
AUTONOMOUS SPECTRUM ENFORCEMENT: A BLOCKCHAIN
APPROACH

by

Maqsood Ahamed Abdul Careem

A Thesis

Submitted to the University at Albany, State University of New York

in Partial Fulfillment of

the Requirements for the Degree of

Masters of Science

College of Engineering and Applied Sciences

Department of Electrical and Computer Engineering

December, 2019



ABSTRACT

A core limitation in existing wireless technologies is the scarcity of spectrum, to support the

exponential increase in Internet-connected and multimedia-capable mobile devices and the increas-

ing demand for bandwidth-intensive services. As a solution, Dynamic Spectrum Access policies

are being ratified to promote spectrum sharing for various spectrum bands and to improve the spec-

trum utilization. This poses an equally challenging problem of enforcing these spectrum policies.

The distributed and dynamic nature of policy violations necessitates the use of autonomous agents

to implement efficient and agile enforcement systems. The design of such a fully autonomous

enforcement system is complicated due to the lack of trust in the agents and the requirement for

agile scheduling schemes. We architect a deployable system, which leverages crowdsourced agents

as eye-witnesses, to efficiently deploy mobile, multi-modal agents (unmanned land, sea or aerial

vehicles) to potential spectrum infraction sites to collectively improve the enforcement accuracy.

We leverage the distributed consensus mechanism employed in Blockchain networks to make dis-

tributed accurate and credible inferences even from trust-less agents. Collectively this leads to a

highly reliable and feasible autonomous spectrum enforcement strategy, which outperforms static

and purely crowdsourced enforcement paradigms.
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CHAPTER 1

Introduction

As sharing policies are being ratified by the Federal Communications Commission (FCC) for var-

ious spectrum bands for commercial broadband use, it poses an equally challenging problem of

enforcing these policies. The distributed and dynamic nature of these policy violations necessi-

tates the use of mobile autonomous agents (e.g., crowdsourcing, unmanned ground, sea or aerial

vehicles) to implement cost-effective and efficient enforcement systems. The efficacy of such a

distributed enforcement system greatly depends on the accuracy or reliability of evidential and

inferred information and the speed of adjudication. Central to this problem is the lack of trust or

reputation of the participating Agents, which often leads to incorrect and biased inferences. Addi-

tionally, leveraging heterogeneous mobile agents (with distinct sensing and hardware capabilities)

for spectrum enforcement, requires the design of unique scheduling, detection and localization

schemes that adapt to the hostility of the wireless environment. We define this problem as Au-

tonomous Spectrum Enforcement and it involves two stages: 1. Autonomous Spectrum Sensing:

We schedule multi-modal agents to detect, localize and adjudicate spectrum infractions and collec-

tively improve the accuracy of these enforcement tasks in minimum possible time. 2. Distributed

Fusion System: We leverage the distributed consensus mechanism employed in Blockchain net-

works to record and disseminate the sensing reports among agents and accrue their reputation,

leading to credible inferences and a highly reliable and accurate enforcement system (without re-

lying on centralized, explicitly trusted entity). Designed as a practical and deployable system, our

solution leverages crowdsourced agents (as eye-witnesses) to deploy mobile agents to infraction

sites depending on the hostility of the wireless environment. We evaluate the Autonomous En-

forcement system using a novel integrated Spectrum Sensing and Blockchain simulator and show

that such an Autonomous Enforcement strategy significantly improves the enforcement accuracy

and feasibility of dynamic and distributed spectrum violations, over static paradigms.

1.1 Autonomous Spectrum Enforcement

Enforcement of spectrum policies is complementary to the well-studied problem of Dynamic

Spectrum Access (DSA). However, the distributed nature of these policy violations (defined as

1



1 1

Infraction Locations (Targets)

Multi-Modal Agents

Sensing Report Broadcast

Distributed Consensus

…
Most-Difficult-Chain

Figure 1.1: Distributed nature of Spectrum infractions require multi-modal agents. We leverage

crowdsourced agents (as eye-witnesses) to deploy mobile agents (ground, sea or aerial vehicles) to

infraction sites. Agents broadcast their reports and arrive at distributed consensus on the reputation

of agents, enabling credible distributed spectrum enforcement.

“Targets”) require accurate, cost-effective and mobile, autonomous entities (defined as “Agents”)

to carry out all enforcement related tasks, as shown in figure 1.1. These tasks can be generalized as

various levels of sensing (signal measurement) and decision making (waveform classification and

localization in order to pin-point rogue sources) with very high accuracy. The balance between

cost and accuracy of such a fully autonomous enforcement system critically depends on, 1. the

appropriate amount of sensing resources (agents) mobilized to the potential infraction locations in

the shortest possible time, and 2. the ability to make credible inferences from distributed fusion

of sensing results from a set of spatially scattered trust-less agents, without relying on an explic-

itly trusted centralized entity. This is because wireless signal classification greatly benefits from

proximity of agents to the potential source, heterogeneous sensing parameters (bandwidth, sample

rate, battery constraints, etc) and the reliable aggregation of observations from multiple distributed

agents.

Thus, we propose and architect an autonomous enforcement system where we rely on multi-

modal agents (crowdsourced, land-based, sea-based or aerial vehicles) to autonomously sense,

detect, localize and adjudicate spectrum policy violations with the highest possible accuracy. The

2



autonomous enforcement system is shown in figure 1.2 and involves two key components:

1. Autonomous Spectrum Sensing: Leverages crowdsourced measurements as eye-witness ac-

counts to deploy mobile, multi-modal agents (unmanned ground, sea or aerial vehicles) to

potential infraction sites for further sensing, depending on the veracity of crowd measure-

ments.

2. Distributed Fusion System: Leverages the distributed consensus mechanism employed in

Blockchain networks to record and disseminate the sensing reports and their veracity. This

information is used to make reliable inferences among distributed trust-less agents.

Even though the purely crowdsourced paradigm [1] has been shown as a viable apparatus

for distributed spectrum sensing, the lack of trust and incentives, limit the enforcement accuracy of

such schemes. Hence, we envision a hybrid approach that leverages crowdsourced measurements

as eye-witness accounts to deploy mobile agents to further improve the accuracy of detection and

localization of violations. Specifically, we leverage the measurements from crowdsourced mobile

users to determine the optimum routing schedule for the agents to achieve the desired level of

accuracy of detection and localization at minimum possible cost. The design and analysis of this

multi-modal autonomous sensing system is detailed in Chapter 3.

Autonomous enforcement of spectrum policies requires the distributed fusion of sensing

results from a set of spatially scattered agents to detect and localize spectrum violations with the

highest possible accuracy, without relying on centralized, static, explicitly trusted infrastructure

for data fusion and decision making. This problem is complicated, due to the lack of trust of the

participating agents, which results in incorrect and biased inferences. In Chapter 4 we propose

SenseChain, where we leverage the distributed consensus mechanism employed in Blockchain

networks to create and disseminate an immutable record of the sensing reports and the behaviour of

agents. The information disseminated via SenseChain enables the assessment of reputation of

the participating agents and credible distributed fusion at the agents. This leads to highly reliable

and accurate inferences even from distributed trust-less entities.

Figure 1.1 shows the distributed and heterogeneous nature of policy violations. These policy

violations include greedy users who violate spectrum policies, and acts like denial of service and

jamming attacks. Crowdsourced agents serve as eye-witnesses and provide initial estimates on the

detection and location of the spectrum violations. These estimates are used to efficiently deploy

3



Autonomous Enforcement System

Autonomous Spectrum Sensing

Spectrum 

Policy

Crowd based 

Sensing 

Mobile Agent 

based Sensing 
Penalty Actions

SenseChain: Distributed Fusion System

1 2

1. Determine Schedule for Mobile Agents using Crowd measurements

2. Aggregate sensing results to detect violations and estimate locations

Figure 1.2: Autonomous Enforcement System: Crowdsourced measurements provide the basis

for deploying mobile agents to detect and localize targets. The individual sensing reports and

their veracity are recorded in SenseChain and disseminated to all agents. The information in

SenseChain is used to make credible inferences even in the presence of trust-less agents.

mobile agents (unmanned ground, sea or aerial vehicles) to potential infraction sites to collectively

improve the enforcement accuracy. All the sensing reports are broadcasted, validated and the

agents arrive at distributed consensus (by leveraging the consensus mechanisms in blockchain

networks) on the veracity of reports and the reputation of agents. This information is used to

make credible inferences in a distributed manner that leads to an accurate and reliable enforcement

system.

The autonomous enforcement system in figure 1.2 operates as follows: Certain agents as-

sume the role of a Sensor while others assume the role of a Validator. Sensors are tasked pri-

marily with sensing and reporting their measurements of Signal-to-Noise Ratio (SNR), Loca-

tion (Loc), Probability of Detection (Pd) and Probability of False-positive (Pf )1. Validators are

tasked with assessing the veracity of the sensing reports, recording and disseminating this infor-

mation via SenseChain and serve as distributed fusion nodes. Thus, SenseChain represents

an immutable record of the sensing reports that all the agents arrive at consensus upon, and can

be used for credible distributed inferences. The initial assessment of the target from the crowd-

1Each Agent is provided with a set of rules to check for infraction and are equipped with the corresponding

detectors either in hardware or software. [2, 3]
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sourced agents (voluntary mobile users) is broadcasted for peer-validation by the Validators and

are recorded in SenseChain along with their assessed veracity. This crowdsourced information

is used by the validators to derive the optimal number (defined as “Cardinality”) and routing sched-

ule of mobile agents necessary to collectively improve the accuracy (of detection and localization

of spectrum violations) at a bounded cost. This information is used to deploy mobile agents to

perform the additional detection and localization tasks under the constraint of scheduling a fixed

number of agents in minimum time. Each agent visits each target to collect measurements and

broadcast these measurements. These sensing reports are validated by peer-validators and added

to SenseChain. This ensures, the credible aggregation of multiple sensing results (using a repu-

tation based weighted combination) at a very high SNR (due to the proximity of agents to targets),

and hence lends to a highly reliable autonomous enforcement system2.

1.2 Contributions

We design and analyze a practical and deployable autonomous enforcement system, making

the following contributions:

1. Design of a multi-modal, autonomous sensing system that leverages crowdsourced mea-

surements (as eye-witness accounts) to deploy mobile agents to potential infraction sites, to

improve the enforcement accuracy in least possible time (Chapter 3).

2. Design of a fully distributed, credible fusion system by leveraging the distributed consensus

mechanism in Blockchain networks to record sensing information and capture the reputation

of sensors (Chapter 4).

3. Evaluation of the proposed Autonomous Enforcement system using a novel combined Spec-

trum Sensing and Blockchain simulator (Chapter 5).

1.3 Previously Published Content

The following publications were a direct result of the work presented in this thesis and collectively

constitute the complete Autonomous Enforcement System. I am the primary researcher of these

2Penalty Actions include authoritative adjudication on the infraction and levying monetary or other forms of penalty

to the Violator.
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CHAPTER 2

Related Work

We categorize the related literature on Autonomous Spectrum Enforcement into three categories:

Spectrum Enforcement strategies, Sensing using Autonomous Agents and Distributed Fusion Sys-

tems.

2.1 Spectrum Enforcement strategies

The literature on spectrum sensing and enforcement of spectrum policies have leveraged

diverse mechanisms that range from static sensor deployments and crowdsourced paradigms using

a set of mobile crowd users. However, a majority of this literature rely on centralized fusion entities

or static deployments of sensors. We discuss the most relevant literature on Spectrum enforcement

and the related literature on the use of autonomous agents for spectrum sensing in this section.

Static Enforcement paradigms: In practice, networks comprised of opportunistic users have

limited communication range and transmit power [7],[8], to avoid interference to neighboring net-

works sharing the same frequency band. This increases the difficulty of detecting spectrum infrac-

tions with the desired accuracy unless the detector is in the vicinity of the infraction. So, dense

deployment of static infrastructure with a wide coverage can be prohibitively expensive for prac-

tical purposes. Even with mesh deployments of static enforcers unless the policy violation events

occur in the vicinity of the enforcers, it would lead to poor localization and false alarms [1]. In

contrast we leverage autonomous agents which are routed to the vicinity of the potential infraction

locations as determined from initial crowdsourced estimates to achieve the desired performance.

Crowdsourced Paradigms: Crowd-sourcing has been made a reality by commodity user devices

such as Smartphones. A study on the incentives of a generic crowd-sourced paradigm is shown

in [9]. The ubiquity of mobile devices to aggregate information have been embraced in traffic

and civilian law enforcement agencies, which have long relied on eye-witness accounts [10, 11].

Enforcement of Spectrum policies using crowdsourced mobile users lies at the crossroads of many

different research areas. A description on ex-ante and ex-post paradigms for spectrum enforcement

is presented in [12]. The need and design criterion for federal and non-federal frequency bands has

been presented in [13], which are crucial for practical implementation. [14] outlines the common
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threats in Dynamic Spectrum Access. [15] presents a specific form of enforcement that leverages

and depends on advanced coding and detection theory. Authors in [1] present a crowdsourced

method that harnesses the collective power of the “crowd” as opposed to individual capabilities for

any form of infraction as long as the Receiver operating characteristic (ROC) is available. They

have shown that crowdsourced approaches outperform static enforcement schemes. However, in

addition to the drawbacks of the purely crowdsourced paradigms presented in literature (lack of

trust, controlability and incentive strategies), they also rely on a centralized, explicitly trusted

fusion center for reliable enforcement. In contrast, we present a fully distributed enforcement

system where the fusion of information is performed by the scattered set of agents.

2.2 Sensing using Autonomous Agents:

Recent research has shown growing interest in collaborative autonomous agents (Unmanned

Aerial Vehicles (UAVs) and Unmanned Ground Vehicles (UGVs)) for applications ranging from

multi-agent cooperation [16], planning [17, 18] and sensing [19, 20]. A core issue in leveraging

teams of mobile, autonomous agents, is the determination of an optimal schedule of the agents.

Most applications of hybrid UAV-UGV planning have limited scope to small sets of agents & tar-

gets. The Scheduling problem has its roots in Multiagent planning (MP) [21] which is the NP-hard

problem [22] of finding the shortest paths of agents with targets visited at least once. In general,

these methods do not enforce unique visits at targets. In the context of Multiagent Planning with

uniqueness (MPU), an intriguing class of problems is the Multiple Traveling Salesmen Problem

(MTSP), which finds closed tours for agents, while enforcing uniqueness. MTSP is challenging

due to its combinatorial nature and NP-hardness [23]), and it does not solve the MPU directly as it

yields tours (not paths) for agents. [24] proposes a heuristic search method to solve the Multiagent

Path Finding problem, which is similar to MPU, except that endpoints of tours are also fixed. [23]

presents a genetic algorithm based method for solving the MPU.

For detecting and localizing infractions we require multiple, unique agents visiting each

infraction to address its hostility (Cardinality). An exact method for heterogeneous MTSP (some

targets can be visited only by a specific agent) is provided in [25]. The class of MTSP does not

addresses the notion of multiple visits. An interesting class of problems here, is the Vehicular

Routing Problems (VRP) [26], which might facilitate multiple visits [27], however does not ensure

uniqueness or constraints on number of visits (i.e., the cardinality). Multi-Depot VRP (MDVRP),

8



introduce some notion of heterogeneity (some targets can be visited only by a specific agent), for

which a 8-approximation algorithm is presented in [28]. However, these approaches are based

on graph partitioning, where imposing cardinality constraint is challenging. Multiagent patrolling

problems [29] enable targets to be visited multiple times, however by the same agent. Under

the constraint of Cardinality, the MP problem evolves to Multiagent Planning with Cardinality

(MPC) problem. To the authors best knowledge, the challenging problem of Multiagent planning

with Cardinality and the notion of using the crowd as eyewitnesses to efficiently deploy agents, to

improve the enforcement of spectrum policies, is unprecedented in literature.

