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Abstract—Modern wireless systems are increasingly dense
and dynamic that makes the channel highly non-stationary,
rendering conventional receivers sub-optimal in practice. Pre-
dicting the channel characteristics for non-stationary channels
has the distinct advantage of pre-conditioning the waveform
at the transmitter to match the expected fading profile. The
difficulty lies in extracting an accurate model for the channel,
especially if the underlying variables are uncorrelated, unob-
served and immeasurable. Our work implements this prescience
by assimilating the Channel State Information (CSI), obtained
as feedback from the receiver, over time and space to adjust
the modulation vectors such that the channel impairments are
significantly diminished at the receiver, improving the Bit Error
Rate (BER). We design a channel recommender, in which an
adaptive smoother is used to filter the noise in CSI, while a
tensor factorization & completion approach is used to track
the ephemeral changes in non-stationary channel statistics by
observing the changes in certain measurable parameters. V2X
communication is used as an example of non-stationary channels
to shows the efficacy of this approach. Overall, the system is
shown to operate with a prediction accuracy of 10−3 MSE even
in dense scattering environments over space and time, improving
the BER at the receiver by 90% for higher-order modulations.

I. INTRODUCTION

Design of optimal receivers using conventional communica-

tion theory, rely on mathematical and statistical channel mod-

els that describe how a signal is corrupted during transmission.

In particular, communication techniques such as modulation,

coding, and detection that mitigate performance degradation

due to channel impairments are based on such channel models

and, in some cases, instantaneous channel state information.

However, there are many propagation environments where this

approach does not work well because the underlying physical

channel is highly dimensional, poorly understood, nonlinear

or non-stationary. These channels lead to sub-optimal and

sometimes catastrophic performance using conventional re-

ceivers [1]. This problem is relatively tractable and has been

studied in the literature for linear, stationary channels with

normal distribution by employing a gamut of mathematical

tools for Bayesian inference such as Autoregressive random

walks, Kalman filters and Particle filters.

While it is desirable to learn the behavior of the wireless

channel, it is a non-trivial problem in practice. Wireless chan-

nels are influenced by many external variables that are often

correlated, time-dependant or unknown. Thus, any acquired

knowledge about these factors will inevitably be ephemeral,

which necessitates long-term learning models that are fast,

adaptive and evolve over time. Further, in multicarrier commu-

nication systems like OFDM, frequency selective fading can

be alleviated if the subcarriers are pre-equalized in accordance

to the impending channel response [2], [3]. Therefore, we

show that in non-stationary channels, the transmitter has to

learn and predict the most accurate channel response on a per-

packet (or even per-symbol) basis such that when the signal is

pre-equalized by the inverse of the channel it counteracts the

effects of the wireless channel.

Recommender systems are designed to bridge the gap

between the desired and actual behavior of a partially known

(or sometimes unknown) process by iteratively tracking certain

patterns in the outcomes. In turn, this reduces the ambiguity

and uncertainty in the decision making process for the end-

user. Wireless communication over non-stationary channel, is

analogous to such a recommender system, where the receiver

can significantly reduce its packet (or bit) error rate, only

if the transmitter uses the recommended signal parameters

based on historically observed channel profiles, obtained as

a feedback from the receivers. Intuitively, if the transmitter

pre-conditions the waveform with the mathematical inverse of

the expected channel, the received signal will likely contain

minimal amount of distortion.

We use V2X (Vehicle (V) to Everything (X)) channels

as an example of highly non-stationary channels to validate

the efficacy of predictive analytics at the transmitter. Recent

explosion in autonomous vehicles [4] has renewed the interest

in investigating the properties of the vehicular wireless chan-

nel for low-latency, broadband communication [5]. Vehicular

networks are unique because the communicating nodes are

always moving relative to each other. Consequently, the wire-

less channel is extremely volatile, which is a combination

of many factors like, Doppler shift, shadowing, scattering

(large and small scale), etc. More importantly, all of these

quantities are time-varying and statistically non-stationary [6],

[7]. A reliable wireless channel also provides resiliency in

higher-layer network functions like traffic-aware, low-latency

caching of content and coordinated downlink transmission for

multiuser communication techniques like MU-MIMO.

Our goal in this work is to rely on a set of measurable

parameters (denoted by MMM) like the vehicle density (Ns),

vehicle location, mapped into quasi-stationary segments (S)

[8] and the CSI feedback (CSI) to construct a non-uniformly

spaced, non-stationary time series (indexed by time of re-

ception, T). The CSI from the receivers captures a wide

variety of channel characteristics across a stretch of road under

different scattering environments. Broadband communication

using frequency domain modulation such as OFDM used in the

standards advocated for WAVE [9] also captures the channel

profile in frequency domain. Although, V2X is an extreme
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Figure 1: System view of the Channel Recommender framework at the transmitter for predicting non-stationary channel. The

transmitter and receiver work together to lower the BER. Corresponding sections for description are indicated within text.

example of non-stationary channel, the method discussed is

organically applicable to other non-stationary wireless chan-

nels with similar properties, like 802.11-(xx), High-speed

train (HST) communication, Massive MIMO and mmWave

networks with small-scale fading characteristics [10], [1], [11],

by considering the available set of measurable parameters

(further discussed in Section VI). Figure 1 shows the channel

recommender system for V2X communication. It operates on

the quadruplet, [CSI, Ns, S,T]
i , obtained from vehicle i.

System Description: The Recommender framework involv-

ing the transmitter, non-stationary channel and the receiver is

shown in figure 1. The flow of information from transmitter

to the receiver is as follows: At the transmitter, the bits that

are to be transmitted are modulated (using standard OFDM

modulation schemes) to generate the I/Q vectors. These I/Q

vectors are pre-equalized with the most accurate prediction of

the impending channel profile produced by the Recommender.

The pre-equalized I/Q vectors are converted to time-domain

waveform and transmitted over the non-stationary downlink

channel. At the receiver, the baseband signal is estimated using

conventional pilot based estimation, equalized, demodulated

and decoded to extract the information bits.

In parallel, the Recommender at the transmitter works

as follows: The CSI is piggy-backed on a low-rate uplink

packet (e.g., acknowledgement packet) and is extracted at

the transmitter and transformed to the measurement channel.

The first step is to pre-process the CSI using an adaptive

filter (e.g., a combination of autoregression (AR) and Kalman

filter [12], [13]), to track the long-term channel statistics and

dampen the effects of non-linearities in the estimation process

in the receiver and the uplink channel (as explained in Section

IV-A). The tracked channel statistics is used in the second

step to predict the accurate downlink channel profile for any

target receiver, according to its position and the scattering

environment. This is accomplished by constructing a channel

tensor (referred to as the tensor update stage) to store the CSI

(represents the corresponding error in the predicted channel)

and the transitions in other measurable parameters, denoted

by the set MMM (e.g., MMM={Ns, S}, with number of scatterers,

Ns and location of receiver, S), from the last observed CSI

in time-step k. The tensor, ZZZ is sparse, as all entries may

not have been observed as well as noisy due to correlated

latent variables. Thus, the tensor is factorized into its latent

representation and reconstructed to generate the output tensor

ẐZZ (as described in Section IV-B), which is complete and less

noisy and represents future states of the channel for impending

values of the measurable parameter set MMM. In the tensor query

stage, the recommended downlink profile is extracted from ẐZZ

corresponding to the impending values of MMM. The outputs of

the adaptive smoother and tensor factorization & completion

are fused to track and accurately predict the long term and

short-term transients in the channel profile (as explained in

Section IV-C). After this adjustment, the final step is to pre-

condition the waveform, such that the receiver estimates an

almost flat fading across all subcarriers (in Section IV-D).

