. Clearly, the

DoA accuracy improves with decreasing radius, which is also

used as termination condition in Algorithm 1. The figure shows

a median error of < 6o when the radius is 5o and no significant

improvement in the DoA accuracy is observed below this radius.

Hence, the threshold for the radius of the dominant cluster in

10

Authorized licensed use limited to: UNIVERSITY AT ALBANY SUNY. Downloaded on November 23,2020 at 20:52:21 UTC from IEEE Xplore.  Restrictions apply. 



1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.3038886, IEEE

Transactions on Mobile Computing

(a) Number of reception points (b) Radius of dominant cluster (c) Number of Fn instances

Fig. 12: The impact of tunable parameters on DOA accuracy at SNR=11dB and BW = 20MHz

(a) SNR of the received signal (b) Bandwidth of the Tx signal (c) LOS and NLOS scenarios

Fig. 13: The impact of external parameters on the DOA accuracy. SNR=14dB, BW = 20MHz

(a) DOA in azimuth, elevation for
Wi-Fi

(b) Localization in X, Y and Z
directions for Wi-Fi

(c) DOA in azimuth, elevation for
LoRa

(d) Localization in X, Y and Z
directions for LoRa

Fig. 14: The accuracy of RFEye for Wi-Fi [(a) & (b)] and LoRa signals [(c) & (d)]

Algorithm 1 is set to Rth=5o. Figure 12c shows the improvement

in DoA accuracy with the number of iterations n in Algorithm 1,

when M varies from
⌈

N/2
⌉

=10 to N−2=18. This indicates that

N varies from
(20
10

)

=184, 756 to
(20
18

)

=190. Results show that the

median error in DoA reduces from 45◦ without any clustering to

<5◦ by clustering the DoA from 40 random instances of Fn for

each M . A diminishing return is observed beyond 40 and hence

Nmax in Algorithm 1 for each M is set to 40.

9.2 Impact of the External Factors

Here, we evaluate RFEye with various parameters that are exter-

nal to the system like Bandwidth, SNR and NLOS. These are prop-

erties of the signal that cannot be controlled and figure 13 shows

the performance with these parameters. For these experiments M
varies from 10 to 18 and Rth=5◦. Figure 13a shows that RFEye

achieves a median accuracy of 4.5◦, 8◦ and 12◦ at SNR of 14dB,

11dB and 8dB respectively with line of sight to the transmitter.

Although there is a higher error at low SNR, we believe that it

provides a wider direction for the UAV, which can be used to fly

towards the target to improve the SNR and the DoA accuracy.

Generally, wider signal bandwidth leads to higher accuracy in

temporal alignment and DoA. RFEye is evaluated at 14dB SNR

and line-of-sight for three different bandwidths: 5, 10 and 20MHz,

which are also part of the IEEE 802.11a standard [37]. Figure 13b

shows a median DoA accuracy of 4.5◦ for a 20MHz signal and

5.6◦ for 5MHz signal. This also shows that the effect of bandwidth

of the signal on the DoA accuracy is small. Moreover, the 75th

percentile error in DoA estimates are 9◦, 13◦ and 14.5◦ at SNRs

of 14dB, 11dB and 8dB respectively as seen in figure 13a. In

figure 13b, the 75th percentile error in DoA is 9◦ for a 20MHz

signal and 7.2◦ for 5MHz signal. These results corroborate the

reliability of the DoA estimates of RFEye and the robustness to

the external factors in outdoor environments.

Localization in outdoor is often presented with non-line-of-

sight (NLOS) scenarios. We compared the performance of RFEye

in NLOS by flying the UAV behind large evergreen trees that

provides a strong shadowing effect. We notice a drop in SNR of

5dB in NLOS compared to LOS for the same distance between the
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target and UAV. Figure 13c shows the error in angle estimation in

NLOS compared to LOS. The median error of 13◦ in a highly

blocked low SNR demonstrates that RFEye is efficient in outdoor

scenarios.

9.3 Accuracy of Wi-Fi Localization

The accuracy of the azimuth and elevation angles and the location

estimates are evaluated at an SNR of 14dB with 20 reception

points and a threshold radius of 5◦, across 1000 experimental

trials. Figure 14a shows a median error of 4.5◦ and 5.5◦ and

a 75th percentile error of 9◦ and 7◦ for azimuth and elevation

respectively. Figure 14b shows a median accuracy of 0.63m, 0.82m

and 2.3m in X, Y and Z directions. Position error is calculated as
√

(∆2
x+∆2

y), which indicates a median error of 1.03m in 2D,

and as
√

(∆2
x+∆2

y+∆2
z) indicating an error of 2.5m in 3D. The

figure also demonstrates a 75th percentile localization accuracy of

1.8m, 1.4m and 3.1m in X, Y and Z directions, and consequently

the location accuracy is 62.2m in 75% of the trials. These

results show the high reliability of the location estimates of a

20MHz signal from RFEye compared to other source-localization

literature shown in Table 1.