2.3 Distributed Fusion Systems

We categorize the related literature on Distributed Fusion Systems into three groups:

Centralized vs Distributed Inferences: A majority of the spectrum sensing and spectrum en-

forcement literature rely on centralized or hierarchical fusion of sensing information by an explic-

itly trusted dedicated entity [30, 31, 1]. While the centralized architecture is theoretically optimal,

it requires high communication bandwidth to send sensed and inferred data to and from the fu-

sion node, which should have enough computational resources to process the data. In a fully

autonomous and distributed architecture, there is no fixed superior-subordinate relationship among

entities and the assumption of such dedicated infrastructure may be impractical and restrictive.

Each agent may communicate with other agents subject to connectivity constraints and each agent

may have its own processor to fuse the local sensing data. Distributed fusion architectures have

the following advantages [32]: lighter processing load at each distributed fusion node, lower com-

munication load, faster access to fusion results due to lower communication delay, and higher

survivability since there is no single point of failure associated with a central fusion node. A core

challenge in distributed fusion is the lack of trust in the participating entities. There exist distribute

fusion schemes where the fusion task is distributed to a multiple scattered nodes, however they

mostly assume that the fusion nodes are trustworthy [33]. In contrast, SenseChain achieves

credible inferences even in the presence of trust-less entities.

Anomalous behaviour Detection: Spectrum enforcement systems is analogous to intrusion de-

tection systems in wired and wireless networks [34, 35]. Generally speaking, intrusion detection

systems are limited because all detectors observe the infringement or infringement event at similar

granularity and thus yield the same detection results. Detection of infringements that spread over
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radio waves, however, is challenging due to propagation-related losses that decrease the signal

integrity. This serves as one of the most significant and motivating factors for detection and infer-

ence using autonomous and crowdsourced approaches, which far outperform static enforcement

schemes.

Trust and reputation based models for malicious sensor identification have been widely stud-

ied in the context of wireless sensor networks [36]. [37] uses a neighbor weight trust algorithm,

in the problem of malicious node detection. [38] proposed a new trust management scheme based

on D-S (Dempster-Shafer) evidence theory, by considering the spatio-temporal correlation of data

collected by neighbouring sensors. These models rely on local inferences from neighbours, which

needs to be disseminated throughout the network of trustless entities. In our work we achieve

distributed consensus among nodes by sharing information on a blockchain. [39] proposed a ma-

licious node recognition model to resist malicious behavior of high-reputation nodes in existing

WSNs. [40] proposes an abnormal sensor identification using the pairwise similarity of sensing

results of helpers. Trust has been investigated in the context of crowd-sensing and collaborative

spectrum sensing [1], [41]. Most of these approaches rely on centralized fusion of information,

which is both vulnerable and does not scale well. In contrast, we propose anomaly detection in a

purely distributed manner using only the SNR and the location of sensors, and the dissemination

of information using the blockchain to assign reputation of sensors.

Blockchains for sensor networks: DLTs like blockchain have gained immense interest in var-

ious application domains in wireless sensor networks [42]. Blockchains have been employed

for dynamic spectrum access [43] and to achieve secure routing among malicious nodes [44].

Blockchains have been used to establish a trust model and for the detection of malicious nodes in

[36]. [45] proposed a smart contract based framework to solve the problems of trusted access con-

trol and distributed in the IoT. [46] addresses the problem of distributing trust and reputation among

trustless nodes, by employing collaboration among miners. [33] proposes spectrum sensing as a

service using a smart contract to describe the sensing service parameters and helpers are rewarded

only if they perform sensing accurately. In contrast to these approaches we employ peer-based

anomaly detection algorithm, a heterogeneous difficulty assignment and Most-Difficult-Chain rule

to guide credible inferences on detection and localization.
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CHAPTER 3

Multi-Modal Autonomous Spectrum Sensing

The distributed nature of policy violations (Targets)4 in spectrum sharing necessitate the use of mo-

bile autonomous agents (e.g., UAVs, self-driving cars, crowdsourcing) to implement cost-effective

and efficient enforcement systems. We define this problem as Multi-agent Planning with Cardinal-

ity (MPC), where Cardinality represents multiple, unique agents visiting each infraction location to

collectively improve the accuracy of the enforcement tasks. Designed as a practical and deployable

system, our solution leverages crowdsourced information to determine the optimum Cardinality

and provide a routing schedule for the agents to achieve the desired level of accuracy of detection

and localization at minimum possible cost. We show that by estimating spatial orientation of the

agents with single antenna, the accuracy is improved by 96% over crowdsourcing only. Using

geographical maps as the basis, we solve the scheduling problem with a 3-approximation ratio in

polynomial time that exhibits statistically similar performance under variety of urban locale across

multiple continents. The longest path traversed by an agent on average is 1.2km per unit diagonal

length of a rectangular geographic area, even when there are twice as many infractions as agents.

Deploying UAVs to the estimated region of infraction improves localization accuracy by ≈ 70%

compared to ground vehicles.

3.1 Multi-Modal Agent Scheduling

The design of an efficient and accurate enforcement system critically depends on, the ap-

propriate amount of agents5 mobilized to the right location in the shortest possible time. To this

end, crowdsourced paradigm [1, 47, 48] has been shown as a viable apparatus. However, it suffers

from many inefficiencies like lack of trust and efficient incentive mechanisms and controlability,

that may not provide bounded guarantees of accuracy (e.g., detection and location) and cost (e.g.,

4This includes greedy users who violate spectrum policies, and acts like denial of service and jamming attacks.

We primarily focus on violations that leverage the physical layer of the device. e.g., Emulating a higher priority

user (or incumbent) using signatures like cyclostationary features embedded in the radio signal. This also includes

unintentional infractions such as faulty hardware causing unwanted spectral leakage. These actions alter the signal

characteristics, causing harmful interference to rightful users of that band.
5We do not impose any restriction on the type of autonomous agents as long as those use the road infrastructure to

navigate. These agents can be crowd mobile users, radio nodes mounted on autonomous vehicles or low flying UAVs

(for sensing ground based communication and avoid obstacles) or a combination of all.
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Figure 3.1: Autonomous Spectrum Sensing System: Crowdsourced measurements provide the

basis for deploying mobile agents to detect and localize targets.

incentives, capital and operational costs). Instead, we envision a hybrid approach that leverage

crowdsourced measurements (akin to eye-witness accounts) to deploy mobile, autonomous agents

to the target sites depending on the veracity of these measurements. Our work builds on any crowd-

sourced paradigm, where the wisdom of crowd is simply used to assess the need for additional

resources to achieve a desired level of accuracy and cost, thus avoiding unnecessary and restrictive

burden on the crowd (like undesired mobility, prioritized sensing, low incentive, etc [49, 48]). This

system operates in two steps as shown in figure 3.1. The initial assessment of the target6 from the

crowdsourced agents (voluntary mobile users) is broadcased and recorded in SenseChain by the

validators. This crowdsourced information is used by the agents to derive the cardinality necessary

to collectively improve the accuracy at a bounded cost. This information is used to deploy mobile

agents to perform the additional detection and localization tasks under the constraint of scheduling

a fixed number of agents in minimum time.

We define this problem as Multiagent Planning with Cardinality (MPC). Cardinality, refers

to the number of unique mobile agents (not including the participants from the crowd) visiting tar-

gets, simultaneously or otherwise, to achieve a target accuracy of the enforcement tasks. Accuracy

has two primary dimensions: a) Detection of a bad signal (often expressed as a confusion matrix

[50] and b) Location estimate. Unlike the crowd participants, the mobile autonomous agents can

be directed (although at a cost) to a near-optimal orientation or detect signals with desirable op-

erating points to independently maximize along both the dimensions. We adopt the widely used

geometric trilateration [1, 51] as the basis to locate a target and calculate the optimum cardinality

that minimizes the Geometric Dilution of Precision (GDOP). This is followed by routing a finite

number of agents to multiple targets while fulfilling the cardinality determined in the previous step.

6Crowdsourced agents may detect infractions with a wide variety of accuracy (false and true positives) due to

heterogeneous hardware and their relative proximity to the target. There are many crowdsourced models [1, 48] but

our work subsumes any such paradigm without loss of generality.
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The solution to this lies at the intersection of finding the shortest path between nodes in a graph

and finding a schedule (or order) for the agents to visit a set of targets. However, in MPC, the

additional requirement of fulfilling the cardinality for each target, makes the solution orthogonal

to the existing literature [52, 26]. It is not necessary to route all the agents (as per the cardinality)

to a target at the same time. To ensure a fast convergence of the scheduling algorithm the agents

may start from any point and take any path as long as it covers all the targets in the least possible

time.

In the final step the accuracy is iteratively improved until the target level is achieved. Tri-

lateration with no GDOP results in a convex polygon that includes the target (Section 3.2). Each

agent is initially routed to the centroid of the polygon and then visits each vertex to collect mea-

surements and broadcast these measurements. These sensing reports are validated and added to

SenseChain. This ensures, the credible aggregation of multiple sensing results (using a reputa-

tion based weighted combination) at a very high SNR (due to the proximity of agents to targets),

and hence lends to a highly reliable enforcement system. It is to be noted that these tasks may

involve deeper signal processing and possibly indoor sensing as well, which is not in the scope

of this work. Since, the cost incurred to conduct this localized sensing, is small compared to the

overall cost of scheduling it can be safely ignored in the larger context of the cost of enforcement.

Collectively, these three parts constitute a solution to the MPC problem that operate in lock-

step with any crowdsourced paradigm to achieve very high accuracy at a bounded cost that is

also minimum under the above constraints. The design and analysis of the Autonomous Sensing

scheme is further detailed in Chapter 3.

3.2 Background and Known Results

Trilateration under noise: Although our solution is independent of the underlying crowdsourced

paradigm, we adopt trilateration based localization [1] to derive the cardinality for the infractions.

Trilateration [51] involves estimating the distance (also called range) of a receiver from a potential

source based on the path loss incurred by a signal using an approximation of the wireless channel.

For example, in the Hata-Urban [53] channel model, the distance from a transmitter, d is related to
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the path-loss, PLout as,

PLout=A+B log(d)+C =⇒ d=10
PLout−A−C

B (3.1)

where, A=69.55 + 26.16 log(fc)− 13.82 log(hb)

− 3.2(log(11.75hm))
2 − 4.97

B=44.9−6.55 log(hb) and C=0 (Large metropolitan areas)

PLb [dBm]=Pt [dBm] − SNR [dB] − PN [dBm]

Pt is the transmit power and SNR is the received signal to noise ratio at the agent. PN denotes the

average noise power in absence of any signal is assumed to be −96 dBm.

In (3.1), uncertainty arise from the assumption about Pt, measurement noise in estimating

the SNR and approximation of the channel model. These errors are collectively modeled as a

random variable X ∼ N (µ, σ2), with µ=0 and σ2=2 dB. This noise model leads to two limits,

[SNR±(X=x)] dB that translates to two range values using (3.1): douter and dinner, resulting in

annular regions (instead of circles) of thickness d = (douter − dinner) for each enforcer. Thus, geo-

metric trilateration using these annular regions provides an estimate of the location of the violator.

The overlapping area of the annular regions creates a convex polygon containing the violator and

its area is a measure of accuracy of localization. Figure 3.2a shows an ideal scenario where the

location of the violator is estimated by using the measurements reported by three closest (highest

SNR) members of the crowd. It has a very low GDOP because the crowd agents are uniformly

distributed on all sides of the violator providing an accurate estimate of the target. While, figure

3.2b shows such a scenario where the agents are located within a certain angle of the violation.

This produces multiple convex polygons because of GDOP. This is precisely the drawback of any

crowdsourced paradigm. It is to be noted that the GDOP can only be eliminated if there is a vi-

able way of positioning the agents, which is not possible in a purely crowdsourced enforcement

paradigm. The GDOP is used as the guiding metric to derive the cardinality of a target.

Accuracy and GDOP: Intuitively, it is desirable to choose crowd agents that are operating at high

SNR (closer to target). The area of the convex polygon is a function of SNR and the noise model

given by (3.1), which defines the thickness of annular regions. Figure 3.2c shows that higher the

SNR, lower is the median width of the annular region, d and consequently lower is the uncertainty

in the location of the targets Hence, it is desirable to position the agents as close to the target

14



(a) Ideal arrangement of agents leads to low

GDOP

(b) High GDOP using crowdsourced mea-

surements.

(c) Thickness of the annulus, d decreases

with SNR

(d) Receiver operating Characteristic of a

detector

Figure 3.2: In trilateration, the location of a target is given by the intersection of the annular re-

gions. The thickness of the annular regions reduces with SNR based on (3.1). However, GDOP

depends on the relative positioning of the agents as well. Also, an ROC curve dictates the perfor-

mance of any detector and assimilating results from various agents leads to higher accuracy.

as possible. Therefore, one of the objectives is to deploy mobile agents to surround the initial

crowdsourced estimate of the convex polygon in order to minimize GDOP. The number of agents

required for this is also the cardinality of the target.

ROC of a signal detector: Signal detection and parameter estimation is a rich and well-studied

area. The Receiver Operating Characteristic (ROC) curve (figure 3.2d shows the ROC curve for

Neyman-Pearson detector [54]) is universally used to define the performance of a classifier or an

estimator. In this work, the agents rely on the ROC curve to choose an operating point based on

the SNR of the received signal similar to [1, 55]. Directing crowd agents to always operate at a

desirable operating point can be cost prohibitive but a group of homogeneous autonomous agents
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can be mandated to yield a high detection result, especially since the SNR is also very high at the

vertices of the polygon as mentioned above. Therefore, our work is independent of any specific

detection scheme and simply ensures that the agents are always delivering the highest possible

accuracy, e.g., aggregating the operating points chosen by the agents on the 15 dB curve in figure

3.2d will always yield the best result for detection.

3.3 Multi-Agent Planning with Cardinality

In the context of the MPC problem, let the set of m targets be denoted by T = {T1, ..., Tm}

located at coordinates specified by the set t = {t1, ..., tm}. Let the crowdsourced estimates of the

locations of the set of m targets be tC = {tC,1, ..., tC,m}. Let the set of n autonomous agents be

denoted by A = {A1, ..., An}, with coordinates ❛ = {a1, ..., an}. Let the set of m convex polygons

for targets T , as determined by the crowdsourced and autonomous agent based localization, be

denoted by ZC = {ZC,1, ...,ZC,m} and ZA = {ZA,1, ...,ZA,m} respectively.

Algorithm 1: MPC Algorithm

1 Function MPC(Map, ❛, ZC)

2 γth = 10m2; tC = getCentroids(ZC);

3 while True do

4 [C,ZA] = findCardinality(Map, tC , ZC);

5 t = getCentroids(ZA);

6 P = findAgentSchedule(Map, ❛, t, C);

// Take measurements & evaluate actual t

7 if ZA < γth then break; else ZC = ZA;tC = t;

8 end

9 return P;

10 end

Algorithm 1 shows the steps in solving the MPC problem. It is initialized with the starting

locations of the autonomous agents, ❛, and ZC , followed by updating the target location set, tC

with the geometric centroids of ZC in line 2. The accuracy of localization is defined by the area

of ZA, and the target value is chosen to be 10m2. Although a higher accuracy can be achieved in

theoretical sense, in practice, the accuracy is limited by the feasibility of deploying agents to the

vertices of ZA. In other words, if the vertices of ZA fall over (or inside) any structure, then it re-

quires additional resources to further improve the accuracy of localization. Algorithm 1 terminates

under such infeasible conditions but provides the maximum accuracy in outdoor setting. This al-
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Figure 3.3: (a), (b) The autonomous agent based localization achieves a 92.25% reduction in the

area of the convex polygon containing the violation. (c) Example routes and the cost metric (details

in Section 5) for 5 agents and 10 targets in New York City.

gorithm has two key steps: A) Derivation of Cardinality, and B) Scheduling of autonomous agents.