This step eliminates the need for any complex receiver side

algorithm [14] and is also compatible with conventional pilot

based equalization. As the recommender system evolves with

more spatio-temporal CSI, the gap between the predicted

and the true channel gets asymptotically small leading to

almost two orders of magnitude improvement in the BER

for QAM modulations. The results in Section V show the

various trade-offs and efficacy of the channel recommender for

non-stationary channels, and compares its performance with

state-of-the-art receiver-side equalization and transmitter-side

channel prediction techniques.

II. RELATED WORK

The propagation environment in modern wireless systems

like V2X [15], HST [16], mobile Massive MIMO [17] and

modern mmWave networks [10], [11] are shown to be in-

herently non-stationary, due to the distance-dependent path

loss, shadowing, delay or Doppler drift and time-varying

propagation scenarios [18]. Consequently, such non-stationary

channels are particularly difficult to analyze [19], [20]. This

nature impacts the reliability and latency of data transmission

[15], which has been validated by various measurement cam-

paigns [7]. Significant prior research exist on channel models

for modern non-stationary wireless systems [11], [17], that

typically build on geometric stochastic channel models by

capturing the temporal evolution of small-scale fading channel

characteristics. A unified framework of 3-D non-stationary

channels is presented in [11], which is based on array-time
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cluster evolution of the channel statistics of the WINNER

II channel model. The degree of non-stationarity of wireless

channels is evaluated using metrics to assess the rate of

variation of certain local channel statistics such as variation

of the power delay profile [21], or using a correlation matrix

distance measure [22]. [22] showed that significant changes

in the spatial structure of the mobile radio channels appear

even for small movements within an indoor environment,

making indoor MIMO radio channels non-stationary. However,

reliable communication over non-stationary channels is very

rare in literature, due to the challenging nature of tracking

such channel statistics.

A collection of classical techniques for estimation, equal-

ization and algebraic coding for fast varying channels is

presented in [23], mostly under the assumption of WSSUS

(Wide-Sense Stationary Uncorrelated Scattering) channels. In

practice, the WSSUS condition is never satisfied exactly, due

to the existence of nonstationary channel fluctuations [18].

State-of-the-art communication receivers have relied on post

equalization techniques such as Decision Feedback Equalizers

(DFE) [24], [25] for time varying channels at the cost of added

receiver complexity and complex feedback paths. Channel

estimation of fast varying vehicular channels in [26] relied

on extended Kalman filters, but is restricted to a determin-

istic evolution of the channel (multi-path Rayleigh model).

Channel prediction in the literature leverage Parametric Radio

Channel (PRC) models, Basis-Expansion Models (BEM) or

Autoregressive (AR) models. PRC methods assume that the

underlying multipath parameters causing fading vary much

slower, and leverage channel extrapolation to determine the

channel states [27]. BEM channel models use orthogonal basis

to describe the channel [28]. AR models treat the channel

as a linear combination of known channel coefficients and

applies filtering techniques (e.g., minimum mean squared error

(MMSE), and Kalman filtering [12], [13], [29]) with the

knowledge of the channel correlation matrix to predict future

CSI. While these methods are used to predict channels with

known or unknown distributions, they are not capable of

predicting the ephemeral variations in non-stationary channels

and are detrimental for higher-order modulations (explained in

Section IV-A). A comparison of the proposed channel recom-

mender with state-of-the-art predictive and reactive techniques

is presented in Section V.

In the context of wireless networks, recommender systems

have been adopted in network traffic data [30], wireless chan-

nel selection [31] and IoT [32], but not for channel prediction.

To the best of our knowledge channel prediction for general

non-stationary wireless channel has not been studied in the

literature. We design a unified framework for non-stationary

channel prediction using a spatio-temporal recommender, in

which an adaptive pre-smoother tracks the long term channel

evolution, while the tensor factorization & completion tracks

the ephemeral changes in channel statistics by observing the

changes in measurable parameters. This research builds this

prescience in a transmitter making ultra low latency applica-

tions reliable by pre-compensating the waveform according

to the impending channel impairments. This emphasizes the

challenging nature of the problem and the novelty of this work.

Figure 2: Example of V2X communication: Scattering zone

(shown by ellipse) between the RSU (Road-side Unit) and

vehicle consists of stationary and mobile scatterers, making

the channel non-stationary over time and frequency.

III. BACKGROUND AND KNOWN RESULTS

Characteristics of non-stationary wireless channels: A

wireless channel is typically modeled as a random process.

When the statistics (mean and variance) of the channel dis-

tribution are functions of time, it is referred to as a non-

stationary channel. In contrast to commonly known channel

models, that are assumed to be stationary stochastic processes,

non-stationary links contain much richer and complex set of

variables [33], [34]. Examples like V2X channels are crippled

by multiple paths resulting from reflection and scattering from

various objects in the vicinity [15], like large scale scattering

from roadside features and small scale scattering from other

nearby vehicles. This is further affected by the mobility of the

vehicles, which causes the scattering environment to change

with the position of the vehicle. On the other hand, small

scale scattering depends on topological factors, such as traffic

density, shape (geometry) of the vehicles and speed. Also,

weather related factors such as absorption and rain-attenuation

is another factor that is unpredictable and destroys the integrity

of the waveform. The combined effect of these factors is

reflected on the wireless signal and contains all the information

necessary to learn about these features over time.

Consider the vehicular environment shown in figure 2,

where a transmitter (RSU or a vehicle) is communicating with

a target vehicle (vehicle in red box in figure 2) equipped with a

single isotropic antenna through a multipath environment. The

road is divided into several segments, where each segment has

its own unique propagation characteristics and represents a

period of quasi-stationarity, during which the probability dis-

tributions of the large scale scatterers, like road-side features,

do not change noticeably [8], [35].

The scattering zone represents a single-link connecting the

transmitter and receiver, and is geometrically represented by an

ellipse [8]. In each segment, there are two types of scatterers:

fixed scatterers, which are usually along the side of the road,

like buildings and sign posts, and variable scatterers, which

are usually on the road, like vehicles. While the number of

fixed scatterers per segment is a fixed scalar, the number of

variable scatterers per segment is modeled as a random vari-

able whose expected value is a measure of the vehicle density

in the road segment. When the scattering environment changes,

some of the large scale parameters (LSPs) and small scale
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(a) Variance of channel gain with time
(constant Ns and S)

(b) Spatial Distribution of channel gain
(constant Ns)

(c) Variation of channel gain with scatterer
density (constant S)

Figure 3: Non-stationarity of the V2X channel over time, space and vehicle density with a static transmitter at 10th segment: a)

Variance of the channel gain is a function of time even with constant scattering and static receiver (Ns=5, S=5), while variance

of AWGN channel is constant, b) Channel variance is a function of time for constant scatterers (Ns=5) across road segments,

and c) Non-stationarity of the channel variance with number of scatterers for receivers within same road segment (S=5).

parameters (SSPs) also change accordingly, resulting in a new

and unique channel profile (coefficients) and consequently,

new power-delay and power-frequency profiles as well.
Non-stationary channels can be modeled as Geometry-based

Stochastic Channel Models (GSCM) [8], which forms the
basis of the widely used WINNER channel model. The non-
stationary V2X channel at time k and for the nth OFDM
subcarrier is given by (1),

h(k, n)=

Ns (k)
∑

ℓ=1

h(k, n, ℓ) where, (1)

h(k, n, ℓ)=

Mℓ
∑

m=1

αme jϕm e j2π fDm kδ(τ − τm)δ(θ−θm)δ(φ−φm)

where, Ns(k) is the number of scatterers assuming that at time

k, each resolvable path corresponds to one scatterer, and M

is the number of sub-paths constituting each ray. αm(k, n)

is the complex channel gain at time k and subcarrier n.

