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Abstract—Recommending channel characteristics for V2X
communication has the distinct advantage of pre-conditioning
the waveform at the transmitter to match the expected fading
profile. The difficulty lies in extracting an accurate model for
the channel, especially if the underlying variables are uncorre-
lated, unobserved and immeasurable. Our work implements this
prescience by assimilating the Channel State Information (CSI),
obtained as a feedback from vehicles, over time and space to
adjust the modulation vectors such that the channel impairments
are significantly diminished at the receiver, improving the Bit
Error Rate (BER) by 96% for higher order modulations. To
account for the multivariate, non-stationary V2X channel, a
tensor decomposition and completion approach is used to mitigate
the effects of sparsity and noise in the CSI measurements.

I. INTRODUCTION

Recommender systems are designed to bridge the gap be-
tween the desired and actual behavior of an unknown process
by iteratively tracking patterns in the outcomes. This reduces
the ambiguity and uncertainty in the decision making process.
Wireless communication between a Vehicle (V) to Anything
(X), V2X is analogous to a recommender system, where the
receiver can significantly reduce its packet error rate, if the
transmitter (Road-Side Unit (RSU) or another vehicle) uses the
recommended signal parameters based on historically observed
channel profiles, obtained as a feedback from receivers. Intu-
itively, if transmitter pre-conditions waveform with inverse of
expected channel, received signal will be minimally distorted.

This problem is complicated due to unknown and im-
measurable relationships among the factors contributing to
the channel fading profile, that also vary over space and
time. Most importantly, the localized scattering from nearby
vehicles, road-side features like buildings and vegetation,
Doppler spectrum and path-loss, are either stochastic variables
or time-variant. Collectively, these properties make the V2X
channel statistically non-stationary [1]. Our goal in this work
is to rely on measurable parameters like vehicle density
(Ns), vehicle location, mapped into quasi-stationary segments
(S) [2] and the CSI feedback (CSI) to construct a non-
stationary time series (indexed by time of reception, T ). The
CSI from receivers captures a wide variety of channel char-
acteristics across a stretch of road under different scattering
environments. Broadband communication using Orthogonal
Frequency Division Multiplexing (OFDM) used in the stan-
dards advocated for WAVE also captures the channel profile in
frequency domain. Figure 1b shows the channel recommender
system for V2X communication. It operates on the quadruplet,
[CSI,Ns, S, T ]

i, obtained from vehicle i. The first step is
to pre-process the CSI using an adaptive filter to dampen
the effects of non-linearities in the estimation process in the
receiver and the uplink channel. This is used in the second

(a) CSI based channel analytics at transmitter.
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(b) V2X Channel recommender system.
Figure 1: (a) Elliptical zone of scatterers inducing time-space-
frequency non-stationarity. (b) V2X Channel recommender
step to predict the downlink channel profile for any target
vehicle in the road, according to its position and the scattering
environment. This is accomplished by constructing a third
order tensor containing the transitions for number of scatterers,
[Nk−1

s , Nk
s ] and segment number, [Sk−1, Sk] from the last

observed CSI in time-step k and the corresponding error in
the recommended channel. This is described in §II-B,C. After
this adjustment, the final step is to pre-condition the waveform,
such that the receiver estimates an almost flat fading across
all subcarriers (in §II-D). This step eliminates any need for
complex receiver side algorithms and is compatible with
conventional pilot based equalization. As recommender system
evolves with more spatio-temporal CSI, the gap between the
recommended and true channels gets asymptotically small
leading to significant improvement in accuracy of predictions.
This enables a broader set of reliable network services, like
traffic-aware caching and multi-user downlink scheduling.
Non-stationary V2X Channel: V2X channels are modeled us-
ing the Geometric Stochastic Channel Model (GSCM), which
is the basis of widely used WINNER channel model [2]. The
V2X channel at time k and for the nth OFDM subcarrier,
depends on the number of scatterers at time k, Ns(k), Doppler
frequency, the angle of departure (AoD) and angle of arrival
(AoA), complex channel gains and path delays for each sub-
path. The AoAs and AoDs are functions of the transmitter
(RSU or vehicle) location, vehicle (receiver) location, and
number of scatterers in each (elliptical) scattering zone that
are stochastically distributed [3]. The path delay (and conse-
quently the channel impulse response) collectively depend on
these factors. Non-stationarity over space, time and vehicular
density affect the reliability and latency of data transmission,
which has been validated by measurement campaigns [1].
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(a) Lag in tracked and true channel.
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(b) An illustration of tensor ZZZ and its entries. (c) Illustration of tensor factorization of tensor ZZZ.
Figure 2: Tensor factorization of tensor ZZZ yields matrices, A = [a1, ..., aR], B = [b1, ...,bR] and C = [c1, ..., cR] which represent
the factor matrices for transition in number of mobile scatterers, transition in segments and quantized levels respectively.