Step-A calculates the cardinality (C) and the convex polygons (ZA) in findCardinality (line 4),

using the estimates from the crowdsourced phase, ZC and tC . Figure 3.3a shows an example of

a target with crowdsourced detection and localization. Figure 3.3b shows the cardinality for that

target, the optimal orientation of the autonomous agents and the improvement in the accuracy of

localization over crowdsourced localization by employing Algorithm 2 in Section 3.4. Then the

target location set, t is updated with the geometric centroids of ZA in line 5.

Step-B uses the locations, t and cardinality C from Step-A to determine the paths, P for each

agent by calling the subroutine findAgentSchedule in line 6, outlined in Section 4.2. Figure 5.1a

shows an example schedule in a major city in the US with a small set of agents and targets. Two

properties are evident from the schedule: 1) Paths for different agents overlap but the same agent

never visits a target more than once and 2) The agents can start and finish at any target as long as

it minimizes the length of the longest traversing agent. These two properties collectively lead to

Algorithm 3 in Section 3.5.1 that iteratively prunes the paths as the cardinality for the targets are

fulfilled, terminating with the quickest possible schedule for all agents.

Then the agents are deployed to each target and measurements are taken to validate the

calculated ZA and [Pd, Pf ] (true and false positives). If ZA is greater than the threshold γth, then

steps A and B are repeated by setting ZC = ZA and tC = t, until ZA is less than the threshold

γth. In other words at each round of enforcement we use the estimated convex polygon, ZA and

locations t as the inputs for the next round of enforcement. This procedure ensures that each

violation is localized with target accuracy threshold with no ambiguity. The output of Algorithm 1
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are the paths of all the agents (P).

In practice, once an agent visits a target, it performs a single round of patrolling by visiting

the vertices of the optimal polygon circumscribing ZC as shown in figure 3.3b. At each vertex

the agent collects measurements (SNR) and estimates the annular region based on the noise model

mentioned in Section 3.2. Since, each target is visited by a number of agents equal to its cardinality

the average of all the measurements minimizes the error in ZA and [Pd, Pf ]. This aggregation is

independent of the MPC algorithm and can be designed to achieve other objectives like trust and

fault tolerance. The cost of a single round of patrolling by the agents is negligible, since the area of

ZA are very small compared to the cost of scheduling the agents to the the target locations. Hence,

this cost is ignored from the overall cost of scheduling.

3.4 Step-A: Determination of Cardinality

Algorithm 2: Algorithm to determine Cardinality

1 Function findCardinality(Map, tC , ZC)

2 for j=1:size(ZC) do

3 numEdges = ZC .Edges;

// Find optimal circumscribing polygon

4 for i=3:numEdges do

5 MinPoly[i] = findMinPoly(ZC ,i);

6 Z̄A[i] = findConvexPoly(MinPoly[i], tC[j]);

7 CostLoc[i]=
Z̄A[i]
ZC

+ λi;

8 end

9 [CostLoc[j], C[j]] = min(CostLoc);
10 ZA[j] = Z̄A[C[j]]; // Convex Polygons

11 end

12 return C, ZA;

13 end

Definition 1 (Cost of Localization) The Cost of Localization for target Tj ∈ T , given ZC,j , i agents

deployed to target Tj , and the convex polygon Z i
A,j is defined as,

Cost of Localization =
Z i

A,j

ZC,j

+ λi (3.2)

where Z i
A,j denotes the convex polygon with i agents on the vertices of the smallest polygon cir-

cumscribing ZC,j and Z i
A,j/ZC,j denotes the improvement in the accuracy of localization (Z i

A,j ≪
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ZC,j) over crowdsourcing after deploying i agents. The trade-off parameter, λ is a non-negative

value that trades off the localization accuracy with the cost of deploying more agents.

Definition 2 (Cardinality) The Cardinality of a target Tj ∈ T , denoted by Cj is the total number

of unique agents Ai, that are required to visit Tj . For each Tj ∃ Cj ≥ 1. The set of cardinality for

the m targets is denoted by C = {C1, ..., Cm}.

Thus, the desired cardinality, Cj for each target, Tj ∈ T , is the number of unique agents (i)

for which the Cost of Localization for target Tj is minimum.

Cj = argmin
i

(Cost of Localization) (3.3)

3.4.1 Algorithm to determine Cardinality

The key idea here is to find an optimal polygon for each target Tj that circumscribes the convex

polygon, ZC,j . By deploying the autonomous agents to the vertices of this optimal polygon we

can ensure that the target is localized with low GDOP and high accuracy while choosing optimum

operating points on the ROC for signal detection.

Initially the number of edges of ZC is extracted in line 3. For each target Tj , the optimal

polygon that circumscribes ZC,j is determined. To do this we scan through the number of agents

(i) starting from 3 agents to a maximum number that is equivalent to the number of edges of ZC,j .

For each i we find the smallest polygon, MinPoly with i number of sides that circumscribes ZC,j

(line 5). Line 6 calculates the convex regions Z̄A[i], when i agents are deployed to the vertices

of MinPoly. This step involves, computing the annular regions and trilaterating as described in

Section 3.2 assuming that the target is at tC[j] and the agents are at the vertices of MinPoly. The

overlapping area of these annular regions is the convex polygon Z̄A[i]. Next, we determine the

cost of localization for each i according to Definition 1. The optimal circumscribing polygon is the

polygon that gives the minimum cost of localization. Thus, line 9 gives the Cost of Localization

for target Tj and the cardinality of Tj is equal to the number of sides of the optimal polygon. The

above steps are repeated, to determine the cardinality, Cj and ZA,j for all targets, Tj ∈ T .

3.4.2 Impact on Localization

Figure 3.4 shows the fidelity of localization of the autonomous agents oriented as described

in Algorithm 2. Figure 3.4a shows the reduction in the area of the convex polygons encompassing
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(a) Reduction in the convex polygon

(ZA/ZC) with Cardinality

(b) Cost of Localization vs Cardinality.

Figure 3.4: Accuracy and cost of localization using Algorithm 2. For λ = 0.01, the optimal

cardinality is 5 and the median reduction in the area of the convex polygon is 96%.

the targets over crowdsourced localization. It shows that the higher the number of agents deployed

to the target, the smaller is ZA and the higher is the accuracy of localization. Figure 3.4b shows

the dependence of the optimal cardinality on the trade-off parameter, λ. At larger values of λ the

cost of deploying more agents is higher. Hence, at larger values of λ, a lower cardinality provides

a lower cost of localization.

3.4.3 Impact on Detection

The set homogeneous autonomous agents can be directed to operate at a desirable operating

point on the ROC. Also, since Algorithm 2 positions the agents on the vertices of the optimal

polygon (figure 3.3b) and the SNR is very high at these vertices they guarantee a near optimum

detection result (F-score[56] ≈ 1) regardless of the chosen operating point, as shown in figure 3.2d.

Such a guarantee cannot be made for crowd agents as mandating the crowd to operate at a fixed

operating point may be cost prohibitive. Thus, it is guaranteed that autonomous agents provide

better detection accuracy than crowd agents.

3.5 Step-B: Schedule Autonomous Agents

After ascertaining the improvement in localization based on the optimal cardinality, unique

agents are routed to each target. The starting point of the scheduling phase is the construction of

an undirected, weighted graph G = (V,E) from the road network of the geographical area being

enforced for spectrum policies, where the roads are mapped as edges E and the intersections as
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vertices V . A Path in G = (V,E) is defined as a subgraph P = (Vs, Es), if Vs is a set of k vertices

of its base graph G and Es = {(x1, x2), (x2, x3), ..., (xk−1, xk)} ⊆ E is the set of k − 1 edges that

connect those vertices. The length of a path depends on the number of its edges and their weights,

w(vi, vj) = w(vj, vi). In this paper, the weight associated with each edge is the geographical

distance between the corresponding vertices.

The Cost of Scheduling n agents to visit m targets is the time it takes for all the agents to

cover m targets while satisfying the cardinality for each target. This time is determined by the

agent that takes the longest time to traverse its path. Since, all agents are assumed to travel at

the same speed, the time taken by an agent is determined by the sum of the edge weights of Es.

Finding the costliest path, P = (V s,Es) is the central goal of this work. For practical purposes,

m ≥ n.

Definition 3 (Cost of Scheduling) Given the path Pi of an agent ai of length li, the Cost of Schedul-

ing is the length of the path of the longest travelling agent.

Cost of Scheduling = max∀ic(Pi) = max∀ili

Where, the cost c(.) of a path of k vertices (targets) is the sum of its edge weights,

c(P ) =
k

∑

i=1

w(xi, xi+1)

Definition 4 (Uniqueness) Uniqueness is the necessary condition that requires distinct agents Ai

to visit each target Tj in order to fulfill its cardinality Cj).

For example, if Cj = 2, Uniqueness guarantees that even if agent Ai traverses multiple times

through target Tj , it still needs another agent, other than Ai to visit Tj to fulfill the cardinality of

2. In practice, unique agents provide additional layers of information that can be assimilated for

higher accuracy [1].

Definition 5 (Schedule) Given a set of m targets {T1, T2, ..., Tm} at t1, t2, ..., tm, where tj ∈ V , a

set of n agents {A1, A2, ..., An} at a1, a2, ..., an, where ai ∈ V , m ≥ n, and max∀j(Cj) < n, the

Schedule is to find the paths Pi, ∀Ai ∈ A to visit m targets in the shortest possible time with Cj

unique agents visiting Tj , ∀Tj ∈ T .

The solution is the set of paths, P = {P1, ..., Pn} such that the the cost of scheduling (ac-

cording to Definition 3) is minimum, while ensuring the number of unique agents visiting each
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target Tj is exactly equal to Cj, ∀Tj ∈ T (Definition 2 and 4). The targets can be visited at any

time during their traversal without any constraint of waiting time or synchronization, until the

cardinality is satisfied for each target.

3.5.1 Algorithm for the Schedule

Algorithm 3: Path Pruning Algorithm

1 Function findAgentSchedule(Map, ❛, t, C)

2 targets assigned=[t;...;t];X=[n,...,n]; // Visits Count

3 Ḡ=findMissionGraphs(Map,❛, t);

// Order for all agents to cover all targets

4 [P ,costs] = TSP(Ḡ, ❛, t);

// Compute shortest path to find Schedule

5 while X 6= C do

6 i=0; k=getMax(costs);

// Prune redundant edges

7 while True do

8 l=P[k][end-i];

9 if X [l] > C[l] then

10 targets assigned[k][end-i]=[]; break;

11 end

12 i=i+1;

13 end

// Reevaluate TSP for costliest agent

14 Ḡ[k]=graph(Dijkstra([t,❛(i)],G[k]));

15 [P[k], costs[k]] = TSP(Ḡ[k], ❛[k], targets assigned[k]);

16 X [l]=X [l]-1;

17 end

18 return P , max(costs);

19 end

20 Function findMissionGraphs(Map, ❛, t)

21 City Graph=graph(Map);// Extract connectivity

22 Ḡ=[];// Extract Mission Graph for each agent

23 for i = 0 to size(a) do

24 DistanceMatrix=Dijkstra([t,❛(i)],City Graph)

25 Ḡ[i]=graph([t,❛(i)],DistanceMatrix)

26 end

27 return Ḡ;

28 end

The algorithm is initialized with the locations of the agents, ❛ and the targets, t with corre-

sponding Cardinality C, projected on to a graph G = (V,E) (where V is the vertex set and E is

the edge set), extracted from open source map engines like OpenStreetMap [57]. For one round of

22



enforcement activity, the locations of the targets are assumed to be constant while the agents follow

a schedule to visit the targets. Line 2 in Algorithm 3 initializes these steps. It is assumed that the

Dispatch, where the algorithm is executed has prior information about the initial conditions.

The goal of finding the shortest path between the points in a graph is accomplished by cre-

ating a Mission-Graph for every agent in ❛ as shown in line 3 and the corresponding subroutine in

lines 20 – 28. The Mission-Graph is defined as a complete graph Ḡi = V̄i, Ēi, where, V̄i = T ∪Ai.

The edge weight, w̄(p, q) is the length of the shortest route between nodes p, q ∈ V̄ , computed

using Dijkstra’s shortest path algorithm in lines 24 and 25. In other words, the Mission-Graph

provides the best geographical route for each agent Ai to reach every target Tj and also the shortest

route between any two targets in V̄ . Given, the shortest paths in the Mission-Graph, Line 4 cal-

culates the schedule (order) for each agent to cover all the targets in V̄ in the shortest time, which

is also the sum of edge-weights w̄(p, q) in the path Pi. This is equivalent to solving the TSP for

each agent and dropping the last edge of the TSP tour to obtain the path Pi. Considering the best

achievable performance to solve the TSP for each agent, we utilize the approach in [58].

Pruning for least costly path: Given the objectives in Definitions 2 & 5, the algorithm iteratively

prunes the path of the costliest agent obtained from line 4 (shortest tour on the Mission-Graph) to

find a schedule with the minimum cost of scheduling. Central to the pruning step is the adherence

to the cardinality Cj for each target. This is outlined in Lines 5–17. The pruning begins by selecting

the costliest agent indexed by k (the agent that traverses the longest path) and choosing the farthest

target (indexed by l) that the agent k visits, as indicated in lines 6 and 8 respectively. Line 9 checks

for the condition if the cardinality of this target, C[l] has been fulfilled by other agents visiting it

prior to the agent k. The variable X keeps track of the number of visits for each target, which is

initialized in line 2 with the maximum number of visits possible for each agent, n (max∀j(Cj) < n

in Definition 5). It is decremented by one in line 16 every time a target is removed and the path is

pruned to minimize the cost of scheduling. The intuition behind this approach is that by removing

this redundant node (cardinality already fulfilled) from P [k], it produces a local minima for the

overall time taken among all agents. The condition in line 9 is checked for each target in P [k]

and after all the redundant paths are removed, the shortest route among the remaining targets in

P [k] is computed again using Dijkstra’s algorithm, followed by finding the shortest tour by solving

the TSP [58] in lines 14 and 15 respectively and the visits count variable X is decremented. The

reason for recomputing Dijkstra’s algorithm and the shortest tour in lines 14 and 15 is to ensure

that once a node is removed from the current TSP tour, the weight of the new edge between the
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nodes immediately prior and after the one removed may not be equal to the sum of the two edges

prior to the removal. In other words, if a → b → c is a TSP tour and edge b is removed in line 10

then w(a, c) 6= [w(a, b) + w(b, c)]. Although the inequality strictly depend on the graph G (city

map), it cannot be ascertained a priori and hence line 14 and 15 ensures that the final schedule is

always has the minimum cost. This process (lines 5-17) is repeated until the cardinality is fulfilled

for all targets in t (line 5) and the last calculated shortest tour given by line 15 is the final schedule

for the agents, returned as P along with the final cost of scheduling in line 18.