φm(k, n) and θm(k, n) are the angle of departure (AoD) and

the angle of arrival (AoA) of the mth sub-path respectively.

fDm
(k, n) is the Doppler frequency and τm(k, n) is the path

delay measured at time k for subcarrier n, which depend on

the scatterers’ locations. The AoAs and AoDs are functions of

the transmitter (e.g., RSU or vehicle) location, receiver (e.g.,

vehicle) location, and number of scatterers in each scattering

zone that are stochastically distributed [13]. The path delay

(and consequently the channel impulse response) collectively

depend on these factors. Thus, the channel dynamics are

functions of the number of scatterers and their locations

with respect to the transmitter and the receiver, and the

mobility of the receiver. This non-stationarity over space,

time and vehicular density affects the reliability and latency

of data transmission, which has been validated by various

measurement campaigns [6].

Figure 3 shows the non-stationarity of the statistics (mean

and variance) of the channel gain (averaged over all subcarri-

ers) for an example V2X propagation environment using the

simulation framework in Section V-A. Figure 3a shows that the

variance of the channel gain is time varying, for a static vehicle

with fixed scattering. Figures 3b and 3c show that the average

channel gain (and variance) is a function of the location of the

reporting vehicle and its scattering environment. The average

channel gain in figure 3b is higher when the receiver is in

the vicinity of the transmitter. The dependence of the mean

and variance of the channel gain on time, location, frequency

and scatterer density lends to the high non-stationarity of

the channel. This non-stationary channel is reported as CSI

feedback by the receiver, which serves as the input to the

recommender in figure 1. In contrast for AWGN channel

(an example of a stationary channel), the channel variance is

constant over time and the channel statistics does not depend

on the receiver location or scattering environment. The goal is

to predict this non-stationary channel profile at the transmitter

and pre-condition the waveform to offset the effect of such

impairments.

Role of Channel State Information (CSI): CSI in OFDM

based systems, can be interpreted as the time-average of

the estimated frequency domain complex channel coefficients

at the receiver over the duration of the packet (typically

many OFDM symbols). Therefore, CSI information comprises

of real and imaginary values for all subcarriers (typically

represented by 12 to 16 bits in a fixed point implementation

of a transceiver). This information is easily piggy-backed onto

the acknowledgment frames (only adds 64 subcarriers×16

bits per subcarrier×2 I/Q=256 bytes of overhead1) which are

usually modulated using low rate constellation like BPSK for

robust uplink communication. Therefore, the CSI is essentially

a feedback information from the receiver that captures the

fading profile of the downlink channel. In general, the CSI

can be used by the transmitter to tune the parameters (rate

adaptation) of future packets. However, this is only feasible

if the channel is changing at a slow rate. From figure 3, it

is evident that non-stationary links are an exception to this.

Simply because, by the time the CSI arrives at the transmitter,

piggy-backed on the acknowledgment frame, the channel has

already changed to a new state and the CSI is rendered

ineffective for any adaptive transmission. This is a serious

drawback for transmitter encoding like rateless code [36], as it

depends on automatic repeats like HARQ to adjust the coding

parameters. The rapid changes in non-stationary channel forces

1 In general for MIMO-OFDM systems, the CSI is an mt x×mr x×W data
structure, where mt x and mr x are the number of transmit and receive
antennas, and W is the number of OFDM subcarriers used in the system.
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the transmitter and receiver algorithms to act on stale channel

states leading to severely degraded performance as shown in

figure 4b. In contrast, predictive analytics using large number

of CSI measurements, facilitates linear channel estimation and

equalization at the receiver to produce a flat response across

subcarriers, which ultimately improves the BER (Section V).

IV. CHANNEL RECOMMENDATION SYSTEM

The CSI is a quantized estimate of the downlink channel

that can be used to adjust the I/Q modulation vectors for

future transmissions. However, the high dynamics of the non-

stationary channels requires agile scheduling of packets at

the transmitter for links with different parameters (e.g, agile

scheduling for different scattering environment and location

for V2X links). Hence, the CSI may become obsolete (without

further processing), and the transmitter has the added burden

of making unique predictions for every downlink packet.

To address the problem of predicting the non-stationary

wireless channel we design a channel recommender that has

four stages as shown in figure 1: A) Adaptive Smoothing: The

first step is to accumulate the CSI from the receivers and iter-

atively track the temporal evolution of the channel and smooth

the noise in the CSI, B) Tensor Factorization & Completion:

This step generates channel recommendations to account for

the change in the measurable parameters (scattering envi-

ronment and location of vehicles) over time [37]. This in-

volves using the accumulated CSI along with other measurable

parameters that might affect channel states, to analyze the

correlation among the variables that constitute the measured

CSI. This information is utilized to obtain an accurate repre-

sentation of the channel based on the impending (future) states

of the observable variables. C) Spatio-Temporal Adjustment:

The output of steps A and B is fused to form the pre-

dicted downlink channel profile for the next packet, and

D) Pre-Equalization: The downlink waveform is pre-equalized

using the predicted channel profile, to achieve flat fading at the

receiver. For example, in V2X communication the transmitter

(RSU) processes the channel state, received as a quadruplet

[CSI, Ns, S,T]
i for each vehicle i, whenever it is available.

It is to be noted that any two CSI (typically piggy-backed

on an acknowledgement packet) are statistically different even

if the other values in the quadruplet remain unchanged. The

recommender system operates in real-time, requires minimal

training and lowers the BER even when the tensor is 99%

sparse and contains noisy measurements.

A. Adaptive Smoothing

The adaptive smoothing step mitigates the non-stationary

noise in the channel and tracks the temporal evolution of the

channel. The Kalman filter is particularly suited for tracking

the channel statistics of non-stationary channels represented by

(1), since it is a linear system. However, instead of tracking the

channel coefficients (per subcarrier) using a Kalman filter, the

tracked channel coefficients are combined by an autoregressive

(AR) model and the weights of the AR model are tracked

by the Kalman filter [12]. Table I shows the meaning and

dimensions of the variables used in the adaptive smoother. A

Table I: Variables used in Adaptive Smoothing algorithm

Variable Dimension Meaning

a(k) pN×1 AR-model coefficients vector

u1(k) pN×1 Gaussian process noise vector,N(0, σ2
u1

)

u2(k) N×1 Gaussian measurement noise vector,N(0, σ2
u2

)

z(k) N×1 Measurement channel vector

zp (k) N×1 Predicted channel vector

C(k−1) N×pN Measurement matrix

Ru1
(k) pN×pN Process noise covariance matrix

Ru2
(k) N×N Measurement noise covariance matrix

Rp (k) pN×pN Predicted state-error covariance matrix

R̃c (k+1) pN×pN Corrected state-error covariance matrix

Rc (k+1) pN×pN Upper-triangular portion of R̃c (k + 1)

G(k) pN×N Kalman gain matrix

I pN×pN Identity matrix

ck pN×1 Smoothing Coefficients vector

noisy AR process (random walk) of order p in (2) has the

corresponding state-space representations (3) and (4).

z(k) =

p
∑

i=1

aiz(k − i) + u(k) (2)

where, {ai, 1 ≤ i ≤ p} are the weights that represent the

statistics of the time series, and u(k) is an additive white noise.

a(k + 1) = a(k) + u1(k) (3)

z(k) = C(k − 1)a(k) + u2(k) (4)

a(k) is the coefficients vector (statistics of the channel realiza-

tions) of the AR model to be tracked using Kalman filter at

time k for N subcarriers, and z(k) is the measurement channel

vector. C(k−1) maps the state space into the observation space

as given by (5),

C(k − 1) = diag{z(k − 1, n), 1 ≤ n ≤ N} (5)

where, z(k−1, n)=[z(k−1, n), z(k−2, n), . . . , z(k−p, n)] is a vec-

tor containing the previous p CSI that were piggybacked on

prior acknowledgment frames as shown in figure 1.