9.4 Accuracy of LoRa Localization

We also demonstrate the generality of RFEye using a LoRa

transmitter as an example. We use an Adafruit Feather M0 LoRa

module [68] to periodically transmit a LoRa packet with the

standard preamble at a frequency of 915MHz, bandwidth of

125KHz and a spreading factor of 7. The same UAV setup is

used to capture the LoRa signals at 20 reception points. Figure 14c

shows a median error of 7.9◦ and 8.5◦ in the azimuth and elevation

angles respectively at an SNR of 30dB. Figure 14d shows the error

in the transmitter localization in x, y and z directions. RFEye

achieves a median accuracy of 0.85m, 0.78m and 2.45m in x, y

and z directions, which indicates a median position error of 1.15m

in 2D and 2.70m in 3D. This shows that RFEye can accurately

localize an RF source transmitting any generic waveform with a

repetitive pattern.

9.5 Impact of UAV Altitude

The experiments were conducted at relatively low altitudes due to

the following practical constraints: a) restrictions imposed by the

Federal Aviation Administration (FAA) mandate the maximum

altitude for experiments conducted with small UAVs, which are

further limited at locales close to airports [67], and b) the low

transmit power of the source (USRP B210) and high noise floor

of the receiver (USRP B205) also limit the maximum altitude at

which the signal can be decoded for localization. Therefore, the

performance of RFEye is investigated at varying altitudes of the

UAV using a robust simulation environment. For the evaluation, a

Wi-Fi source emitting a non-high throughput legacy preamble at

20MHz bandwidth using an omnidirectional antenna is employed

as the transmitter. The UAV flies to two random locations at vari-

ous altitudes and hovers within a sphere of radius 1 meter, collect-

ing signals using one omnidirectional antenna at various positions

within the sphere. The errors in the UAV position measurement

are collectively modeled as a random variable posk∈∼N (µ, σ2)
for all k∈N , with µ=0 and σ2=2.5cm [64] and a two-ray

multipath propagation model [69] is used for the source-to-UAV

channel. Figure 15 shows the median error in DoA estimation and

localization at various altitudes of the UAV, by averaging over all

SNR (5-15dB) and angles of the transmitter (φtx, θtx∈[−π, π]). A

(a) DoA accuracy at various UAV
altitudes

(b) Localization accuracy at vari-
ous UAV altitudes

Fig. 15: Accuracy of RFEye with UAV altitude.

consistently low median error of <1◦ is observed in both azimuth

and elevation angle estimates over all UAV altitudes in figure 15a,

demonstrating the robustness of DoA estimation using RFEye.

Figure 15b shows that the median localization error in both X

and Y directions is 0.5−0.85m and exhibits minimal variation

with the altitude of the UAV. The median error in Z direction

marginally increases with increasing altitude of the UAV due to:

a) the lower average signal-to-noise ratio at larger altitudes, and b)

the inaccuracies in the elevation angle estimates are extrapolated at

higher altitudes, i.e. the higher the altitude, the more the elevation

angle inaccuracies perturb the Z location. However, we observe

that the error in Z location is at most 1.5m even at an UAV altitude

of 80m.

10 CONCLUSION

This work presents RFEye, an outdoor localization system using

UAV with limited hardware and processing capacity. We leverage

the mobility of the UAV to asynchronously capture signals from

multiple positions, detect and extract a signature and align those

in time to emulate signal reception from a synchronous array to

calculate highly accurate DoA. We leverage combinations of sig-

nals to expand the candidate DoAs and perform spatial clustering

to minimize error. The proposed algorithm has low computational

complexity and is robust to various internal and external sources

of errors. Finally, we implement RFEye on commodity hardware

and demonstrate a median error in location of 1.09m in 2D and

2.6m in 3D. Our results also show the generality by locating both

LoRa and Wi-Fi signals while immune to factors like wind and

position errors. Lastly, we acknowledge that leveraging higher di-

mensionality of the signal space to improve accuracy and locating

mobile emitters are both worthwhile extensions to pursue in future

as it requires rethinking the mathematical and signal processing

apparatus of RFEye.
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