Example Illustration of Algorithm 3: Figure 3.5 shows an example of the iterative evolution of

Algorithm 3. Figure 3.5a shows a simple city graph, G with edges representing the roads along

with 5 targets and 3 agents located at the intersection of these roads. The cardinality of the targets

T1 − T5 is {2, 1, 3, 2, 3} respectively. After computing the shortest tour in the Mission-Graph for

all agents in lines 3 and 4, the costs (length of the lines) and the resultant paths (order) for each

agent are indicated in Figure 3.5b. In the first iteration, agent A2 travels the longest to cover all the

targets and is identified as the costliest agent. The farthest target in A2’s path is T4. As T4 has a

cardinality of 2, requiring only 2 of the 3 agents to visit, it is considered to have a redundant visit

in A2’s path. In other words, T4 can be visited in shorter time by the other two agents and fulfill

the cardinality of 2. Hence, removing this redundant and costly target T4 from agent A2’s path (as

per lines 9 – 11) reduces the cost of A2’s path while fulfilling the cardinality for all the targets. The

new path for A2 and its cost is determined from the new Mission-Graph (without T4) as per line

14 and 15. Figure 3.5c shows the paths and the costs of the agents at the beginning of Iteration

2. In the second iteration, A1 is determined to be the costliest agent and T4 as the farthest target.

However, as T4 has a cardinality of 2 and has two agents visiting it (including A2). So, this is not

considered as a redundant visit. So, the algorithm continues to look for the farthest target in A1’s

path that has redundant visits, until it detects T2 as the farthest redundant visit, which is removed

from A1’s path. Note, T5 and T3 in A1’s path, both require all three agents to visit as they have

cardinality of 3, hence those two nodes cannot be removed from A1’s path. The updated path and

its corresponding cost is shown in figure 3.5d. Similarly, in the third iteration, A3 is the costliest

agent and T2 is the farthest redundant target in its path (removing other nodes will not meet the

cardinality for those). While the removal of T2 does not improve the cost, as T4 can only be reached

via T2, it should be noted that removal of any targets and the corresponding edges does not increase

the cost (due to the triangular rule governing Euclidean graphs [58]). In Iteration 4, shown in figure

3.5e, A3 is still the costliest agent, and T1 is the farthest redundant target because its cardinality
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(a) City map with 3 agents, 5 tar-

gets with different cardinality and

edge weights

(b) Iter 1: Initial Path Estimate:

A2-costliest agent, T4-farthest re-

dundant target

(c) Iter 2: Remove T4 from A2’s

path. A1-costliest agent, T2-

farthest redundant target

(d) Iter 3: Remove T2 from A1’s

path. A3-costliest agent, T2-

farthest redundant target

(e) Iter 4: Remove T2 from A3’s

path. A3-costliest agent, T1-

farthest redundant target

(f) Iter 5: Remove T1 from A3’s

path, A1- costliest agent with all

cardinality fulfilled

Figure 3.5: Example illustration of Algorithm 3 with 3 agents and 5 targets (T1 - T5 with cardinality

{2, 1, 3, 2, 3} respectively). In each step the costliest agent (longest travelling agent) is identified

and the redundant target (cardinality already fulfilled) is removed. After 5 iterations, Agent A1

is the costliest. This cost is normalized with the diameter of the graph used a cost metric for

evaluation in Section 5. The algorithm also provides the best schedule for the remaining agents.

can be met in shorter time by the other two agents. Consequently, T1 is removed from A3’s path

and after recomputing the new schedule and the path cost the final schedule is obtained as shown

in in figure 3.5f. The cost of scheduling for this graph is the total cost of the A1’s path because that

is the minimum time required to visit all the targets while fulfilling the cardinality.

3.5.2 Analysis of Algorithm 3

We show that the Schedule is NP-hard, hence there is no optimal solution in polynomial

time.

Claim 1. The Schedule is NP-hard.

Proof. Consider a subproblem of the Schedule, with 1 agent having to visit all the targets, with all

the targets having a cardinality of 1. This is equivalent to solving the TSP for that agent. Since, the

TSP is NP-hard and it is a special case of the Schedule, it is inferred to be at least NP hard.
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3.5.3 Complexity of Algorithm 3

In absence of an optimal algorithm, Algorithm 3 yields a solution for the Schedule in poly-

nomial time.

Lemma 1. Algorithm 3 has complexity of O(nm4), where n is the number of agents and m is the

number of targets in G.

Proof. Since the cardinality of the targets is fixed, the number of iterations of Algorithm 3 is

bounded by a fixed number. The algorithm is initiated with all agents visiting all targets (X in

line 3) and executes until each target is visited by a number of agents equal to its cardinality. Each

iteration removes one redundant visit from the costliest agent (as shown in Figure 3.5). So, for each

target Tj , the algorithm executes (n − Cj) times and therefore, the total iterations in Algorithm 3

for all the targets is,

(n− C1) + (n− C2) + ...+ (n− Cm) = m.n−
m
∑

i=1

Ci (3.4)

Recall that, n < m and max∀i∈m(Ci) ≤ n. Hence,

m
∑

i=1

Ci ≤ m.n =⇒ m.n−
m
∑

i=1

Ci ≥ 0 (3.5)

The 3/2-approximation for TSP [58] used in Algorithm 3 has a complexity of O(m3). Since, the

TSP is computed once in every iteration, the complexity of Algorithm 3 is,

=O(m.n−
m
∑

i=1

Ci).O(m3) = O((m.n−
m
∑

i=1

Ci).m
3)

=O(n.m4 −m3.
m
∑

i=1

Ci) = O(n.m4) From (3.5)

Hence, Algorithm 3 has a complexity of O(nm4).

Note: The 2-approximate solution of TSP based on the Minimum Spanning Tree (MST) of the

corresponding graph [59], has a complexity of O(m.log(m)). Using such an implementation in

Algorithm 3, the complexity can be improved to O(n.m2log(m)). Using the MST has the added

advantage of solving the Schedule for non-metric graphs, such as in the presence of traffic the costs
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Table 3.1: Notations used in Section 3.5.4

Notation Interpretation

i Agent i, i ∈ {1, 2, ..., n}

tk Target j, j ∈ {1, 2, ...,m}

Pi Path of Agent i returned by Algorithm 3

P ∗
i Path of Agent i returned by OPT

li Cost of Agent i obtained by Algorithm 3

l∗i Cost of Agent i obtained by OPT

li(tk) Increase in cost of agent i by adding target tk in Algorithm 3

l∗i (tk) Increase in cost of agent i by adding target tk in OPT

T i
x Set of targets visited by both Pi and P ∗

i

T i
y Set of targets visited by Pi, but not by P ∗

i

T i
z Set of targets visited by P ∗

i , but not by Pi

of edges are no longer just a function of distance. This problem is out of scope of this work and

will be investigated in future.

3.5.4 Approximation Ratio for Algorithm 3

In absence of a polynomial time, optimal solution for the Schedule, an approximation ratio

is a bound, which guarantees that any solution from Algorithm 3 is always within a constant factor

of the solution from an optimal algorithm. In other words, using the notations in Table 5.1, if agent

p is the costliest in Algorithm 3 and agent q is the costliest in the optimal algorithm, then lp ≤ 3.l∗q

is provably correct. Let, OPT be the optimal algorithm for the Schedule problem that returns

the paths P ∗
i , ∀i ∈ A, with minimum cost among all the possible paths that fulfills the cardinality

of the targets. It is to be noted, that we do not make assertions on the design of OPT except to

acknowledge that a Minimum Spanning Tree (MST) can be constructed from the targets in any

optimal path P ∗
i , ∀i ∈ A, similar to deriving a solution of the TSP problem (used in Algorithm

3) from a corresponding MST. Also, Pi, ∀i ∈ A, in Algorithm 3 (computed in lines 6–21) can be

obtained using the round-trip MST of the Mission-Graphs (Ḡi) instead of the 3/2-approximate TSP

approach [58]. Under such implementation, we observe that if T i
y = 0, i.e. targets in Pi ⊆ targets

in P ∗
i , then by the construction of MST [60] we observe Property 1.

Property 1. If T i
y = 0, then li is no worse than twice the optimal cost l∗i . i.e, li ≤ 2.l∗i .

Furthermore, the following properties can be observed based on the design of Algorithm 3
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and the definition of OPT .

Property 2. Since, Algorithm 3 and OPT both return the costliest paths among all the agents (say

lp and l∗q ), the paths travelled by any other agent, must not be costlier than lp or l∗q . Thus, for any

agent i ∈ A we have, li ≤ lp for Algorithm 3 and l∗i ≤ l∗q for OPT .

Property 3. In Algorithm 3 and OPT , all targets must be visited by the same number of agents

(Definition 2 in S4.2).

Property 4. If a target tk is removed from an agent i’s path, it must have been the costliest path at

some prior iteration of the algorithm (line 8–15). So, if agent p is the costliest agent at the end of

the algorithm, the increase in agent i for visiting tk must be such that li + li(tk) ≥ lp.

Property 5. From Table 5.1, we can express the costs li and l∗i of agent i as,

li = li(T
i
x) + li(T

i
y)

l∗i = l∗i (T
i
x) + l∗i (T

i
z)

Theorem 1. Algorithm 3 is 3-approximation for the Scheduling Problem.

Proof Overview: Let the costliest paths returned by Algorithm 3 and OPT be lp and l∗q respec-

tively. Our goal is to find a relationship between these two quantities, by first establishing an

inequality between the costs of the same agent in Algorithm 3 and OPT, and then using the in-

equality and the properties to relate the costs of different agents in the two algorithms. This result

is used to relate the costs of agents which have non-overlapping targets in the paths obtained from

Algorithm 3 and OPT. We consider two cases: 1) The targets in Pp ⊆ the targets in P ∗
p and 2) The

targets in Pp * the targets in P ∗
p .

The complete proof of the approximation ratio is detailed in Appendix A.

3.6 3D Localization and Detection

In general, the targets can be located in a 3-dimensional space. For infractions that occur

at ground level or low elevations, Unmanned Ground Vehicles (UGVs) are sufficient for desired

accuracy of localization and detection. However, for targets in higher elevations (e.g., drones) or

in high-rise buildings, Unmanned Aerial Vehicles (UAVs) are a better choice. UAV systems have

28



broader perception [61], better tracking, and a higher degree of flexibility in terms of mobility

compared to UGVs, but may be constrained in terms of battery life, and radio resources. On the

other hand, UGVs are more capable of patrolling larger areas, carry higher payload and radio

equipment and can act as a mother-ship for the UAVs. Coordinated as a team, UGVs and UAVs

can deliver exponentially more effective operations than as separate, non-integrated systems. The

accuracy of localization of targets in 3D space can be improved by deploying UAVs as it has low

3D-GDOP and the volume of the estimated convex polyhedron containing the target is reduced7.

Moreover, since UAVs are able to navigate closer to the infractions, the SNR of the received signal

is very high, leading to high accuracy of detection.

3.6.1 Outdoor-to-Indoor path loss

The trilateration based localization for targets located in 3D (typically within buildings) is

dictated by the Outdoor-to-Indoor (O2I) building penetration loss is modelled [64],

PL = PLout + PLin + PLtw +N
(

0, σ2
P

)

(3.6)

PLout=A+B log(d)+C and PLin=0.5d2D−in

PLtw=PLnpi−10 log10

N
∑

i=1

(

pi × 10−0.1Lmaterial i
)

where PL [dBm]=Pt [dBm] − SNR [dB] − PN [dBm]. PLout is the outdoor path loss as in (3.1).

The distance to the target, d is a function of PLout. PLin is the inside loss dependent on the depth

into the building, and d2D−in is a single, link-specific, uniformly distributed variable between 0

and 25 m for Urban environments [64]. PLtw is the building penetration loss through the external

wall with standard deviation σP . PLnpi is an additional loss added to the external wall loss to

account for non-perpendicular incidence. Lmaterial
−
i = amaterial

−
i + fc · bmaterial

−i
is the penetration

loss of material i and pi is proportion of ith material, where
∑N

i=1 pi = 1 and N is the number of

materials. The value of Lmaterial
−
i for a building is determined by the construction material (from

OpenStreetMap[57]) and its penetration loss [64]. From (3.6), the distance d from each Agent to

the Target is,

d = 10(
PL−PLin−PLtw−A−C

B ) (3.7)

7Regulations by the FAA [62], impose restrictions on path planning of UAVs above 400 ft and above groups of

people. These regulations may be wavered [63], and are subject to constant revision.
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(a) UGV localization and ZA,3D.

The 2D projection of ZA,3D is

ZA,2D. Polygon around ZA,2D is

shown

(b) UAVs are deployed to the

vertices ofpolygon around ZA,2D

and at height hUAV .

(c) Comparison of localization

accuracy for UGVs and UAVs

Figure 3.6: (a) Localization of a target at a high elevation from UGV agents. The 2D projection of

ZA,3D is ZA,2D. Polygon around ZA,2D is shown, (b) The UAV agents are scheduled to the vertices

of a polygon around ZA,2D and at an elevation hUAV , (c) The volume of the estimated polyhedron

is much less for UAVs, showing ≈ 70% improvement.

This estimated range range along with the noise model (in S3.2) produces the 3D annular region

as shown in figure 3.6a. In presence of multiple Agents, the intersection of these 3D regions result

in a convex polyhedron, that contain the target.

3.6.2 3D Trilateration

In the context of the 3D localization problem, let the UGV estimates of the locations of the

set of m targets be tA,3D. Let the set of m convex polyhedrons for targets T , as determined by the

UGV and UAV based localization, be ZA,3D and Z ′
A respectively. ZA,3D and tA,3D is determined by

Algorithm 2 for targets distributed in 3D. tA,3D are the centroids of ZA,3D. Algorithm 4 computes

the 3D localization. ZA,2D and tA,2D are the 2D projection of ZA,3D and tA,3D on to the city map,

as shown in line 2 figure 3.6a.

Algorithm 4: Algorithm to perform 3D Localization

1 Function do3DLocalization(Map, ZA,3D, tA,3D, ❈)

2 tA,2D = tA,3D[:,1:2]; ZA,2D = ZA,3D[:,1:2]; σh = 20m
3 [xUAV , yUAV ] = findMinPoly(ZA,2D, C);
4 hUAV ∼ N (tA,3D[:, 3], σh);
5 Z ′

A = findConvexPoly([xUAV , yUAV , hUAV ], tA,3D);

6 return Z ′
A;

7 end

We deploy the same number of UAVs to each target as UGVs (equal to the cardinality, C[j]

of each target, Tj). The x and y coordinates of the UAVs are the vertices of the minimum polygon
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(with a number of sides equal to the cardinality of each target) circumscribing each convex poly-

hedron in the set, ZA,2D as in line 3. The heights of each UAV is sampled from the normal distri-

bution, N (tA,3D[:, 3], σh). Line 5 calculates the 3D convex regions Z ′
A, when i UAVs are deployed

to [xUAV , yUAV , hUAV ]. This step involves, computing the 3D annular regions and trilaterating as

described in S3.6.1 assuming that the target is at tA,3D and the agents are at [xUAV , yUAV , hUAV ].

The overlapping volume of these 3D annular regions is the convex polyhedron Z ′
A. Circumscrib-

ing the estimates tA,3D at different elevations improves the accuracy of localization (reduces the

volume of Z ′
A) and the likelihood of the target being located in Z ′

A. Each agent has a complete

topological view of the geographical area of interest (city). The exact location of each building

on the city map is extracted from [57] and the dimension of each building is obtained from city

databases such as [65]. For targets approximately located in buildings (as estimated from Z ′
A), the

3D convex polyhedron containing the target can be further reduced by considering its overlap with

the building dimensions, thereby increasing the accuracy of localization. Figure 3.6c shows the

performance of UGV and UAV localization for 1000 targets scattered at various elevations (less

than 100m) and achieve ≈70% improvement in localization accuracy.
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CHAPTER 4

SenseChain: Blockchain based Distributed Fusion System

Autonomous enforcement of spectrum policies requires the distributed fusion of sensing results

from a set of trust-less spatially scattered sensors to detect and localize spectrum violations with

the highest possible accuracy. In SenseChain, we leverage the distributed consensus mechanism

employed in Blockchain networks to record sensing reports and accrue the reputation of sensors,

leading to a highly reliable and accurate enforcement system. Specifically, we define and analyze

a detection mechanism to identify falsifying sensors using a distributed anomaly detection system

and use the Blockchain to record the individual’s behavior. The reputation is then based on the

combination of the difficulty level of the consensus method and the degree of falsehood in the

reported sensor values. The recorded sensing information and the reputation of the sensors are

used to make credible inferences without relying on centralized, explicitly trusted entities.