The formulation of the Kalman filter algorithm that is used

to track the AR-parameters is as follows:

• Prediction step:

Ru1
(k) = E[u1(k)u

H
1
(k)] (6)

Ru2
(k) = E[u2(k)u

H
2
(k)] (7)

G(k)=Rc(k)C
H (k−1)[C(k−1)Rc(k)C

H (k−1)+Ru2
(k)]+

(8)

Rp(k) =
(

I − G(k)C(k − 1)
)

Rc(k) (9)

• Correction step:

a(k + 1) = a(k) +G(k)
(

z(k) − C(k − 1)a(k)
)

(10)

R̃c(k + 1) = Rp(k) + Ru1
(k) (11)

Rc(k + 1) = Triu(R̃c(k + 1)) (12)

where, X+ is the pseudo-inverse of matrix X , and Triu(X)

is the upper-triangular portion of X . The upper-triangular

portion of the state-error covariance matrix R̃c(k) com-

pensates for numerical instability that is commonly en-

countered in Kalman filtering [38].
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(a) Adaptive Smoothing system model (b) The tracked channel lags the true channel.

Figure 4: Adaptive Smoothing System: In (a) corresponding equations are indicated in parenthesis

From (10), the tracked channel state, zp(k) is defined in (13),

zp(k) = C(k − 1)a(k) (13)

which is formed by a weighted sum of the previous p

measurement channel-state vectors as in (2). Figure 4a shows

the Adaptive Smoothing system including the Kalman filter.

Additional Smoothing Step: The Kalman-AR combination

is an iterative algorithm that is designed to converge on the

last observed CSI. Therefore an inherent drawback of such a

scheme is the lag in the tracked channel due to one time-step

delay in the CSI feedback path. This phenomenon is shown in

figure 4b. Evidently, zp(k) (13) strives to converge to zt (k −

1) (the true channel at time k − 1), because the Kalman-AR

combination has the effect of minimizing the noise process

in the measurement channel. Hence, an additional smoothing

step is employed to mitigate the effect of undesired transients

in the received CSI.

• Smoothing step:

ck=(c(a(k + 1)−a(k))2)./(1+c(a(k + 1)−a(k))2) (14)

a(k + 1)=(1 − ck).a(k) + ck .a(k + 1) (15)

where, c is the smoothing constant, ck is the smoothing

coefficients vector (where each component ck∈ck is such

that ck∈(0, 1)), “.” denotes the element-wise operations

and 1 is a vector with all ones.

This nonlinear recursive smoothing step is applied to each

component of a(k). (15) defines a lowpass filter for each k,

where the degree of smoothing increases with the disparity

in true and tracked channel. Using (15), the tracked channel

coefficients are computed as in (13) as zp(k)=C(k−1)a(k).

Limitations in Feedback-based Iterative tracking systems:

Feedback-based iterative tracking systems rely only on the

previous feedback of the CSI to track the temporal evolution

of the channel and smooth the non-stationary noise in the

CSI. A drawback of such systems is the inability to track

the ephemeral transients in the channel statistics due to the

tendency for the tracked channel to converge to a previous,

stale channel state. This is shown in figure 4b. The inability to

predict the current channel due to the dependence on previous

CSI and lag in feedback is detrimental for higher order mod-

ulations like 64-QAM, which are highly susceptible to phase

noise. Although the smoothing step introduced above helps in

minimizing the effect of sudden and large changes in channel

gain, it is still not accurate enough to maintain low error vector

magnitude (EVM) for higher order modulations (as shown in

Section V-B). The non-stationary ephemeral transients in the

channel statistics can be attributed to certain changes in the

observable parameters (such as the scattering environment and

receiver location, as shown in figure 4b) which in turn can be

tracked to account for the non-stationarity of the channel. The

tensor factorization & completion framework (explained in

Section IV-B) analyzes the effect of these measurable parame-

ters on the CSI, and uses the impending parameters to predict

the non-stationary transients in channel statistics. Hence, while

the adaptive smoother tracks the long term evolution of the

channel statistics, the tensor factorization & completion tracks

the short lived changes in the channel statistics by observing

the changes in the measurable parameters. Therefore, the

output of the adaptive smoothing system as in (13) and as

shown in figure 4a is adjusted to account for the spatio-

temporal variations of the channel statistics as explained in

Section IV-C.

B. Tensor Completion & Factorization

There is a disconnect between the tracked channel and the

actual channel (as shown in figure 4b), which depends on the

current scattering environment and location of the receiver.

This information is embedded in the CSI, which consequently

captures the deviation due to the change in the scatterers and

the receiver location. We construct a 3D tensor shown in figure

5a to capture this property. The purpose of the tensor is to

record these deviations and use them to make adjustments

(details in Section IV-C) to the tracked channel, zp(k). The

measurement channel, z(k) derived from the CSI (see Section

IV-D) is recorded in the tensor corresponding to the change

in the observable parameters (change in scatterers (Nk−1
s , N

k
s )

and segments (Sk−1, Sk)) over the time interval [k −1, k]. This

represents a tube containing 100 pre-computed quantization

levels (q). The output of the adaptive smoother, zp(k) is

quantized to the nearest level and the corresponding cell is

populated with the measurement channel, z(k). This value is a

running average of all z(k) that are mapped to that particular

cell. Therefore, in essence, each cell contains the historical

6
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(a) Illustration of channel tensor ZZZ and its entries. (b) Prediction life-cycle

Figure 5: Channel Tensor Update: At each time step k, ZZZ is updated with the measurement channel, z(k) at the entry

corresponding to the observed change in the measurable parameters.

CSI that is mapped to that quantization level q, observed for a

given change in Ns and S. Figure 5b shows an example of V2X

channel prediction, where the piggy-backed CSI is quantized

and updated in one of the cells (q) in the tube [(3, 4), (1, 2)]

corresponding to the observed change in Ns and S at time (k).

The quantized levels capture information required to update

the predicted channel as in Sections IV-B2 and IV-C.

The channel in (1) contains many immeasurable and hid-

den variables that collectively contribute to a particular CSI

value. However, these hidden variables may be correlated with

observable parameters like the number of scatterers, vehicle

location, vehicle speed and road-side features. Moreover, the

key challenges in this tensor-based procedure are, sparsity

(due to the large size of the tensor detailed in Section V and

infrequent entries (CSI) that may not be observed over long

duration of time), and noisy data in the tensor (due to noise

in the CSI and incomplete filling of cells). These result in

missing or corrupt adjustments. Hence, to account for these

factors and extract an accurate representation of the channel

based on the impending states of observable variables, we

introduce the tensor factorization & completion approach. Ten-

sor factorization is used to decompose the channel tensor into

its constituent latent variables, in order to analyze the effect

on the measured CSI by the observable parameters. Tensor

completion generates accurate channel recommendations by

recreating the missing entries of the channel tensor from these

latent variables.