II. CHANNEL RECOMMENDATION SYSTEM

The CSI is a quantized estimate of the downlink channel that
can be used to adjust the parameters for future transmissions.
However, the high dynamics of the V2X network requires agile
scheduling of packets at the RSU for links with different scat-
tering environment and location. Hence, the CSI may become
obsolete and the RSU has the added burden of making unique
recommendations for every downlink packet. To address this
problem we design a recommender system that has four stages
as shown in figure 1b: A) Adaptive Smoothing: Iteratively
tracks and smooths the non-stationary noise in the CSI (similar
to [3]), B) Tensor Factorization & Completion: This step gen-
erates channel recommendations to account for the change in
the scattering environment and location of vehicles over time.
C) Spatio-Temporal Adjustment: The output of steps A and B
is fused to form the recommended downlink channel profile
for the next packet, and D) Pre-Equalization: The downlink
waveform is pre-equalized using the recommended channel
profile, to achieve flat fading at the receiver. RSU processes
the channel state, received as a quadruplet [CSI,Ns, S, T ]

i for
each vehicle i (piggy-backed on acknowledgement packet).
A. Adaptive Smoothing

Adaptive smoothing of non-stationary noise in the CSI
is performed by a combination of autoregression (AR) and
Kalman filtering. The CSI obtained from various vehicles are
combined using a noisy autoregressive (AR) model (random
walk), the weights of which are tracked by a Kalman filter [3].
However, this iterative approach results in a lag between the
tracked channel and the actual channel, due to one time-step
delay in CSI feedback path (figure 2a). Hence, an additional
smoothing step [4] is employed to mitigate the effect of this
lag and any undesired transients in the received CSI. We
denote it by zp(k) and use it in §II-B and §II-C. Although
smoothing, reduces transients, it is unable to maintain low
error vector magnitude (EVM) for higher modulations, and a
single smoothing filter is unable to simultaneously track the
channel over multiple vehicles and locations.
B. Tensor Completion & Factorization

There is a disconnect between the smoothed and actual
channels (which depends on the current scattering environment
and location of the receiver, figure 2a). This information is em-
bedded in the CSI, which consequently captures the deviation
due to the change in the scatterers and the receiver location.

We construct a 3D tensor, shown in figure 2b to record these
deviations and use them to make adjustments (details in §II-C)
to the smoothed channel, zp(k). The measurement channel,
z(k) derived from the CSI (see §II-D) is recorded in the tensor
corresponding to the change in the scatterers (Nk−1

s , Nk
s )

and segments (Sk−1, Sk) and the corresponding output of the
smoothing filter, zp(k), quantized to level q. Cell values are
updated as a running average of all measurement channels
that are mapped to that particular cell, and hence contain the
historical deviations observed for a given change in Ns and S
and the corresponding quantized level for zp(k). Other latent
factors also affect these deviations. Moreover, key challenges
in this tensor-based procedure are, sparsity (due to the large
size of the tensor database (see §III) and unobserved CSI
entries) and noisy data in the tensor (due to incomplete filling
of cells). These result in missing or corrupt adjustments. To
account for these factors, we introduce tensor factorization
& completion. At each time step k, the channel tensor is, 1.
Updated with the measurement channel, z(k), 2. Factorized
(§II-B1) into a factor model to capture the latent structure of
the underlying process, 3. Reconstructed using the factorized
model (§II-B2) to extract missing entries, and finally 4. The
completed tensor is used to generate recommendations, zr(k)
which is used to adjust the smoothed channel, zp(k) (§II-C)
for location and scattering environment of a vehicle.

1) Tensor Factorization: This stage captures the latent
structure of channel tensor by expressing it as the sum of
component rank-one tensors. Figure 2c shows the tensor
factorization of the third order channel tensor. The notations
for tensors, matrices, vectors and elements are similar to [5].
Let ZZZ be the 3-way channel tensor of size I×J×K, and rank
R. Channel tensor decomposition is defined by factor matrices
A, B, and C (defined in figure 2c) that minimizes the objective,

fWWW(A,B,C)=
1

2

I∑
i=1

J∑
j=1

K∑
k=1

{
wijk

{
zijk−

R∑
r=1

airbjrckr

}}2

Error function

+
λ

2

R∑
r=1

{ I∑
i=1

||air||2 +
J∑

j=1

||bjr||2 +
K∑

k=1

||ckr||2
}

Regularization term

(1)