4.1 Overview of SenseChain

Recent interest in applying Distributed Ledger Technology (DLT) like Blockchain, beyond

cryptocurrencies [66, 42] has led to creative applications that maintain the integrity of transactions

while assuring provenance of information being transacted on. Smart Contracts [67] are often seen

as a viable way of deploying these transactional systems on a Blockchain. While such applications

benefit from continued proliferation of DLT platforms (e.g. Ethereum, Hyperledger, Hashgraph,

etc), these are fundamentally restricted to the features of such platforms that limit the innovation

and scope for new applications. Interestingly, the core features of DLTs like immutability and dis-

tributed validation of transactions can be found in many applications that rely on data aggregation

and dissemination among untrustworthy entities. Central to this, is the definition of Transaction

and Consensus. While transactions are unique entries in an electronic ledger that encapsulate ex-

change of valuables (money, goods, data, etc.) between multiple parties in a cryptographically se-

cure manner, consensus is responsible for all the constituents in a network to agree on one common

version of the ledger without involving globally trusted intermediaries (e.g., trusted web servers

or human arbiters like lawyers etc.). We envision a connected world of Things where instead of

any one universal Blockchain for a gamut of applications (Ethereum, Hyperledger, etc.), there
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are numerous independent islands of DLTs, employing proprietary definitions of transactions and

consensus algorithms that are tailored for specific applications. In practice there are no technical

barriers to implement such an idea, unless it needs to scale with a global footprint. We believe that

many applications need not be scaled beyond a certain geographical area or a small interconnected

network like a Smart-City, Smart-Home, Micro-grid and Mobile Adhoc Network (MANET) of

sensors.

SenseChain is such an example, where distributed sensors detecting violation of spectrum

access policies (malicious or otherwise) can take advantage of Blockchain technology to record

and disseminate sensing information among the distributed sensors, while benefiting from the core

properties of DLT. In the post sensing phase, the sensing results may be incorrectly reported by

agents with a malicious intent to disrupt the information fusion. Therefore, SenseChain also

includes an anomaly detection system that separates the good actions from the bad and then assign

a reputation metric to each sensor based on individual actions. This reputation can then be utilized

in fusing the results of the sensors via a weighted function. The challenge in such reputation

based systems is an implicit reliance on a separate trusted infrastructure to detect falsifying sensors

and disseminate reputation metric. SenseChain eliminates such restrictions by assigning the

task of validation to the sensors itself and requiring to compute a Proof-of-Work to include their

validation in the Blockchain. Thus, the Blockchain serves as a historical ledger of sensing reports

and anomalous behaviour of sensors since the genesis of the enforcement system, that is immutable

and is available to all the nodes in the network.

Figure 4.1a shows a distributed spectrum enforcement scenario, where certain agents assume

the role of Sensor (red circles) while others assume the role of Validator (blue squares). Each sensor

broadcasts their sensing results for peer validation, which may include false reports from some

of the sensors. Depending on the reception zone (based on transmit power of the sensors) each

Validator is tasked with identifying false reports for different number of sensors as highlighted by

the green area in figure 4.1a. The first step is to estimate the approximate location of the transmitter

based on the reported sensor values. There are many such examples in the literature using a variety

of methods like multilateration [68], centroid [69], clustering, etc [70]. All of these methods

estimate the location of the transmitter with some degree of uncertainty that can be modeled as

an error term, derr in figure 4.1a, around the true location of the transmitter (which is unknown to

the validators). Guided by the estimated position of the transmitter and the characteristics of derr,

Validators use the Log-distance path loss model to validate the reported SNR of the sensors using
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Figure 4.1: SenseChain: Distributed agents can interchange roles as Sensor or Validator. Each

Validator assesses false sensor reports, assigns confidence scores and creates transactions for each

peer sensor. Transaction blocks are mined with Proof-of-Work difficulty proportional to number

of sensors in a block.

its own sensed SNR and distance to transmitter as a reference. This results in an annulus validation

zone for each sensor within the broadcast zone. Consequently, if a sensor is outside the annulus,

it is concluded as a bad action with high certainty, while a score is calculated proportional to the

thickness of the annulus if the sensor lies inside the annulus. In the context of this work, we define

this validation step as anomaly detection.

The anomaly detection phase is followed by recording the confidence score in the Blockchain

for provenance and calculation of historical reputation. Figure 4.1b shows the protocol that also

includes the Blockchain based accumulation of this reputation metric. The confidence score for

each sensor along with the sensing values constitute a transaction and a block is mined by the

Validator for all the sensors it validates. In SenseChain the role of Blockchain is two fold: 1)

Provide an immutable record of sensing reports and anomalous behavior by the sensors and 2) By

requiring the Difficulty for mining to be proportional to the number of sensors being validated, it

acts as a measure of credibility of the validators as well. The mined blocks are multicast within the

Validators to converge on the block that is mined with the highest difficulty as it is deemed as the

most credible validation for the set of sensors included in that block. We define this as the Most-

Difficult-Chain consensus. Once each Validator gets an updated Blockchain state, it broadcasts

that to its validated sensors to update their local states as well. In that way, in the following round
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if any sensor chooses to assume the role of a validator it will always have historical confidence

scores that is used to calculate the most current reputation of the sensor. The design and analysis

of SenseChain is detailed in Chapter 4.

4.2 Models and Preliminaries

System Model: Let S={s1, . . . , sN} be the set of N sensors in the area. Let V={v1, . . . , vM} be

the set of M validators in the area. The target that is being sensed is denoted by T . The target may

be a primary user, a rogue source or a transmitter to be localized. The sensors and validators are

mobile entities with omnidirectional antennas and have a limited broadcast range. The validators

have their own overlay network to communicate among themselves. Validators and sensors are

mobile crowd devices. Devices with more processing capabilities assume the role of a validator.

As such, typically there are much more crowd sensors than validators (i.e., M≪N ).

Sensing Model: Each sensor si ∈ S senses the target T and reports the SNR and location. The

sensors may report additional parameters like the probability of detection (Pdi) and probability

of false alarms (Pfi). The validators rely on the SNR and location for anomaly detection and to

assign reputations to sensors. The reputations of sensors can be used by the validators to fuse the

information of sensors for more reliable inference. The weighted aggregation of Pd and Pf as in

[1], using the normalized reputations as weights would increase the credibility of detection. e.g.,

P fused
d =

∑

i wiPdi , where wi is the reputation of sensor si normalized by the aggregate reputation

of all the sensors. Similarly, the weighted localization as in [71], using the normalized reputations

leads to more credible and accurate localization.

Blockchain Model: Each validator, vj receives the sensing reports (referred to as ‘transactions’)

from all the sensors within a finite range (referred to as a ‘Validator Range’) within a fixed du-

ration (referred to as the ‘sensing phase’). The validator detects whether the report is valid or an

anomaly, evaluates and appends a confidence score to each transaction from all sensors within its

range. These transactions are aggregated by the validator to create a candidate block with a certain

difficulty (Proof of Work [72]). Each validator appends its candidate block to the blockchain which

is then broadcasted to all the validators. The validators arrive at a consensus on the most difficult

blockchain. The blockchain is used to extract the reputation of each sensor. This work does not

rely on a specific type of financial incentive mechanism, any approach that rewards the validators

for their effort (Difficulty) [73] and the sensors according to their reputation is valid.
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Threat Model: 1) Malicious Sensors (Sensing threat): The sensors may falsify either their re-

ported SNR, their reported location or both. 2) Malicious Validators (Validation threat): The val-

idators may forge information in the block they create by falsifying the confidence scores. Since,

the validators may assume the role of a sensor, whose reputation depends on the reputation-

weighted fusion of reports from other sensors, the validators are intrinsically discouraged from

falsifying.

Protocol: There are three key phases of activity in SenseChain that each entity in the system

adheres to: 1) Sensing Phase: the sensors sense the target and report their findings to the validators

in the vicinity, 2) Validation Phase: the validators assess the truthfulness of the reports and creates

a block by aggregating the reports, and 3) Blockchain Phase: the validators broadcast mined blocks

to arrive at consensuses on the Blockchain before calculating the reputation of sensors.

In the sensing phase, each sensor si ∈ S senses the target T , and creates a report with its

perceived signal-to-noise ratio (SNR), SNRi and an estimate of its location, Loci and broadcasts

the report, [SNR,Loc]i to all the validators. Additionally, the sensors may report other sensing

parameters depending on the application of interest. However, for applications in wireless com-

munications, the SNR and the location are identified as fundamental sensing parameters that all

sensors must report. A sketch of the protocol steps is shown in figure 4.1b. It is to be noted that

there is not explicit synchrony in the network and all nodes will converge at the same Blockchain

state eventually by employing the most-difficult-chain rule described in subsequent sections.

4.3 Anomaly Detection

The goal of anomaly detection is to gauge the truthfulness of a sensor in a distributed manner,

using only the fundamental sensing information that is reported by the sensor. In the validation

phase, each validator vj∈V receives the reports from all the sensors located within the ‘Validator

Range’ (limited to a distance R around the validator). Algorithm 5 describes the anomaly detection

performed by each validator.

First, the validator vj∈V estimates the region most likely to contain the target T using the

reports from the sensors as in line 4. This is done using a multilateration based localization [74]

using a reputation-weighted fusion [71] of the sensing reports. The centroid of the estimated region

is taken as the location estimate of the target, denoted by LocT . The estimated location of the target

may vary from the true location due to two major reasons: 1) potential falsification in the sensing
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Algorithm 5: Anomaly Detection Algorithm

1 Function AnomalyDetection(Map, [SNR,Loc])
2 R = 100; d0 = Diameter(Map);
3 nvj = count([SNR,Loc]);
4 [LocT , derr]=DistributedTargetLocalization([SNR,Loc]);
5 dvj = EuclideanDistance(LocT , Locvj );

6 for i=1:nvj do

7 [dmin
si

, dmax
si

] = Estimate Annulus as in Section 4.3.1;

8 d̂s = EuclideanDistance(LocT , Loc
i);

9 if (d̂s≥dmin
s & d̂s≤dmax

s ) & (dmax
s −dmin

s <R) then

10 Ssi = 1−
(dmax

si
−dmin

si
)

d0

11 else

12 Ssi = 0;

13 end

14 end

15 return Ssi for all si ∈ S

16 end

reports from malicious sensors, and 2) inaccuracies in the path loss model, receiver heterogeneity

and other noise sources. The effect of falsified sensing reports on the localization of the target

can be mitigated by clustering the location estimates similar to [75]. To account for any errors in

the estimated location, we model the error in the location estimate and the true location using the

random variable derr. This represents the circular region with a radius equal to derr around the

estimated location, that is likely to include the true location of the target. This is shown in figure

4.1a. The distance from the target to the validator vj , denoted by dvj is estimated as the euclidean

distance between the estimated location of the target, LocT and the location of the validator, Locvj

(line 5). Due to the uncertainty in the location of the target, the true distance from the target to the

validator will be a value in the interval [(dvj−derr), (dvj+derr)].

Lines 6-14 detail the steps involved in the detection of anomalies for each sensor si ∈ S .

The core of the anomaly detection algorithm involves two steps: 1. based on the SNR reported by

sensor si, the validator determines an annular region which should contain the sensor, and 2. if the

sensor’s reported location lies outside the estimated annulus, it is considered an anomaly.

4.3.1 Estimation of the annulus validation zone

Using the reported SNR, SNRi the validator evaluates the received power, Pr,si experienced

by the signal transmitted from the target at each sensor si. The average noise floor (NF ) for a

short range communication, similar to 802.11a/g, is approximately −96dBm [76]. Thus, (Pr,si) is
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given by,

Pr,si(dBm) = SNRi(dB) +NF (−96dBm) (4.1)

The validator estimates the distance to the target using the Log-distance path loss model [77],

PLsi = PLvj + 10γ log10
dsi
dvj

+ χ (4.2)

where PLsi and PLvj is the path loss experienced by the transmission from the target at sensor si

and validator vj respectively, and dsi is the true distance to the sensor from the target. γ is the path

loss exponent and χ is a zero-mean gaussian random variable to account for the shadowing effect.

Since the path loss is equal to the difference between the transmitted and received powers, and the

transmitted power (of the target) remains constant during the sensing phase, we can rewrite (4.2)

in terms of the received power as,

−Pr,si = −Pr,vj + 10γ log10
dsi
dvj

+ χ (4.3)

where Pr,vj is the received power from the signal transmitted from the target at the validator vj .

Note, that since the estimate of dvj is erroneous, the estimate of dsi from (4.3) will lie within a

range, [dmin
si

, dmax
si

]. The distance from the target to each sensor si, denoted by d̂si is estimated as

the euclidean distance between the estimated location of the target, LocT and the reported location

of the sensor, Loci (line 8).

The annular region estimated for sensor si by validator vj is centered at the location of the

target, LocT and defined by the inner and outer radii, dmin
si

and dmax
si

respectively. dmin
si

and dmax
si

is

calculated from (4.3) as,

dmin
si

= (dvj − derr)× 10

(

Pr,vj
−Pr,si

−χ

10γ

)

dmax
si

= (dvj + derr)× 10

(

Pr,vj
−Pr,si

−χ

10γ

)

(4.4)

The thickness of the annulus is given by (dmax
si

−dmin
si

). By considering the minimum and maximum

values of dvj in (4.4), we account for the impact on the annulus, by the error in the estimated and

true location of the target. i.e., when the target is located anywhere within the circle as shown in
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Figure 4.2: Anomaly detection: When reported sensor location is outside the annulus it is detected

as an anomaly else it is associated with a confidence score to represent its truthfulness.

figure 4.1a, the distance from the target to the sensor is bounded in the interval [dmin
si

, dmax
si

]. This

is because dmin
si

, dmax
si

represent the distance to the sensor from the closest and furthest possible

location of the target respectively. The annular regions estimated by a validator v1 for several

sensors is shown in figure 4.2.

4.3.2 Anomalies and confidence score

Any falsification in the reported [SNR,Loc]i can be identified in two steps:

• If the validator received a report from a sensor si, whose reported location, Loci is outside

the range of the validator, it is flagged as an anomaly. i.e., if (dsi − dvj) > R, then sensor si

must have falsified.

• If the reported location of the sensor does not exist in the estimated annulus computed by

the validator based on the reported SNRi, then it is also flagged as an anomaly. i.e., if

d̂si < dmin
si

or d̂si > dmax
si

, then sensor si must have falsified. In figure 4.2, s2 is detected as

a falsifying sensor.

Note that, it is only important to detect falsifications in the sensor report, it is not required to

identify the type of falsification (i.e., whether a sensor falsified in its reported SNR or location or

both).

If dmin
si

≤ d̂si ≤ dmax
si

, the sensor report may have been truthful with a confidence level. In

figure 4.2 reports from s1 and s3 are not detected as anomalies. Since annulus estimated for s3
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is smaller, and the reported location of s3 is within the annulus, s3 must have reported the truth

or falsified by an insignificant amount. Thus, s3 is more likely to be truthful than s1. The larger

the thickness of the annulus, the higher uncertainty in the truthfulness of the sensor. Thus, the

thickness of the annulus serves as a measure of the confidence on the truthfulness of the sensor.

The confidence score of a sensor si, denoted by Ssi is defined as, the normalized thickness of the

annulus,

Ssi=























1−
(dmax

si
−dmin

si
)

d0
, if (dmin

si
≤d̂si≤dmax

si
) &

(dmax
si

−dmin
si

<R)

0 , otherwise

(4.5)

where, d0 is a reference distance (the diameter of the region of interest) used for normalization.

When a sensor falsifies information and it is flagged as an anomaly it would be assigned a confi-

dence score of 0. When most of the sensors in the validator range are truthful, the thickness of the

estimated annulus would be very small (since derr is small), and the confidence in the truthfulness

of the sensors increases (i.e., Ssi is close to 1). If most of the sensors falsify, the thickness of

the annulus is large (since derr is large) and the uncertainty in the truthfulness increases. i.e., a

falsifying sensor may not be detected as an anomaly. However, in this case, the score assigned to

the falsifying sensor would be smaller than 1.

4.4 Blockchain based reputation

Algorithm 6 describes the blockchain related functionality of each validator. For each sens-

ing report, the validators prepare a transaction, by including a transaction id, a sensor id, the sensing

report [SNR,Loc]i and the confidence score for that report, as shown in line 4 and figure 4.3. The

transactions for all the sensors are aggregated (line 6) and are ready to be inserted in to a block.