Thus, at each time step k, the channel tensor is updated with

the measurement channel, z(k). This channel tensor is factor-

ized (Section IV-B1) into a factor model to capture the latent

structure of the underlying process under sparse conditions.

The tensor is reconstructed using the factorized model (Section

IV-B2) to extract missing entries. The completed tensor is used

to generate recommendations, zr (k) which is used to adjust the

tracked channel, zp(k) (Section IV-C) corresponding to the

location of a target vehicle and the scattering environment.

For example, in figure 5b, after tensor factorization and

completion, the recommended downlink channel is obtained

from the cell corresponding to the impending change in Ns and

S in time-step (k+1), i.e., [(4, 6), (2, 3)]. In this way, predictions

can be made even for cells that are sparse and the values reflect

the cumulative contribution of the latent factors that are buried

in the CSI.

1) Tensor Factorization: Tensor factorization is employed

to capture latent structure of the channel tensor by expressing

it as the sum of component rank-one tensors [39]. This latent

structure is used to reconstruct missing entries in the tensor in

Section IV-B2. Figure 6 shows the tensor factorization of the

third order channel tensor.

Here, scalars are denoted by lowercase letters (e.g., a),

vectors by boldface lowercase letters (e.g., a), matrices by

boldface capital letters (e.g., A), higher-order tensors by bold-

face Euler script letters (e.g., ZZZ). The ith entry of a vector a

is denoted by ai , element (i, j) of a matrix A is denoted by

ai j , and element (i, j, k) of a third-order tensor ZZZ is denoted

by zi jk . The j th column of a matrix A is denoted by aj .

The nth element in a sequence is denoted by a superscript in

parentheses, e.g., A(n) denotes the nth matrix in a sequence.

Let ZZZ be the three-way channel tensor of rank R and size

I×J×K . Then the channel tensor decomposition is defined by

factor matrices A, B, and C of sizes I×R, J×R, and K×R

(defined in figure 6) that minimize the objective function in

(16),

fWWW(A, B,C)=
1

2

I
∑

i=1

J
∑

j=1

K
∑

k=1

{

wi jk

{

zi jk−

R
∑

r=1

airbjrckr

}

}2

Error function

+

λ

2

R
∑

r=1

{ I
∑

i=1

| |air | |
2
+

J
∑

j=1

| |bjr | |
2
+

K
∑

k=1

| |ckr | |
2

}

Regularization term

(16)

The error function is employed to account for CSI noise in

the channel tensor (i.e., imperfect data) and the weighted

version of the error function is used to address sparsity by

ignoring missing data and modeling only the known entries

[30]. Consequently, minimizing the above objective function

ensures that the recommendations, zr (k) accurately represents

7

Authorized licensed use limited to: UNIVERSITY AT ALBANY SUNY. Downloaded on September 03,2020 at 23:00:45 UTC from IEEE Xplore.  Restrictions apply. 



1536-1276 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2020.3016962, IEEE

Transactions on Wireless Communications

- Factor matrix for transition in scatterers (✟�
✁✌✡

✂✟�
✁)

- Factor matrix for Transition in segment (✄✁☛✡✂ ✄✁)

- Factor matrix for quantized levels (☎)

- Channel Tensor

✆ ✝ ✒✞✡✂✠ ✂ ✞☞✍

✎ ✏ ✑✓✡✔✕ ✔ ✓☞✖

✗ ✝ ✒✘✡✂ ✠ ✂ ✘☞✍

Figure 6: Channel tensor factorization for third-order tensor.

A=[a1, . . . , aR], B=[b1, . . . , bR], C=[c1, . . . , cR] are the factor

matrices for transition in number of mobile scatterers, transi-

tion in segments and quantized levels respectively.

the discrepancy in channel tracking, even in the case of

missing entries. Here, WWW denotes a nonnegative weight tensor

(representing the sparsity of the channel tensor ZZZ), with entries

of ‘1’, when zi jk is known and entries of ‘0’, when zi jk is

missing, for all i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . ,K . The

regularization term penalizes the size of the latent factors and

consequently avoids over-fitting the noise in the measurement

channel, z(k) and ensures the generality of the tensor, ZZZ over

space and time. The regularization parameter, λ is a non-

negative value that balances the modeling error and the com-

plexity of the latent structure. For convenience the objective

function in (16) is expressed in (17) as,

fWWW(A,B,C)=
1

2
| |ZZZ−nA,B,Co| |2

WWW
+

λ

2
(| |A| |2+| |B| |2+| |C| |2)

(17)

where, nA,B,Co =

R
∑

r=1

ar ◦ br ◦ cr

Here n·o represents the Kruskal operator shorthand notation

[39], ‘◦’ refers to the outer product, | | · | | refers to the

analogous Frobenius and two-norm for matrices and vectors

respectively, while ‖ZZZ‖WWW is the W-weighted norm of ZZZ,

defined as ‖ZZZ‖WWW=‖WWW⊙ZZZ‖. Here ‘⊙’ represents the Hadamard

(elementwise) product of tensors. The objective function in

(17) is minimized by a nonlinear gradient-based optimization

[30], to find the latent factor matrices A,B,C.

2) Tensor Completion: This stage, reconstructs the tensor

ẐZZ (Recommendation tensor) from the computed factorization

model (A,B,C) in (17) by filling in the missing entries of

tensor ZZZ and is given by (18),

ẐZZ =WWW ⊙ ZZZ + (1 −WWW) ⊙ nA,B,Co (18)

where 1 is the tensor of all ones and is the same size as

ZZZ. Recent work [40] shows that even if a small amount

of entries (CSI) are available and those are corrupted with

noise, it is still possible to recover the missing entries up

to the level of noise. The recommendation tensor, ẐZZ is used

to obtain the recommendations, zr (k) corresponding to the

tracked channel, zp(k). These are the N entries of tensor

ẐZZ at indices corresponding to, transitions for number of

scatterers, [Nk−1
s , N

k
s ] and segment number, [Sk−1, Sk] from

the last observed CSI, and the quantized levels corresponding

to the tracked channel, zp(k). Let the tracked channel for

N subcarriers be, zp(k) = [zp(k, 1), zp(k, 2) . . . zp(k, N)]T .

Hence, at each iteration N recommendations (zr (k, n)) are

made as in (19),

zr (k, n) = ẐZZ[(N
k−1
s , N

k
s ), (S

k−1, Sk), qn] ∀n = 1, . . . , N (19)

Here, ẐZZ[(Nk−1
s , N

k
s ), (S

k−1, Sk), qn)] is the entry of ẐZZ at index

[(Nk−1
s , N

k
s ), (S

k−1, Sk), qn] as in figure 5a and qn is the quan-

tization level of zp(k, n). Then the recommended channel for

N subcarriers, zr (k) is given by (20),

zr (k) =
[

zr (k, 1) zr (k, 2) . . . zr (k, N)
]T

(20)

C. Spatio-Temporal Adjustment

At each time step k, the tracked channel zp(k) is improved

to ẑp(k) (predicted channel) by incorporating the recommen-

dations, zr (k) from (20) using a normalized weighted average:

ẑp(k) = (1 − αk)zp(k) + αkzr (k)) (21)

= zp(k) + αk(zr (k) − zp(k)) = zp(k) + αkδzp(k)

where αk is the normalization weight at time step k (a design

parameter assuming a value between 0 and 1). This has

the effect of updating the tracked channel, zp(k) by a delta

adjustment of the form δzp(k) = zr (k) − zp(k). A channel

adjustment of this form alleviates the lag and the disparity

in the channel states due to the change in the measurable

parameters (Ns and S). Since, the tracked channel is adjusted

with the recommendations based on the observable parameters

(scattering environment and the location of the target vehicle),

the predicted channel, ẑp(k) is able to account for the non-

stationarity of the actual channel over time, space and vehicle

density.