The error function is employed to account for CSI noise
in the channel tensor and the weighted version of the error
function addresses the sparsity by ignoring missing data and
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Figure 3: High-level system performance: a) Constellation of ideal 64-QAM symbols for downlink transmission. b) Ideal I/Q
vectors are pre-equalized with recommended channel profile, z̃p(k). c) Received symbol constellations using linear interpolation
equalizer. d) Equalized channel in time & frequency domain. Estimated channel is largely flat and achieves low BER.
modeling only the known entries. Minimizing this objective
function ensures that the recommendations, zr(k) accurately
represents the discrepancy in channel tracking, even in the case
of missing entries. WWW denotes a weight tensor, with entries of
‘1’ or ‘0’, when zijk is known or missing respectively. The
regularization term penalizes the size of the latent factors and
consequently avoids over-fitting the noise in the measurement
channel, z(k) and ensures the generality of ZZZ. λ balances the
modeling error and the complexity of the latent structure. For
convenience the objective function in (1) is expressed as,

fWWW(A,B,C)=
||ZZZ−JA,B,CK||2WWW+λ(||A||2+||B||2+||C||2)

2
(2)

Here J·K is the Kruskal operator shorthand notation, || · || refers
to the Frobenius-norm for matrices or two-norm for vectors,
and ||ZZZ||WWW is the WWW-weighted norm of ZZZ. The objective
function in (2) is minimized by a nonlinear gradient-based
optimization, to find the latent factor matrices A,B,C. This
is easily extended to account for multiple lanes, direction of
traffic, varying speeds of vehicles and simultaneous multi-
vehicle downlink by extending (2) to a higher-dimensional
tensor factorization problem (for N-way tensor, ZZZ) defined by,

fWWW(A(1),..,A(N))=

∣∣∣∣ZZZ−JA(1),..,A(N)K
∣∣∣∣2
WWW
+λ
∑N

n=1 ||A
(n)||2

2
where JA(1), ...,A(N)K=

∑R
r=1 anr ◦ ... ◦ an

r , and latent factor
matrices for transition in number of scatterers, segments,
lanes, direction of traffic, vehicle speed etc... are defined as
A(n)=[aN1 ,...,aNR ]. for n=1, ..., N , This shows the adaptability
of the recommender to address a variety of V2X scenarios.

2) Tensor Completion: This stage, reconstructs the tensor
ẐZZ (Recommendation tensor) from the computed factorization
model (A,B,C) in (2) and is given by,

ẐZZ = JA,B,CK =
R∑

r=1

ar ◦ br ◦ cr or ẑijk =
R∑

r=1

airbjrckr

where ’◦’ is the outer product. Recommendation tensor, ẐZZ

is used to obtain recommendations, zr(k) corresponding to
smoothed channel, zp(k). Let the smoothed channel for N
subcarriers be, zp(k) = [zp(k, 1), zp(k, 2) . . . zp(k,N)]T . At
each iteration N recommendations (zr(k, n)) are made where,

zr(k, n) = ẐZZ[(Nk−1
s , Nk

s ), (S
k−1, Sk), qn] (3)

for all n = 1, . . . , N . Here, ẐZZ[(Nk−1
s , Nk

s ), (S
k−1, Sk), qn)]

is the entry of ẐZZ at index [(Nk−1
s , Nk

s ), (S
k−1, Sk), qn] as in

figure 2b and qn is the quantization level of zp(k, n). Then
the recommended channel for N subcarriers is,

zr(k) =
[
zr(k, 1) zr(k, 2) . . . zr(k,N)

]T
(4)

Since the actual channel is complex valued, two separate
tensors are used to recommend the channel for the I/Q vectors.

C. Spatio-Temporal Adjustment
At each time step k, smoothed channel zp(k) is improved

to ẑp(k) (recommended channel) by incorporating recommen-
dations, zr(k) from (4) using a normalized weighted average:

ẑp(k) = (1− αk)zp(k) + αkzr(k)) (5)
where αk is the normalization weight at time step k. Since,
the smoothed channel is adjusted with recommendations based
on scattering environment and location of vehicle, this step
alleviates lag and disparity in Ns and S and accounts for non-
stationarity of channel over time, space and vehicle density.
D. Pre-equalization at Transmitter

The waveform of the downlink packet is pre-equalized such
that when convolved with the true channel, the net effect is a
flat fading at the receiver, that can be easily equalized using
pilot based linear interpolation methods commonly used in
V2X communication. The pre-equalized channel, z̃p(k) is,

z̃p(k) = 1./ẑp(k) (6)
z̃p(k) represents the inverse of the expected fading profile of
the true channel, zt(k) (see §III). Hence, the resultant channel,
zf (k), as estimated by the receiver vehicle is given by,

zf (k) = zt(k)� z̃p(k) + w(k) (7)
w(k) captures noise and estimation errors and � is Hadamard
product. CSI, zf (k) captures the interaction between true and
pre-equalized channels (zt(k) and z̃p(k)). At the transmitter,
measurement channel z(k) is computed, from (5) and (7),

z(k) = zf (k)� ẑp(k) + w(k) = zf (k)./z̃p(k) + w(k) (8)
z(k) represents the error in the recommendation along with
added system and numerical noise in the feedback loop. This
forms the new input to the recommender system (in §II-B).
Figure 3 shows the constellation diagram for a packet with
64-QAM modulation, which is pre-equalized by using the
recommended channel and the equalized constellation at the
receiver with the corresponding channel profile are shown.
These results show that the channel recommender system
works very well for higher order constellations as well. While
residual distortion may remain at the receiver, the penalty in
BER for those cases are minimal.
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(a) BER for 16-QAM with
16 pilot tones.