The process of creating a block is called mining and is outlined in lines 7 and 8. Figure 4.4 depicts

the structure of the Blockchain and its key features. Each block is composed of a block header and

a block body which contains the list of transactions from the sensors. The block header includes

the hash of the block, the hash of the previous block, the difficulty target for that block, a nonce

and a timestamp. The merkle root field represents the hash value of the current block. Merkle tree

hashing is commonly used in distributed systems and P2P networks for efficient data verification

[78]. The nonce field is used for the proof-of-work algorithm, and it is the trial counter value that
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Algorithm 6: Blockchain based Reputation Algorithm

1 Function Reputation(Ssi∀si∈S , [SNR,Loc], N , Blockchain)

2 nvj = count([SNR,Loc]);
3 for i=1:nvj do

4 transaction = < transID, sensorID, [SNR,Loc]i, Ssi >;

5 end

6 transactions = Aggragate all transactions;

7 Evaluate Difficulty of vj , Dvj from (4.6);

8 Block = CreateBlockwithDifficulty(transactions,Dvj );

9 CandidateBlockchain = Add Block to Blockchain;

10 Broadcast CandidateBlockchain to all validators;

// Consensus on Most-Difficult-Chain

11 Wait for Block-wait-time (τB) = 7s;

12 Receive all Candidate Blockchains;

13 Blockchain = Select Most Difficult Blockchain;

14 for i=1:N do

15 Evaluate Reputation of si, Rsi from (A.1);

16 end

17 return R, Blockchain;

18 end

produced the hash with leading zeros. The difficulty target specifies the number of leading zero

bits that the hash should contain to be considered valid. The implementation details are outlined in

Section 5.

4.4.1 Difficulty of mining

When a new validator joins a network of validators, it gets a copy of the current blockchain.

In addition to anomaly detection, validators also perform the functions of a blockchain miner [73].

Each validator generates a block B by aggregating the transactions, iterating over a nonce value

and calculating the hash of a block with the nonce value included [72]. For the block B to be

considered valid, a value of a hash function has to be less than a target T , i.e., hash(B) < T, where

hash is a cryptographic hash function. The process of creating a valid block, typically requires

a large amount of effort, which serves as a Proof-of-Work for the validators. The difficulty is a

measure of how hard it is to find a hash below a given target T [79]. Unlike in many blockchain

implementations we use a heterogeneous difficulty assignment mechanism, where each validator

is assigned a different difficulty target. We define the difficulty of each validator vj ∈ V as,

Dvj =

⌈

Dmax ×
nvj

N

⌉

∀vj ∈ V (4.6)
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difficulty changes from block to block depending on the most difficult block that was successfully

mined.

where nvj is the number of sensors within the Validator Range R for validator vj , and Dmax is the

maximum difficulty (designer’s choice). By requiring the Difficulty for mining to be proportional

to the number of sensors being validated, it acts as a measure of credibility of the validators as

well. The difficulty assumes an integer value in the interval [1, Dmax], and represents the number

of leading zero bits in the target T . An example of valid blocks (with valid hashes) created by

validators with different difficulty targets is shown in figure 4.3.

Blockchain Structure: The average time for a validator to create a valid block is directly propor-

tional to the difficulty of the target and inversely proportional to the average hash rate [80]. All

the validators are assumed to have the same mining power (hash rate). Thus, a validator assigned

with a higher difficulty target would on average, take a longer time to mine a block compared to a
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validator with a lower difficulty target. Validators are rewarded according to their effort (the dif-

ficulty). Each validator contends with all the other validators in the entire area in creating a valid

block.

Lines 7-10 describe the validators’ functions in creating a blockchain with a valid block.

Each validator first determines it’s mandated difficulty level using (4.6). Then the validator creates

a valid block with the assigned difficulty level as discussed above, by incorporating the pool of

transactions. Once a valid block is created it is added to the current blockchain and broadcasted.

To provide sufficient time for all validators (with different difficulty levels) to generate a valid

block, the validators wait for a fixed amount of time (referred to as the ‘Block-wait time’ denoted

by τB) to receive all the broadcasted candidate blockchains. The block time is set by design to

account for the block mining time, the propagation time of blocks to reach all validators, and for

all validators to reach a consensus. Since, the propagation time is much less than the block mining

time, the value of τB is determined empirically, as the average time required to mine a block with

a difficulty of Dmax. All the validators in the network receive the candidate blockchains. The

validators wait till the end of the ‘Block-wait time’, τB, and select the candidate blockchain with

the most difficulty as the valid blockchain as discussed in the following section.

Choice of Maximum Difficulty (Dmax): A higher maximum difficulty (Dmax), sets a lower target

value for the calculated hash [72] and determines the value of τB. For a lower Dmax (a high target

value), validators can generate a valid block faster, with low computation cost, so the delay in

disseminating the information (reputation) is less. However, blockchain forks may occur more

frequently and the security (immutability) of the blockchain itself is lowered. This is because the

amount of computation required by validators to generate a valid block is also less. Thus, there is

a trade-off between the computational power (or the delay in settlements) and the level of security.

4.4.2 Most-Difficult-Chain consensus

The validators select the candidate Blockchain with the highest difficulty, which is termed

as the Most-Difficult-Chain rule (unlike the Longest-chain rule in Bitcoin [73]). In the event that

multiple validators succeed in creating a block, the blockchain may fork. Even if a blockchain fork

occurs, the blockchain would converge, because each validator selects the chain with the highest

aggregate difficulty and generate a new block following the most difficult blockchain. Even though

blocks are mined and may arrive at the validators at different times, the chain can be synchronized
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by exchanging status messages between the validators similar to [81].

The difficulty defined in (4.6) is proportional to the number of sensors within the range of

a validator. Thus the most difficult block corresponds to the validator with the most number of

sensors, which makes the most credible inference by harnessing the power of the crowd. Since

the validator creates one transaction for each sensor within it’s range, the difficulty of a block is

proportional to the number of transactions in the block. Hence, the most difficult chain is the

blockchain with the most number of transactions (scores and sensing data). The reputation of sen-

sors’ are assigned based on their transactions. Thus, the most difficult blockchain would contribute

to the most credible assignment of reputation for sensors and would contribute to reliable inference

using sensing data.

Figure 4.5 shows an example of the consensus on the most-difficult blockchain among 5

validators. Before round l, a majority of the validators arrive at consensus on a blockchain. Each

round involves a sensing, validation and a blockchain exchange phase. In round l, a valid block

is created by validators v1, v3 and v4. Note that validators v2 and v5 were unable to create a valid

block within time τB. Each validator adds its own block to the blockchain and multicasts it to

all other validators. Due to the various delays in mining and propagation time, the validators

may have different local views of the blockchain state. To guarantee the consensus properties

and thus convergence to one canonical blockchain state, the SenseChain protocol relies on the
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assumption that the majority of the consensus validators follow the most-difficult chain. Thereby,

in round l the blockchain with the highest aggregate difficulty, i.e., the blockchain from v4 is agreed

upon as the canonical blockchain state by the majority. Similarly, in rounds l + 1 and l + 2 the

blockchains from v2 and v3 respectively, represent the canonical blockchain states.

4.5 Historical reputation and provenance

The reputation of a sensor si is calculated from the information stored in the blockchain.

Let l = 1, . . . , L represent the L blocks in the blockchain. For a blockchain of length L, the

reputation is defined by the non-linear sigmoid function [82], whose exponent is the historical

weighted average of the difficulty of the block, Dl and the scaled confidence scores of the sensor

recorded in that block, Ssi,l and is defined as,

Rsi =
1

1 + e−expsi
(4.7)

where, expsi =
β
∑L

l=1 ai,lDl(2Ssi,l − 1)

L.Dmax

∑L

l=1 ai,l

where ai,l represents the association of sensor si with block l. ai,l=1 if block l contains information

about si, and ai,l=0 otherwise. β = 8 is a sensitivity factor that asymptotically drives the sigmoid

reputation function Rsi to a value of 1 (or 0), when the exponent is largely positive (or negative)

respectively. The term (2Ssi,l − 1), scales the confidence score so that the resulting value is in

the interval [−1, 1]. Note that the reputation of each sensor is calculated by the validator, by

using the most-difficult-chain, scanning through all the blocks, extracting the confidence scores

and difficulties of each block. Even though a malicious validator may forge information in its

current block, since the reputation calculation relies on all records from the genesis block and

due to the immutability of the blockchain, the impact on the calculated reputation of a sensor will

be very small as the blockchain grows. The reputation Rsi assumes a value in between 0 and 1.

When a sensor continuously acts truthfully (or maliciously), the confidence scores recorded for

that sensor in each block would be close to 1 (or 0), asymptotically driving the reputation Rsi to

a value of 1 (or 0) respectively. The nonlinear nature of the reputation function ensures that a

sensor which engages vastly in either truthful or false behaviour would have a reputation of 1 or

0 respectively. Over time, this allows the validators to identify sensors that are always truthful or

always malicious. Reputation of sensors that frequently alter their behaviour is subject to more
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pronounced variation. Thus, the reputation of a sensor serves as a measure of the credibility of it’s

reports. The validators use the reputation of sensors assimilated over time to perform reputation

weighted fusion of the sensing data in order to accurately detect and localize the target.

4.6 Reputation weighted Fusion

Agents sense the spectrum infractions and report fundamental sensing parameters such as

SNR and location and possibly auxiliary parameters like the probability of detection (Pdi) and

probability of false alarms (Pfi). The reputations of sensors is used by the validators to fuse

the information of the distributed trust-less sensors for more reliable inference. This is achieved

by performing a reputation-weighted aggregation of sensing results. For example, the weighted

aggregation of Pd and Pf as in [1], using the normalized reputations as weights increases the

credibility of detection result. e.g., P fused
d =

∑

i wiPdi , where wi is the reputation of sensor si

normalized by the aggregate reputation of all the sensors defined as wi=Rsi/
∑

i Rsi . Similarly,

the weighted localization as in [71], using the normalized reputations leads to more credible and

accurate localization. Thus, the reputation-based weighted fusion of sensing information from

trust-less agents enables credible and accurate distributed enforcement of spectrum policies.
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CHAPTER 5

Evaluation and Results

5.1 Performance Evaluation of Autonomous Sensing System

For practicality, the algorithm was evaluated in three prominent cities: New York City

(NYC), Paris and London, primarily to understand the performance on different graphs, with the

roads mapped as edges, and the intersections to vertices. To compare the outcome of Algorithm

3 among different cities, the cost metric (Definition 3) is normalized by the diameter of the graph

and its unit is represented as km/km. For a rectangular area, the diameter is simply the diagonal.

The choice of these three cities were attributed to the unique features of their road networks and

intersections. The New York City map exhibited a dominantly grid-based uniform structure, while

the Paris Network included a central star connected hub with roads protruding out from it and the

London Network was comprised of dominant common edges in the form of bridges connecting

sets of nodes. Figure 5.1 shows the cost metric and paths for one instance in each of the cities

where 5 agents are routed using Algorithm 3 among 10 targets with different cardinality. For this

particular instance, Paris exhibits the highest cost followed by London with NYC exhibiting the

least cost. This behaviour is attributed to the features of the road network in these cities. In Paris,

the agents have to travel via the central hub to cover the targets. A similar feature exists in Lon-

don with the bridges providing the links between targets on either side of the river. Both of these

features contribute to higher travel time. In comparison, NYC has highly connected, grid-like road

(a) Example routing in London,

cost metric = 1.2317km/km
(b) Example routing in NYC,

cost metric = 1.5393km/km
(c) Example routing in Paris, cost

metric = 1.9896km/km

Figure 5.1: Example routes and the normalized cost metric (km/km) for Algorithm 3 for 5 agents

and 10 targets for (a) London, (b) NYC and (c) Paris. It shows how the road network influence the

cost metric
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(a) Normalized cost metric in Lon-

don

(b) Normalized cost metric in

NYC

(c) Normalized cost metric in Paris

Figure 5.2: Normalized cost metric for Average Cardinality = 3 for (a) London (b) NYC and

(c) Paris.The dark line highlights the points beyond which the cost variation is below 10%. The

variance is indicated using the color scale.

systems with plenty of connectivity between the targets, resulting in a relatively lower cost metric

compared to the other two cities. To further investigate the Scheduling performance, we perform a

parameter space analysis on larger geographical area and more agents and targets.

5.1.1 Parameter Space Analysis

For each graph (city) the number of agents (n), the number of targets (m), the location of

agents (a), the location of targets (t) and the cardinality of targets (Cj) were varied and the effect

on the paths (Pi) and the costs (li) of the agents were recorded. The location of agents and targets

were chosen randomly among the available nodes in the graph. The agents are varied from 4 to 20

and number of targets from 4 to 30 and executed 500 unique arrangements of agents and targets.

The cardinality was varied from 1 to n (1 ≤ Cj ≤ n). However, the distribution of Cj is controlled

in two ways: (1) Constant average cardinality, and 2) Constant number of total visits across all the

agents (Constant total cardinality).

5.1.1.1 Constant Average Cardinality

The cardinality was distributed among the targets such that an average cardinality of 3 is

maintained across all agents. This ensures that even with increasing number of agents, the average

number of visits required for the targets is 3, such that for a fixed number of violations the cost

reduces as we deploy more agents. Figure 5.2 shows the mean and variance of the normalized cost

metric for the three cities. The fixed average cardinality justifies the drop in cost observed when

more agents are deployed. The cost increases with increasing violations, since the total number of

visits required also increases linearly as the average cardinality is fixed. However, it is observed
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(a) Normalized cost spread in Lon-

don

(b) Normalized cost spread in

NYC

(c) Normalized cost spread in

Paris

Figure 5.3: Normalized cost metric for Total Visits = 40. The dark line highlights the points

beyond which the cost variation is below 10%. The variance is indicated using the color scale.

that the rate of reduction in the cost metric drops with increasing number of agents, denoted by

the dark line, which shows the 10% reduction in the cost metric for different number of targets.

This line indicates a boundary for cost-effective enforcement as adding more agents does not lead

to substantial improvement in the cost metric. Further, the variance of the cost metric (the color

axis) increases with the number of targets and drops with the number of agents. This is influenced

by the fact that, as there are more infractions, the potential of having diverse target distributions

(such as clusters or well separated targets) increases resulting in a larger variation. Figure 5.2 also

reveals that the algorithm performs statistically similar with respect to the mean and variance of

the cost metric among the cities regardless of the attributes of the city maps. However, closer

inspection indicates that Paris portrays a slightly larger cost followed by New York and London.

This behaviour is attributed to the features of the road network in these cities. In Paris, the agents

have to travel via the central hub to cover the targets. This feature contributes to a higher travel

time. In comparison, NYC has highly connected, grid-like road systems with plenty of connectivity

between the targets, resulting in a relatively lower cost metric compared to Paris. It is interesting

to observe that in London and New York the 10% line is located between 10-12 agents and for

Paris between 8-10, suggesting that in London and New York the costs can be further improved by

increasing the number of agents compared to Paris.

5.1.1.2 Constant Total Number of Visits

The total number of visits was fixed at 40 to ensure that even with increasing number of

targets the total number of visits required by all the targets combined is limited to 40, such that the

average cardinality reduces as the number of targets increases, limiting the growth in the cost. Due
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(a) Variation of Cost with maximum sepa-

ration of targets.

(b) Variation of Cost with ratio of agents to

targets

(c) Cost vs edge length (d) Cost vs average inter-target distance

Figure 5.4: Comparison of the distribution of Normalized Cost Metric for NYC with that of (a)

Edge lengths and (b) Average Distance between Targets.

to this constraint, it is observed that the change in cost with the number of targets was minimal

compared to the previous case. Practical implications of limiting the total number of visits include

situations where the cost must be maintained at a specific value even with increasing violations.