D. Pre-equalization at Transmitter

In order to take advantage of the predicted channel profile,

the waveform of the downlink packet is pre-equalized such that

when convolved with the true channel, the net effect is a flat

fading at the receiver, that can be easily equalized using pilot

based linear interpolation methods commonly used in OFDM

communication. This method of channel inversion has been

used to compensate channel impairments largely because of

simple arithmetic computations [13] and since, it eliminates

any complex, power inefficient processing algorithms [14] at

the receiver. The pre-equalized channel, z̃p(k) is given by (22),

z̃p(k) = 1./ẑp(k) (22)

Conceptually, z̃p(k) represents the inverse of the expected

fading profile of the true channel, zt (k) (details in Section

V-A). Hence, the resultant channel, z f (k), as estimated by the

receiver vehicle is given by Hadamard product (⊙, which is

equivalent to convolution in time-domain),

z f (k) = zt (k) ⊙ z̃p(k) + w(k) (23)

where, w(k) is an additive term that captures the effect of

the noise and estimation errors. The CSI, z f (k), captures

the interaction between the true channel zt (k) and the pre-

equalized channel z̃p(k), and is fed back to the transmitter. At
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(a) Before compensation

�✁✂✄

☎✆✝✞✟✠✡✞☛✠☞✌

✍✞✎✂✏ ☞✌

�✁✂✏✠✑☛✠☞✌

✒✓✂✑✔ ✕✖✗

(b) After Pre-equalize

�✁✂✄☎✆✄✝

✞✟✠✄✡☛✆✡✡✆✁✄

✠✄☞ ✌✆☎✁✍

✎✠✡✏☞

✑✒✠✄✄✏☎

✏✡✍✆☛✠✍✆✁✄

(c) Received constellation
(d) Equalized channel

Figure 7: High level system performance: a) The constellation for ideal 64-QAM symbols used for downlink transmission. b)

The ideal I/Q vectors are pre-equalized with the predicted channel profile z̃p(k). c) The received symbol constellations using

linear interpolation equalizer. d) The equalized channel in time and frequency domain at the receiver. The estimated channel

is largely flat that achieves low BER (details in Section V).

the transmitter, the measurement channel z(k) is computed, by

combining (21) and (23),

z(k) = z f (k) ⊙ ẑp(k) + w(k)

= z f (k)./z̃p(k) + w(k) (24)

Mathematically, z(k) represents the error in the recommen-

dation along with added system and numerical noise in the

feedback loop. This forms the new input to the recommender

system described in Section IV-B. Figure 7 shows the constel-

lation diagram for a packet with 64-QAM modulation. The

ideal constellation in figure 7a is pre-equalized by changing

the I/Q vectors in the modulator using the predicted channel, as

shown in figure 7b. Figure 7c shows the clean equalized con-

stellation at the receiver with the corresponding channel profile

in figure 7d. These results show that the channel recommender

system works very well for higher order constellations as well.

However, there are cases when residual distortion remain at the

receiver, but the penalty in BER for those cases are minimal.

Complexity of the Channel Recommender: The run-time

complexity of the channel recommender at each prediction

step is determined by the four stages outlined in Sections

IV-A–IV-D. The complexity of adaptive smoothing (from (2)–

(15)) is dominated by the matrix multiplications and inversion

operations in (8) and is be computed in O(N2.376) [41], where

N is the number of frequency subcarriers. The time complexity

of tensor decomposition using nonlinear gradient based opti-

mization is O(RI JK) [42], where R is the rank and I, J,K

are the number of rows of the factor matrices A,B,C. Tensor

completion involves the Hadamard product and addition of

tensors and has a worst-case complexity of O(RI JK). The

spatio-temporal adjustment and pre-equalization stages involve

vector operations, resulting in a complexity of O(N). Hence,

the overall complexity of the channel recommender at the

transmitter is O(N2.376
+2RI JK+N)≈O(max{N2.376, RI JK}).

The values of N, R, I, J,K are preset as a design choice trading

off the complexity and accuracy of channel tensor factoriza-

tion & completion as explained in Section V-A. Hence, this

demonstrates the low complexity of the prediction algorithm

and its ability to be adapted in real-time.

V. RESULTS

A. Simulation setup

We validate the efficacy of prediction and pre-equalization

at the transmitter for non-stationary channels using V2X

channels as an example. Figure 8 illustrates the emulated

testbed to reflect a practical V2X network. The V2X channel

is modeled using the WINNER channel toolbox in Matlab

[43], which was used to generate 1000 channel instances for

each segment (S) of the road. These channel instances are

used to emulate a schedule of downlink transmissions (i.e.,

the true channel zt ), by randomly selecting a segment at each

time step and selecting the channel state for that segment.

In reality, this schedule is not observed by the vehicles, but

is used here to evaluate the accuracy and performance of

the recommender system in terms of the mean squared error

at the transmitter and the BER and EVM at the receiver.

The WINNER channel toolbox has been shown to accurately

reflect the real V2X channel using practical measurements

in [44]. Moreover, this simulated test-bed gives the freedom

to address a variety of different scenarios of non-stationary

channels channel and propagation environments that may not

be observed without extensive measurement campaigns. The

parameters for the evaluation are as follows. The AR-model

order is 3 (which empirically yields the best Kalman-AR

tracking), and target vehicle’s speed is V=20 m/s (45 mph).

The target vehicle’s and the transmitter’s antenna heights are

1.5m and 2.5m respectively, from the surface of the road. The

transmitter is placed at the center of the road and it is as-

sumed that there is a Line-of-Sight (LOS) propagation and the

transmitter-vehicle communication link is not intercepted by

large vehicles. According to Intelligent Transportation System

Joint Program Office, in connected vehicle (CV) technology,

it is mandated that each vehicle will continually transmit their

position, direction, and speed, to other vehicles and road-

side units in the neighbourhood [45], [46]. This information

can be used by the transmitter (e.g., RSU) to determine the

receiver location and calculate the number of mobile scatterers

in the vicinity of the receiver. The overall feasibility of the

CV framework has been studied and methods to limit the

communication overhead are demonstrated in [47].
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Figure 8: Measurement channel life-cycle: Relationship be-

tween true, measurement, smoothed, predicted and compen-

sated channels. Corresponding equations are shown in paren-

thesis.

The number of fixed scatterers (deterministic road-side

features) is different in each segment (between 1 to 5).

The number of variable scatterers is modeled as a uniform

random variable between 0 and 9. Consequently, the possible

transitions, [Nk−1
s , N

k
s ], form a (10×10)×1=100×1 array. The

road length is set to droad=200 m and divided into 20

segments (i.e. dseg=10 m) and the possible transitions in

segment number, [Sk−1, Sk], form a (20×20)×1=400×1 array.

The number of quantization levels for the tracked channel zp
(determined by the trade-off of accuracy and computational

cost of the recommender) is limited to 100, forming a 100×1

array. This data is used to construct the channel tensor ZZZ of

size 100×400×100. The tensor factorization rank [30] was

empirically determined to be R=3, which yielded the least

prediction error for the recommender.