(b) BER for different mod-
ulation with 16 pilot tones.

(c) EVM distribution for
16QAM-16 pilot tones

(d) Throughput&BER for
distinct modulations,pilots

(e) Reduction in MSE with
more CSI entries in tensor.

Figure 4: Performance of Recommendation system at the Receiver and the accuracy of the Recommender at the Transmitter.
III. EXPERIMENTS AND RESULTS

The V2X channel was modeled using WINNER channel
toolbox in Matlab (accurately reflects real V2X channels [6]),
and was used to emulate a schedule of downlink transmissions
(i.e., the true channel zt), by randomly selecting a segment at
each time step and selecting the channel state for that segment.
In reality, this schedule is not observed by the vehicles, but
is used here to evaluate the accuracy and performance of
the recommender system. This simulated test-bed gives the
freedom to address a variety of different scenarios of the
V2X channel and scattering environment that may not be
observed in measurement campaigns. Figures 4a and 4b show
the BER performance, corresponding to an OFDM packet
using different modulation and coding at carrier and sampling
frequencies of 5.9GHz and 10MHz. Figure 4a shows the BER
for 16-QAM modulation and 1/2 coding, with and without
(as in conventional 802.11p) channel recommendation (with
pilot-based linear interpolation equalization at the receiver).
The well compensated frequency selective fading of V2X
channel (figure 3d) results in a BER improvement by two
orders of magnitude, which is very encouraging. In contrast,
conventional receiver algorithms are simply not sufficient to
track the channel over space, time and frequency, hence
performing much worse even at high SNR. This is a motivating
reason to adopt a channel recommender at transmitter. Channel
recommender requires only 7 dB more SNR to achieve same
BER as ideal case. Figure 4b shows the BER for different
modulations and the ability of the algorithm to support higher
order modulations with very low BER. Figure 4c shows an
almost ideal performance of EVM upto 16dB SNR.

In 802.11p, the inserted pilot tones are used to estimate the
channel. While incorporating more pilot tones, improves the
channel estimation at the receiver and results in a lower BER
& EVM performance and more accurate channel prediction, it
reduces the theoretical throughput. Figure 4d shows that while
the transmission throughput reduces with increasing number of
pilots, the drop in the achievable throughput is relatively less,
since the BER also decreases. Hence, we can choose higher
order modulations for V2X transmission to achieve higher
throughput, while maintaining the same BER. Figure 4e shows
the improvement in accuracy (Mean Square Error (MSE)
between the recommended and true channel coefficients) of the
channel recommender with time. As more entries are recorded,
MSE reduces since the sparsity and noise in the tensor reduces.

This system can be extended to facilitate simultaneous
multiuser downlink communication using Multiuser-MIMO

which exploits recommended channel to precode waveforms to
increase spatial multiplexing in dense vehicular networks. In
V2V communication, since recommendation requires knowl-
edge of vehicle topology, the RSU or a cloud based in-
frastructure should share this information with each vehicle.
Currently we are conducting a measurement campaign, where
the transmitter (RSU (laptop on road-side) or vehicle) and the
receiver (vehicle) are equipped with Ettus USRP B210 radio,
which also provides accurate timing and location using board-
mounted GPS. Digital cameras mounted on the roof of the ve-
hicle capture changes in scattering environment. Experiments
are being conducted in areas with different scattering densities
at different times of the day. The testbed will also enable
research in proactive content caching, multiuser scheduling
and other edge networking paradigm.

IV. CONCLUSION
This work shows the power of recommender systems when

applied to highly dynamic wireless environments like V2X
networks. Through modelling, analysis and simulations, we
draw three conclusions: 1) The channel recommender is
able to successfully predict the V2X channel to obtain 96%
lower BER in spatio-temporal, non-stationary channels by
resulting in an almost flat fading profile at the receiver, 2)
This enables higher modulation schemes to be used in V2X
communications for high throughput, and 3) The accuracy of
the recommender system improves with time, asymptotically
achieving an MSE of 10−3. The encouraging results from this
work will form the core of robust and highly reliable V2X
networks supporting demanding mobile applications.
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