This is a metric that is controlled by the Dispatch to conserve enforcement resources. The variation

of the mean normalized cost metric in figure 5.3 portrays a similar pattern with minuscule increase

from London to Paris. However, it is observed that the variance decreases with increasing number

of targets unlike in the previous case. This is because the lesser the targets the higher is the average

cardinality introducing more variation in the paths of agents for lesser number of violations.

5.1.2 Overall System Performance

The overall performance metrics for Algorithm 3 is shown in Figure 5.4 for an average car-

dinality of 3. Figure 5.4a indicates increasing cost metric with increasing separation of targets,
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confirming its influence on the cost. The large variation of cost observed at the same target sep-

aration, is due to the dependence of the cost metric on the distribution of the targets. Among

the regions highlighted on Figure 5.4a at a target separation of 1, region A exhibits expected be-

haviour, where the cost metric is comparable to the separation of the targets. Region B has an

unusually high cost metric due to widely distributed and hostile violations (high cardinality) with

few available agents. On the contrary, region C portrays a much lower cost than the separation,

which occurs when there are more agents than targets that are clustered within a small area.

The variation of the average cost metric with the ratio of agents to targets shown in figure

5.4b, confirms that deploying more agents for the same number of infractions, decreases the cost.

The plot shows the scalability of the algorithm to larger systems of agents and targets. i.e if

the hostility in an environment increases, increasing the number of agents by the same factor

will ensure similar cost performance. The figure also shows the load balancing capability of the

algorithm, which is naturally guaranteed, since it prunes the path of the costliest agents. This

balances the number of targets visited by each agent, ensuring that no agent is overworked. The

behaviour of the cost metric with a feature of the city graph (length of the edges in the city graph)

and a feature of the mission graph (average inter-target distance) are shown as QQ plots in figures

8c and 8d. The high correlation of the cost metric with the average inter-target distance in figure

8d is due to the fact that, at larger inter-target distances, the cost metric is influenced more by

the average target separation and less by other factors such as clustering of targets and features

of the road network. In fact, while the city graphs differ among the cities (due to different road

topologies), the features of the mission graphs are similar, explaining the similar trends of the cost

metric among the cities observed in figures 6 and 7.

5.1.3 3D Localization and Detection

Figure 5.5 shows an example of an infraction event occurring at an elevation (at an altitude

of 30m in a high-rise building) and the improvement in the accuracy of localization over UGVs,

when UAVs are deployed. Figure 5.5a shows the 3D convex polyhedron, ZA,3D containing the

target as estimated by three UGVs positioned at the vertices of ZC as described in Section 3.4.

Eventhough, the UGVs can estimate the target location with reasonable accuracy (as the centroid

of ZA,3D), we can further improve the accuracy of localization by deploying UAVs. The volume of

the 3D convex polyhedron estimated by deploying a single UAV in conjunction with two UGVs,

shows a 40% improvement in the localization accuracy over a purely UGV based localization (as
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(a) Localization with 3 UGVs

(ZA,3D).

(b) Localization with 2 UGVs

and 1 UAV.
(c) Localization with 3 UAVs.

Figure 5.5: (a) Localization from UGV agents only, (b) Replacing one UGV with one UAV

achieves 40% reduction in the volume of the convex polyhedron, compared to (a), (c) Localization

with UAVs alone achieves 85% reduction compared to (a) in the volume of the convex polyhedron.

The colored rings portray the inner spheres of the autonomous agents.

in figure 5.5b). Localization from a set of UAVs, results in more accurate localization of the target

as depicted in figure 5.5c, showing a 85% improvement over the localization from UGVs. This

demonstrates the superiority of UAVs in 3D localization.

5.1.4 Conclusion

In this section, we analyzed and evaluated the architected solution for the MPC problem that

uses algorithms to derive the near-optimum cardinality of the targets and to compute schedule for

all the agents to fulfill the cardinality in the shortest possible time. Through rigorous simulations

and analysis, we draw four firm conclusions: 1) The autonomous agents are able to detect and

localize targets with higher accuracy than a purely crowdsourced regime. 2) The scheduling al-

gorithm is polynomial, has a provable bound of 3-approximation ratio, and provides the shortest

paths for the agents while conforming to the cardinality requirement, 3) The scheduling algorithm

exhibits strong generality across different geographical regions, by producing statistically similar

results for varying degree of violations, 4) UAVs achieve significant improvement in localization

accuracy over UGVs. While we await practical system implementation, the encouraging results

from this work lay the foundation towards adopting a real-time, autonomous enforcement system

for spectrum policies.

5.2 Performance Evaluation of SenseChain

SenseChain is evaluated on an integrated mobile sensing and Blockchain simulator built

on Matlab. The simulation parameters are shown in table 5.1. We analyze the various facets of

52



SenseChain using practical simulations.

Table 5.1: Simulation Parameters

Parameters Value/Model

Area 300m × 300m

Node Distribution Uniform Distribution

Mobility Model Random Waypoint

Propagation Model Log-distance propagation model [77]

Path-loss exponent (γ) 3 (urban area)

Carrier Frequency (f) 600 MHz

Number of Validators 5

Number of Sensors 20

Antenna Type Omnidirectional

Broadcast Range 100

Maximum Difficulty (Dmax) 16

Block-wait Time (τB) 7 s

Target location error (derr) Uniformly distributed in [20,30] m

5.2.1 Evaluation Framework

Sensing Environment: We consider a random network topology with several Sensors, Validators

and a single mobile target (T ). Random Waypoint mobility is chosen for movement of the various

entities in the area of interest and each node is equipped with omnidirectional antenna. The target

continuously transmits a signal at a fixed transmit power (40 mW). During the sensing phase, all

the sensors receive the signal and compute their SNR from the received power (using (4.1) and NF

= -96 dBm [76]). The sensors broadcast their reports ([SNR,Loc]) to the validators. Malicious

behaviour of a sensor is emulated as a random variation (referred to as the degree of falsification)

about the true SNR and true location of that sensor. Sensors exhibit malicious behaviour with

varying probabilities and varying degrees of falsification. The validators receive reports only from

sensors within the broadcast range (100 m). The diameter of the network, d0 is 424 meters. The

validators assign a confidence score to the sensing reports as in Algorithm 5.

Blockchain Simulator: The blockchain environment in this work is different from typical im-

plementations in two ways: 1) Heterogeneous difficulty assignment: The difficulty varies for each
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validator and in each mined block in the blockchain. 2) Consensus: The validators arrive at con-

sensus on the Most-Difficult-Chain to avoid forking. The simulation works as follows. For each

sensing report, the validator creates a transaction by inserting the sensor id, the sensing report

([SNR,Loc]) and the confidence score. The sensor id is an integer index in the interval [1, N ],

to represent the N sensors (e.g., sensor id of si is i). The transaction id is created by hashing

transaction data through SHA-256 [83] twice, similar to typical blockchain implementations. The

timestamps refers to the time at which the block was created, encoded as a Unix Epoch timestamp.

The hash function used to generate the block id is SHA-256. The genesis block is created with-

out any transactions by including a timestamp and creating a block with a hash corresponding to

difficulty Dmax.

At each round, each validator generates a block by aggregating the transactions, iterating

over a nonce value (a random integer) and calculating the hash of the block. Each block is mined

with a different difficulty (see Section 4.4.2). The block is considered valid, when its hash is less

than a target T that depends on the difficulty. This is verified by checking whether the hash of the

block has at least as many leading zero bits as T , for that validator. Once a valid block is created

it is added to the blockchain and multicast to the Validators. Note that the size of the block (the

number of transactions) is not fixed as it depends on the number of sensors being validated. All the

validators receive the candidate blockchains within τB time (7 seconds). Each validator calculates

the total difficulty of each candidate blockchain, and selects the one with the highest aggregate

difficulty. Thus, the validators arrive at consensus on the Most-Difficult-Chain. A total of 1000

blocks were mined for each analysis presented below. For each sensor si ∈ S , the validators scans

through each block in the blockchain to extract the entries corresponding to its sensor id i. The

validators then compute the reputation of each sensor using (A.1).

5.2.2 Performance of anomaly detection

A falsifying sensor is detected as an anomaly, when its reported location exists outside the

annulus (see Section 4.3), else a confidence score is associated with the sensor report, to reflect

the confidence in the truthfulness of the sensor. The smaller the thickness of the annulus the more

confident the validator will be on the truthfulness of the sensor. The thickness of the annulus is

defined in Section 4.3.1 and is a measure of the confidence score. Figure 5.6a shows the depen-

dence of the thickness of the annulus on the SNR reported by the sensors. The thickness of the

annulus estimated by the validator decreases with increasing values of the SNR reported by the
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(a) Variation of annulus width with re-

ported SNR

(b) Annulus width with Sensor and Valida-

tor distances

(c) Pd with varying falsification in SNR

(dB) and Location (m)

(d) Pf with varying falsification in SNR

(dB) and Location (m)

Figure 5.6: Performance of Anomaly Detection. (a) and (b) show the dependence of the thickness

of the annulus on the SNR of the sensor and the distances from the target to the validator and the

sensor. (c) and (d) show that when the degree of falsification is high, a validator is more likely to

detect an anomaly, however the false alarms are also high.

sensor. When the sensor reports a high SNR, the thickness of the annulus estimated by the valida-

tor is small. A sensor that falsifies by reporting a high SNR value is more likely to be detected as

an anomaly since the thickness of the annulus is very small (and the reported location is likely to

exist outside the annulus). For a sensor that falsely reports a low SNR value, the thickness of the

estimated annulus would be large. Hence, it is possible for the reported location to exist within the

annulus. But the confidence score for such sensors would be very low due to the large thickness of

the annulus.

Figure 5.6b shows the dependence of the thickness of the annulus on the difference of the

distances from the target to the validators and the reported location of the sensor Loci. i.e., dsi−dvj .

Consider two validators v1 and v2, with dv1 < dv2 . When the sensor is located closer to T than

55



either validator, the thickness of the annulus estimated by v1 would be less than v2. That is v1

would be able to, more accurately assess the truthfulness of the sensor. When the sensor is located

further away from T than either validator, the thickness of the annulus estimated by v2 would be

less than v1. In this case v2 would be able to, more accurately assess the truthfulness of the sensor.

The performance of the anomaly detector with varying degree of falsification is shown in

figures 5.6c and 5.6d. Figure 5.6c shows the probability of detection (Pd) and figure 5.6d shows

the probability of false alarms (Pf ) in detecting anomalies in the sensing reports. Recall that the

annulus for a sensor is estimated using the reported SNR. If the sensor reports its true location and

SNR, it will exist within the annulus. First, consider the effect on Pd and Pf with the degree of

falsification in the reported SNR (i.e., the difference in the reported SNR and the true SNR) but

reported location is true. When the degree of falsification in SNR increases, the reported location

of the sensor is more likely to be outside the annulus. Hence, Pd increases with the degree of

falsification. Even for low degrees of falsification in SNR (5-15 dB), Pd is relatively large (≈ 0.86).

However, when a sensor falsifies to a higher degree, the possibility of flagging truthful sensors as

anomalies increases. i.e, Pf also increases. Since the falsifying sensor is included in the weighted,

distributed localization of T (as explained in Section 4.3), a higher degree of falsification leads to

a higher possibility of error in the location of T . Consequently, this leads to errors in the estimated

annulus. Thus, a truthful sensor may exist outside the estimated annulus and may be detected as

an anomaly. However, Pf is very low (less than 10−2) even for higher degrees of falsification in

SNR. When the falsification in the SNR is less, the error in the location estimate of T is less and

false alarms are less.

Consider the effect on Pd and Pf by degree of falsification in the reported location while

the reported SNR is true. When the degree of falsification in location increases, the more likely is

the reported location of the sensor to be outside the annulus, and it is more likely to be detected

as an anomaly. Hence, Pd increases with degree of falsification. Since the degree of falsification

affects the distributed localization of T , the possibility of flagging truthful sensors as anomalies

also increases. i.e, Pf also increases. Overall, we see that Algorithm 5, achieves high probability

of detection (≥ 0.86) even for low degrees of falsification and a low probability of false alarms

(≤ 0.01) even for high degrees of falsification.
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(a) Block mining times of valida-

tors with varying difficulty tar-

gets

(b) Block mining time per val-

idator and winning block in each

round

(c) The number of hashes gen-

erated by the winning validator

over time

Figure 5.7: Impact of the difficulty of mining on the block mining time and the winning block.

In (b) each color bar represents the blocks mined by each validator in order from v1 to v5. The

numbers on the top of the color bar indicates the difficulty with which the block was mined. The

winning block in each mining round are annotated by the red circles.

5.2.3 Performance of Blockchain based reputation

Blockchain performance: The performance of mining is shown in figure 5.7. Figure 5.7a shows

the variation in the block mining time with varying difficulty of validators. The dotted line shows

τB, i.e., the block-wait time which is equal to the average block time to mine a block with maximum

difficulty (Dmax = 16). When the difficulty level is high, the average time required to mine a block

is more, since more amount of hashes are required on average, to find a hash value less than the

target. The validators with a less difficulty target have a higher probability of mining a block within

τB. The probability that a block is mined by a validator vj within τB, when Dvj = 12, Dvj = 14

and Dvj = 16, is 92%, 78% and 50% respectively. Even though validators with a lower difficulty

have a higher probability of mining a block within τB, only the most-difficult block mined within

τB is added to the chain. This gives all the validators a chance to contribute to the blockchain and

get rewarded.

The average time required to mine a block is proportional to the difficulty level and inversely

proportional to the mining power of the validators [80]. Figure 5.7b shows the amount of time

required by each validator to generate a valid block in each mining round. The block added to the

blockchain at each mining round is determined by the most difficult block mined within the wait

time of τB = 7s. The validators contend with all other validators in the area. As shown in the

figure, in the first mining round v2 is assigned the highest difficulty (Dv2 = 12) and generates a

valid block within τB. Thus, the block from v2 leads to the most difficult blockchain (as detailed

in Section 4.4.2), and is agreed upon as the canonical blockchain. In the second mining round, a

57



(a) Reputation with degree of falsification

by the Sensors

(b) Reputation of falsifying Sensors over

time

Figure 5.8: Reputation assignment with varying degree of malicious activity over time

block is mined with the highest difficulty by v3 (Dv3 = 10) and is added to the blockchain. In

the third mining round, even though v5 has a higher difficulty (Dv5 = 12) it is unable to mine a

block within τB. The block mined within τB with the highest difficulty is from v1 and it is added

to the blockchain. Note that in the second and third mining rounds, v2 and v5 respectively are

unable to create a valid block within τB. Figure 5.7c shows the number of hashes generated by

the winning validators (whose blocks are added to the blockchain) in each mining round. This

serves as a measure of the amount of computation performed, time spent and power consumed by

the validators in each round. Even though there are occasional spikes in the computational power

(high number of hashes), most of the time the computational power is consistent. On average about

9.7 million hashes are calculated in each mining round.

Reputation Assignment: Figure 5.8 shows the reputation assigned to nodes, with varying de-

grees of malicious activity. Figure 5.8a shows the nonlinearity of the reputation function. Sensors

that predominantly exhibit good behaviour (falsification<10%) by truthfully reporting sensing

information asymptotically accumulate a reputation of 1. Sensors that continuously falsifies sens-

ing information (falsification>90%) will accumulate a reputation close to 0. The reputation of

sensors that arbitrarily alter their (truthful or malicious) behaviour by falsifying reports with a cer-

tain probability, are more susceptible to change based on their relatively dominant behaviour. The

reputation of sensors which exhibit falsification between 20% to 80% fall within the linear range

of the sigmoid function. The reputation of these sensors are more likely to change depending on

their dominant (truthful or malicious) behaviour.

The variation in the reputation of sensors over time is shown in figure 5.8b. Sensors cre-
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ate malicious reports with a probability equal to their percentage of falsification. Over time, the

reputation values of sensors that exhibit consistently, either truthful or malicious behaviour settle

much quicker, compared to sensors that exhibit alternating behaviour. It is clear that after about 30

blocks the reputation of nodes settle to within 10% of their steady state reputation. It is important

to note that even in the presence of a malicious validator the impact on the reputation is minimal.