B. BER & EVM at the Receiver

Figures 9a, 9b and 9c show the BER performance cor-

responding to an OFDM packet of 100 random bits using

different modulation and coding at a carrier frequency of

fc=5.9GHz and sampling frequency of fs=10MHz. Figure

9a shows the BER performance for 16-QAM modulation and

1/2 coding, with and without (as in conventional 802.11p)

channel recommendation, with pilot-based linear interpolation

equalization employed at the receiver. The frequency selective

fading of V2X channel is very well compensated (shown in

figure 7d) resulting in a BER improvement by 90%, which is

very encouraging. In contrast, conventional receiver algorithms

are simply not sufficient to track the channel over space, time

and frequency, hence performing much worse even at high

SNR. This is another motivating reason to adopt a channel

recommender at the transmitter. The ideal scenario represents

an oracle with complete knowledge of channel properties,

which is shown for comparison. The channel recommender

requires only 8dB more SNR to achieve the same BER as

the ideal case as highlighted in figure 9a. The figure also

emphasizes the 79% improvement in BER (at 20dB SNR) over

adaptive smoothing techniques, by incorporating tensor-based

channel recommendations in Sections IV-B and IV-C. This

confirms the efficacy of the proposed channel recommender

for non-stationary channel prediction, over conventional chan-

nel prediction approaches based on feedback based iterative

tracking (such as Kalman Filtering). Figure 9b shows the

BER performance for different modulation schemes and the

ability of the algorithm to support higher order modulation

schemes (like 64-QAM) with low BER. Figure 9c emphasizes

the improvement in the BER for higher order modulations

by incorporating more pilot subcarriers. The non-stationary

channel has a low coherence bandwidth and changes every 5

subcarriers (explained in Section V-E) for the PHY parameters

of 802.11p. Thus, 16 pilot subcarriers (3 subcarrier spacing)

can sufficiently track the frequency domain channel impair-

ments, while the use of 4 pilots (14 subcarrier spacing) cannot.

Figures 9d and 9e show the EVM performance of the

channel recommender. Figure 9d shows the EVM performance

for different modulation schemes, with and without channel

recommendation. It shows an almost ideal performance of the

EVM up to 16dB SNR, which is very encouraging. Figure 9e

confirms the improvement in EVM with the number of pilots.

C. Throughput-Pilot Trade-off

In 802.11p, four pilot tones are inserted in subcarriers [-21

-7 7 21] and are used to estimate the channel. While incorpo-

rating more pilot tones, improves the channel estimation at the

receiver and results in a lower BER & EVM performance and

more accurate prediction of the channel (as shown in figures

9c and 9e), it reduces the theoretical throughput, since the

number of active tones is less. Figure 9f shows that while the

transmission throughput reduces with increasing number of

pilots, the drop in the achievable throughput is relatively less,

since the BER also decreases. Hence, we can choose higher

order modulations for V2X transmission to achieve higher

throughput, while maintaining the same BER. For instance, a

64-QAM scheme with 16 pilots has similar BER performance

as a 16-QAM scheme with 4 pilot tones while providing higher

data rate. Figure 9f also emphasizes that the recommender

with a 4 pilot tone channel estimation, is sufficient to provide

good BER performance and clean constellations for BPSK

and QPSK and that more dense constellations require more

pilots to achieve comparable BER performance due to their

low margin of error (as seen in figure 7c). Using more pilots

is justified for higher order modulations as they offer higher

throughput compared to BPSK and QPSK.

D. Impact of Speed of vehicles and Lanes on the BER

The higher the relative speed between the transmitter and

receiver, the higher is the Doppler shift and the lower is the

coherence time and coherence frequency (explained in Section

V-E) of the non-stationary channel. Consequently, the channel

statistics vary rapidly, making it more challenging to track

the channel and negatively impacts the BER at the receiver.

Unlike in Vehicle-to-Infrastructure (V2I) channels where only

the receiver is mobile, in Vehicle-to-Vehicle (V2V) channels it
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(a) BER for 16-QAM with 16 pilot tones. (b) BER for different modulation with 16
pilot tones.

(c) BER for 16QAM and 64QAM with
varying pilot tones

(d) EVM distribution for 16QAM with 16
pilot tones

(e) EVM plot for 16QAM with varying
pilot tones at 20dB SNR.

(f) Throughput and BER for different mod-
ulation and pilots.

Figure 9: Performance of Recommendation system at the Receiver. The BER is almost two orders of magnitude lower than

conventional methods used in 802.11p. Also, it requires only 8dB more SNR to achieve the same BER as the ideal case (perfect

estimation).

is the relative speed of the transmitting and receiving vehicles

that impacts the channel coherence. The impact on the BER

due to the speed of the receiving vehicle is shown in figure 10a,

with pilot-based linear interpolation equalization employed at

the receiver. It is observed that the quality of the transmission

degrades as the speed of the receiver increases. The speed of

the receiving vehicle is reflected in the variation in the road

segment in which the vehicle is located. For example, a vehicle

traveling at 20 m/s, translates through two road segments in

the same direction in 1 second, while a vehicle traveling at 40

m/s, translates through four segments. Since the recommender

learns the impact of the change in the location of the receiving

vehicle on the channel statistics (explained in Section IV-B),

it is capable of predicting the channel profile regardless of

the speed of the receiving vehicle. The BER for a receiver

traveling at 67 mph is only 8% more than the BER at a

receiver speed of 45 mph, and the BER when the receiver

is traveling at 89 mph is about 20% more. This shows the

ability to use higher order modulations even for highly mobile

communicating entities by employing predictive analytics at

the transmitter.

Typically rural streets have one lane, suburban and urban

streets have one to two lanes while highways have two to

six lanes in each direction [15]. To study the impact of

multiple lanes on the fidelity of communications, 1000 channel

instances were generated for each segment and each lane of

the road using the WINNER channel toolbox. The downlink

transmissions to different vehicles at different lanes and seg-

ments were emulated by, randomly selecting a segment and

lane at each time step and selecting the channel state for that

segment and lane. Figure 10b compares the BER performance

at the receiver, for three streets consisting of different number

of lanes, with pilot-based linear interpolation equalization at

the receiver. In the presence of multiple lanes, the possibility of

increased traffic density, considerably increases the variation

in the scatterer distribution within the same road segment

and the possibility of dominant multi paths. However, the

recommender learns the impact on the channel statistics for

different scatterer distributions and consequently mitigates

the negative impact on the BER at the receiver. The BER

performance is similar for low and moderate SNR for the

streets with a single lane, two lanes or four lanes. However at

a high SNR of 20dB we observed a 20% increase in the BER

at the receiver, on a highway with 4 lanes when compared to

a single lane street.

E. Comparison with Receiver-side Equalization techniques

Limitations of Receiver-side Equalization techniques: The

frequency selectivity of non-stationary channels like the V2X

channel poses a great challenge for broadband communication

using frequency domain modulation such as OFDM. Fur-

thermore, the standards advocated for WAVE [9] are based

on Dedicated Short Range Communication (DSRC) messages

that are not robust enough to compensate for the rich fading

environment [14]. These waveforms preserve much of the

PHY and MAC layer parameters from the 802.11a/g [48].
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(a) BER for varying speeds of the commu-
nicating vehicles

(b) BER for different streets with different
numbers of lanes.

(c) BER comparison with state-of-the-art
receiver side techniques

Figure 10: BER performance of the Recommender system for a 16-QAM modulation with 1/2 coding: a) with varying vehicle

speeds, b) for streets with different number of lanes, and c) comparison with state-of-the-art receiver-side techniques.

Now, assuming a vehicle is moving at 50 mph or 22 me-

ters/sec, the maximum Doppler shift is, f max
D
=v/λc=438Hz,

for a center frequency of 5.9 GHz. Therefore, the channel co-

herence time, which provides a measure of how fast the chan-

nel is changing over time, is, Tcoh=1/(2π fd)≈363µs; With

the PHY parameters of 802.11p, the coherence time (Tcoh)

translates to 43 OFDM symbols (8µs/symbol). If we assume

that the channel condition can support QPSK-3/4 modulation

and coding (or 18 Mbps), which allows 72 uncoded data bits

per OFDM symbol, a 1KB payload will require 85 symbols.

Therefore, the coherence time of a typical 802.11p channel

is even less than the transmission time of a 1KB packet.

Furthermore, the coherence bandwidth Bcoh , which is a mea-

sure of channel impairment in frequency domain, is expressed

as, Bcoh=1/(2πτrms)=800KHz, assuming, τrms=2Ts=200ns,

where Ts is the sample time [33]. Now, 800KHz spans

Bcoh/∆ f≈5 subcarriers (∆ f= subcarrier spacing in 802.11p

is 156.25KHz), which means that in frequency domain the

channel changes every 5 subcarriers, while the pilot spacing

in conventional 802.11p is 14. In other words, the channel

changes at a faster rate than the frequency of occurrence of

the pilot subcarriers and hence the pilots are unable to track

the channel in frequency domain.

Pilot based channel estimation and equalization employed

in OFDM receiver performs best if the fading profile between

the pilot subcarriers is mostly flat or at least linear [49]. Hence,

conventional pilot based channel estimation are not sufficient

to combat nonstationary channel inefficiencies as discussed

in Section V-B. Linear equalization techniques such as the

Zero Forcing (ZF) equalizer and the Minimum Mean-Squared

Error (MMSE) equalizer are easy to implement, however

typically suffer from noise enhancement at the receiver and

perform well when the channel is linear. Non-linear meth-

ods like Decision Feedback Equalization (DFE) [24], [25]

and Maximum Likelihood Sequence Estimation (MLSE) add

complexity that are unsuitable for hardware implementation

and adds considerable processing latency at the receiver. DFE

equalization has been employed to track the vehicular channel

in [50], [25], due to it’s relatively better ability to track the

channel’s impulse response compared to linear equalizers.

However on channels with low SNR, the DFE suffers from

error propagation. While MLSE is an optimal equalization

technique, the fact that it’s complexity grows exponentially

with the length of the delay spread [51], makes it unsuitable for

non-stationary channels such as V2X channels which have a

large delay spread. Figure 10c compares the BER performance

of the receiver-side linear MMSE equalizer and the DFE

equalizer with the pre-equalization from the recommender

at the transmitter. Even though DFE outperforms the linear

equalizer, it is not sufficient to track the non-stationarity of

the channel. The figure demonstrates a 77% improvement in

the BER performance by employing proactive pre-equalization

at the transmitter based on the predicted channel, compared to

the complex receiver-side DFE equalizer.

F. Performance of the Recommender System at the Transmitter

Figure 11a shows the Tensor Completion Score (TCS)

which represents the relative error in the missing entries as

defined in [30] (TCS is always nonnegative and the best

possible score is 0). As more CSI is received as feedback from

the vehicles, more entries are recorded in the tensor and the

tensor becomes less sparse. Hence, the recommender is able

to reconstruct missing entries more accurately and the TCS

improves over time, and consequently results in more accurate

channel predictions. The figure also shows the effectiveness of

the tensor completion approach (explained in Section IV-B2)

in reconstructing the missing recommendations even in the

presence of few CSI. Figures 11b & 11c show the accuracy of

the channel recommender, in terms of the Mean Squared Error

(MSE) between the predicted channel coefficients and the true

channel as generated in Section V-A (shown in figure 8), over

1000 channel instances. Figure 11b shows that the variance

about the median error and the median value of the MSE

is stationary across the frequency subcarriers, and confirms

that the recommendation algorithm is able to track the non-

stationary channel with high accuracy. Figure 11c shows the

reduction in MSE over time and the improvement in channel

recommendation. It is evident that with time, as more entries

are recorded, the MSE reduces since the sparsity and noise in

the tensor reduces, leading to an improvement in accuracy of

the channel recommender with time.
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(a) Tensor Completion Score improves with
more CSI entries in the tensor.

(b) Mean squared error is stationary for
each frequency subcarrier

(c) Mean squared error reduces with more
CSI entries in the tensor.

Figure 11: Performance of predictive analytics at the transmitter. a) Tensor Completion Score improves with more CSI entries

in the tensor, b) The statistics of mean squared error are stationary across the OFDM subcarriers, which shows accurate tracking

by the prediction algorithm, c) The reduction in mean squared error over time shows the improvement in predictions with time.

VI. GENERALIZED FRAMEWORK FOR ANY

NON-STATIONARY CHANNEL

The design of the V2X channel recommender system, in this

work, considers the information about the scatterer density and

the location of the target receiver as the measurable parameters

to make channel predictions. This technique can be used to

predict the channel profile for any generic non-stationary

channel by considering the set of available measurable param-

eters. For example, in addition to the scattering environment

and receiver location, the antenna configuration (the polariza-

tion, directivity and number of antenna elements) for Massive

MIMO and mmWave communication, and the transmitter

location for V2V communication are measurable parameters

that affect the channel statistics. Let MMM = {M1,M2, . . . ,MN }

denote the set of N such measurable parameters. A brief sketch

of the steps required to make real time channel predictions of

any non-stationary channel using the channel recommender

system is provided below. To address the generalized non-

stationary channel prediction problem the channel tensor fac-

torization in (17) is extended to an N-dimensional tensor ZZZ (N-

way tensor) factorization, giving way to the N-way objective

function defined by,

fWWW(A(1), . . . ,A(N )) =
1

2

�

�

�

�ZZZ − nA(1), . . . ,A(N )o
�

�

�

�

2

WWW

+

λ

2

N
∑

n=1

| |A(n) | |2 (25)

where nA(1), . . . ,A(N )o=
∑R

r=1 anr ◦ . . . ◦ anr , and the factor

matrices are defined as A(n)
=[aN

1
, . . . , aN

R
], with size In×R, for

n=1, . . . , N , where A(1), . . . ,A(N ) are the latent factor matrices

corresponding to the transition in the measurable parameters,

M1,M2, . . . ,MN respectively. The objective function in (25)

is minimized using the method outlined in Section IV-B.

Tensor completion is then used to construct the recommen-

dation tensor as, ẐZZ=WWW ⊙ ZZZ+(1−WWW) ⊙ nA(1), . . . ,A(N )o and

obtain the predicted channel, ẑp(k) similar to Sections IV-B

and IV-C. The overall run-time complexity of the gener-

alized predictive framework for any non-stationary channel

is O(max{N2.376, R
∏N

n=1
In}), where the values of In for

n=1, . . . , N are predetermined, consequently leading to a fixed

time-complexity. This shows the adaptability of the channel

recommender approach to address any non-stationary propa-

gation environment.

VII. CONCLUSION

In this work, we have shown the power of recommender

systems in predicting channel profiles for highly dynamic

non-stationary wireless environments, using V2X networks

as an example. Through modelling, analysis and simulations,

we draw three conclusions: 1) The channel recommender is

able to successfully predict the spatio-temporal non-stationary

channel to achieve an almost flat fading profile at the receiver

and obtain 90% lower BER, 2) This enables higher modulation

schemes to be used in non-stationary communications for high

throughput, and 3) The accuracy of the recommender system

improves with time asymptotically achieving an MSE of 10−3.

Therefore, the encouraging results from this work will form the

core of robust and highly reliable communication over non-

stationary channels, supporting demanding emerging mobile

applications.
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