This is because, the reputation of any node is assimilated from the entire blockchain. Even if a

malicious validator creates valid blocks with forged information, the impact on the reputation by

these forged blocks, decreases significantly with the number of validators and the length of the

blockchain.

5.2.4 Conclusion

In this section, we evaluated the proposed anomaly detection and reputation assignment

scheme called SenseChain, which disseminates the reputation information via a blockchain.

Through rigorous simulation and analysis we draw the following conclusions on SenseChain:

1) anomalies in sensing reports can be detected with high accuracy in a fully distributed, peer-

based manner, 2) the Most-Difficult-Chain rule enables distributed consensus on the most-credible

chain among spatially scattered agents, 3) the non-linear function to aggregate historical confidence

scores and corresponding Difficulty, enables the reputation assignment based on a agents’ degree

of truthful (or malicious) behaviour. Thus, the distributed anomaly detection by validators and

the use of the Most-Difficult-Chain to capture and disseminate the behaviour of agents, provides a

fast and tamper-proof means to arrive at distributed consensus on the reputation of agents, among

trustless entities. The reputation of agents is used in the fusion sensing information and achieve

credible distributed detection and localization of targets.

5.3 Discussions

Ongoing Experimental testbed: The theoretical and simulated results in this work is currently

being validated by over the air experiments. The Targets are emulated with software defined radios

(e.g., Ettus USRP B210 [84]) transmitting in the 3.6 GHz band scattered geographically (out-

door and indoor). The cardinality of the violations is first estimated by a crowdsourced paradigm

[1, 3]. The autonomous agents are a combination of UAVs and UGVs with software defined radios

mounted on them. Each agent is provided with a set of rules (signal detectors) to check for spec-
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trum infractions. The validators compute the schedule for each agent (Algorithm 3) based on the

crowdsourced information and communicates it to all the Agents. The agents use GNSS (Global

Navigation Satellite System) based automated navigation [85] to navigate to each target. At each

target, the Agents perform SNR measurements, and broadcasts the quadruplet, [SNR, loc, Pd, Pf ]

to other agents and moves on to the next Target. A fraction of agents serve as validators and assess

the truthfulness of the sensing report and the reputation of the agent that sent the report. At the

end of a single round of enforcement (when the cardinality of all the targets have been met), the

validators compute the convex zone containing the target and the overall time of scheduling (de-

termined by the agent travelling the longest path traversed). These measures are used to test this

autonomous spectrum enforcement framework.

60



CHAPTER 6

Conclusion

In this work, we architected and analyzed a fully Autonomous Enforcement System that leverages

heterogeneous mobile, autonomous agents to detect and localize dynamic spectrum infractions and

a distributed reputation system to achieve reliable inferences among distributed trustless agents.

This contribution is a necessary precursor to advance signal processing for enforcing spectrum

etiquette using mobile, autonomous agents. Through rigorous simulations and analysis, we draw

two firm conclusions:

1) The multi-modal autonomous agents can be scheduled in polynomial time to detect and

localize dynamic and distributed spectrum violations with higher accuracy than purely static or

crowdsourced regimes. We have shown the efficacy of using heterogeneous, autonomous agents in

the enforcement of spectrum policies.

2) The anomalies in sensing reports can be detected with high accuracy in a fully distributed

distributed manner. The distributed reputation system captures the sensors’ degree of truthful (or

malicious) by leveraging the distributed consensus mechanisms in Blockchain networks. Thus,

the distributed anomaly detection by validators and the use of the Most-Difficult-Chain to capture

and disseminate the behaviour of sensors, provides a fast and tamper-proof means to arrive at

distributed consensus on the reputation of sensors, among trustless entities. The reputation of

sensors can be used to fuse sensing information and achieve a highly reliable enforcement system

(credible distributed detection and localization of targets), among distributed trustless agents.

While we await practical system implementation, the encouraging results from this work

lay the foundation towards adopting a real-time, autonomous enforcement system for spectrum

policies.
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APPENDIX A

Approximation Ratio of Scheduling Algorithm 3

Proof. CASE 1: If the targets in Pp ⊆ the targets in P ∗
p (i.e., T p

y = 0), then it follows from from

Properties 1 and 2 that lp ≤ 2.l∗p ≤ 2.l∗q . Hence, the approximation ratio is 2.

CASE 2: In the the case where the targets in Pp * the targets in P ∗
p (i.e., T p

y > 0), from Property 3,

there must exist a target tk and an agent i such that tk is in P ∗
i but not in Pi (otherwise, in Algorithm

3, some targets would be visited by more agents than in OPT). Hence from Property 4 we have,

lp ≤ li + li(tk)

≤ li(T
i
x) + li(T

i
y) + li(tk) From Property 5

≤ 2∆l∗i + li(T
i
y) From Properties 5 & 1

≤ 2∆l∗q + li(T
i
y) From Property 2 (A.1)

CASE 2a: If li(T
i
y) ≤ l∗q , then we have, lp ≤ 2∆l∗q + li(T

i
y) ≤ 3∆l∗q , giving an approximation ratio

of 3.

CASE 2b: If li(T
i
y) > l∗q , consider a set Ac ⊆ A with c, for which there is a target in P ∗

i but not in

Pi (i.e., T i
z > 0). Then Pi must be costlier than P ∗

i , ∀i ∈ Ac (since li(T
i
y) > l∗q , ∀i ∈ Ac). For the

set of all agents j /∈ Ac since T j
z = 0, the targets in Pj must at least include the same set of targets

as in P ∗
j . Then, from Property 3, for the set of all agents i ∈ Ac, the collection of all P ∗

i must at

least include all the targets visited by the collection of Pi. Hence we have,

∑

i∈Ac

T i
y ⊆

∑

i∈Ac

T i
z (A.2)

Then from Property 1 and 2 we have,

∑

i∈Ac

li ≤ 2.
∑

i∈Ac

l∗i ≤ 2.c.l∗q (A.3)
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Now from (A.2) and Property 5 and 1,

c.l∗q ≤
∑

i∈Ac

li(T
i
y) ≤ 2.

∑

i∈Ac

l∗i (T
i
z) ≤ 2.c.l∗q (A.4)

From (A.3), since
∑

i∈Ac
li ≤ 2.

∑

i∈Ac
l∗i , there must exist some agents i ∈ Ad such that

Ad ⊆ Ac, for which li ≤ 2.l∗i . Let any agent i ∈ Ad contain b number of targets in T i
z . Then by

considering b iterations of Property 4 to remove all T i
z from i, we have,

b.lp ≤ b.li + li(T
i
z) ≤ 2b.l∗i + 2l∗i (T

i
z) From Property 1

≤ 2b.l∗i (T
i
x) + 2(b+ 1).l∗i (T

i
z) From Property 5

≤ 2(b+ 1).(l∗i (T
i
x) + l∗i (T

i
z))

≤ 2(b+ 1).l∗i ≤ 2(b+ 1).l∗q From Property 5,2

=⇒ lp ≤ (2 + 2/b).l∗q (A.5)

Let |T i
z | and |T i

y| denote the number of targets in T i
z and T i

y respectively. For Property 3 to

be satisfied, we have,
∑

i∈A |T i
z | =

∑

i∈A |T i
y|. Since for all agents j /∈ Ac, |T

j
z | ≤ |T j

y |, we have
∑

i∈Ac
|T i

z | ≥
∑

i∈Ac
|T i

y|, ∀i ∈ Ac. Since, for all such agents, T i
y contains at least one target, and

predominantly T i
z contains more targets than T i

y, then at least some agents should have more than a

single target in T i
z , i.e., there will exist some agents i such that b > 1. Thus, considering any such

agent i, from (A.5) we have, lp ≤ 3.l∗q . Hence, Algorithm 3 is 3-approximation for the U-MPC

problem.

In cases where ∀i ∈ Ac, T
i
z consists of only a single target, i.e., b = 1, from (A.2), all T i

y

cannot contain more than a single target. This leads to the fact that,
∑

i∈Ac
T i
y =

∑

i∈Ac
T i
z , ∀i ∈

Ac, which is only possible if ∀j /∈ Ac, all Pj and P ∗
j contain the same set of targets (i.e., T j

y = 0).

Now, if p /∈ Ac, then it is similar to CASE 1 (since T p
y = 0) and we have, lp ≤ 2.l∗q . Now, consider

the case where p ∈ Ac. For any agent g ∈ Ac, from Property 3, it follows that, the single target in

T g
y (say ty) should also be in T i

z for some other agent i ∈ Ac. This means that ty = T g
y = T i

z , and

hence, we have lg(ty) = lg(T
i
y) ≥ l∗q . Since lg(ty) is the cost calculated based on the round-trip

MST, and since agents g and i and the target ty belong to the same graph of the city, we have,

lg(ty) = li(ty), provided that ty is not the first target visited by agents g or i. Similarly, the single

target in T i
y must also be in T h

z (say tz) for some agent h ∈ Ac. This means that tz = T i
y = T h

z ,
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and from Property 1 and 5 we have, lh(tz) = lh(T
h
z ) ≤ 2l∗h(T

h
z ) ≤ 2l∗h ≤ 2l∗q and li(tz) = lh(tz).

Therefore, for any agent i ∈ Ac, we get,

l∗q ≥ l∗i = l∗i (T
i
x) + l∗i (T

i
z) From Property 1 & 5

≥ li(T
i
x)/2 + li(T

i
z)/2 From Property 1

≥ li(T
i
x)/2 + li(ty)/2

≥ li(T
i
x)/2 + lg(ty)/2

Since lg(ty) ≥ l∗q , therefore we get, li(T
i
x) ≤ l∗q . Considering agents i and h, we get,

li = li(T
i
x) + li(T

i
y) = li(T

i
x) + li(tz) From Property 5

= li(T
i
x) + lh(tz) ≤ l∗q + 2.l∗q

≤ 3.l∗q

Thus, if p ∈ Ac, we get, lp ≤ 3.l∗q . Hence, we conclude that the approximation ratio for Algorithm

3 is no worse than 3.
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[26] Pillac, V., Gendreau, M., Guéret, C., Medaglia, A.L.: A review of dynamic vehicle routing

problems. European Journal of Operational Research 225(1) (2013) 1 – 11

[27] Sundar, K., Venkatachalam, S., Rathinam, S.: Formulations and algorithms for the multiple

depot, fuel-constrained, multiple vehicle routing problem. CoRR abs/1508.05968 (2015)

[28] Yadlapalli, S.K., Rathinam, S., Darbha, S.: An approximation algorithm for a 2-depot, het-

erogeneous vehicle routing problem. In: 2009 American Control Conference. (June 2009)

1730–1735

67



[29] Czyzowicz, J., Gasieniec, L., Kosowski, A., Kranakis, E. In: Boundary Patrolling by Mobile

Agents with Distinct Maximal Speeds. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

701–712

[30] Wang, W., Zou, W., Zhou, Z., Zhang, H., Ye, Y.: Decision fusion of cooperative spectrum

sensing for cognitive radio under bandwidth constraints. In: 2008 Third International Confer-

ence on Convergence and Hybrid Information Technology. Volume 1. (Nov 2008) 733–736

[31] Wang, W., Zou, W., Zhou, Z., Zhang, H., Ye, Y.: Decision fusion of cooperative spectrum

sensing for cognitive radio under bandwidth constraints. In: 2008 Third International Confer-

ence on Convergence and Hybrid Information Technology. Volume 1. (Nov 2008) 733–736

[32] Liggins, M.E., Chee-Yee Chong, Kadar, I., Alford, M.G., Vannicola, V., Thomopoulos, S.:

Distributed fusion architectures and algorithms for target tracking. Proceedings of the IEEE

85(1) (Jan 1997) 95–107

[33] Bayhan, S., Zubow, A., Wolisz, A.: Spass: Spectrum sensing as a service via smart contracts.

In: 2018 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN).

(Oct 2018) 1–10

[34] Wei, H., Sun, H.: Using bayesian game model for intrusion detection in wireless ad hoc

networks. IJCNS 3 (01 2010) 602–607

[35] Jr, J., Ulvila, J.: Evaluation of intrusion detectors: A decision theory approach. (01 2001)

50–

[36] She, W., Liu, Q., Tian, Z., Chen, J., Wang, B., Liu, W.: Blockchain trust model for malicious

node detection in wireless sensor networks. IEEE Access 7 (2019) 38947–38956

[37] Zawaideh, F., Salamah, M., Al-Bahadili, H.: A fair trust-based malicious node detection and

isolation scheme for wsns. In: 2017 2nd International Conference on the Applications of

Information Technology in Developing Renewable Energy Processes Systems (IT-DREPS).

(Dec 2017) 1–6

[38] Zhang, W., Zhu, S., Tang, J., Xiong, N.: A novel trust management scheme based on

dempster—shafer evidence theory for malicious nodes detection in wireless sensor networks.

J. Supercomput. 74(4) (April 2018) 1779–1801

68



[39] Yin, G., Yang, G., Wu, Y., Yu, X., Zuo, D.: A novel reputation model for malicious node

detection in wireless sensor network. In: 2008 4th International Conference on Wireless

Communications, Networking and Mobile Computing. (Oct 2008) 1–4

[40] Li, H., Han, Z.: Catch me if you can: An abnormality detection approach for collaborative

spectrum sensing in cognitive radio networks. IEEE Transactions on Wireless Communica-

tions 9(11) (November 2010) 3554–3565

[41] Jana, S., Zeng, K., Cheng, W., Mohapatra, P.: Trusted collaborative spectrum sensing for

mobile cognitive radio networks. IEEE Transactions on Information Forensics and Security

8(9) (Sep. 2013) 1497–1507

[42] Khan, M.A., Salah, K.: Iot security: Review, blockchain solutions, and open challenges.

Future Generation Computer Systems 82 (2018) 395 – 411

[43] Kotobi, K., Bilen, S.G.: Secure blockchains for dynamic spectrum access: A decentral-

ized database in moving cognitive radio networks enhances security and user access. IEEE

Vehicular Technology Magazine 13(1) (March 2018) 32–39

[44] Saad, M., Yuksel, M.: Routechain : Towards blockchain-based secure and efficient bgp

routing. (2019)

[45] Zhang, Y., Kasahara, S., Shen, Y., Jiang, X., Wan, J.: Smart contract-based access control for

the internet of things. IEEE Internet of Things Journal 6(2) (April 2019) 1594–1605

[46] Goka, S., Shigeno, H.: Distributed management system for trust and reward in mobile ad hoc

networks. In: 2018 15th IEEE Annual Consumer Communications Networking Conference

(CCNC). (Jan 2018) 1–6

[47] Li, Z., Nika, A., Zhang, X., Zhu, Y., Yao, Y., Zhao, B.Y., Zheng, H.: Identifying value in

crowdsourced wireless signal measurements. In: WWW. (2017)

[48] Nika, A., Zhang, Z., Zhou, X., Zhao, B.Y., Zheng, H.: Towards commoditized real-time

spectrum monitoring. In: Proceedings of the 1st ACM Workshop on Hot Topics in Wireless.

HotWireless ’14, New York, NY, USA, ACM (2014) 25–30

69



[49] Yang, D., Xue, G., Fang, X., Tang, J.: Crowdsourcing to smartphones: Incentive mechanism

design for mobile phone sensing. In: Proceedings of the 18th Annual International Con-

ference on Mobile Computing and Networking. Mobicom ’12, New York, NY, USA, ACM

(2012) 173–184

[50] Fawcett, T.: An introduction to roc analysis. Pattern Recognition Letters 27(8) (2006) 861 –

874 ROC Analysis in Pattern Recognition.

[51] Parkinson, Bradford W., Spilker, James J., Jr., Axelrad, Penina, Enge, P.: Global Position-

ing System, Volume 1 - Theory and Applications. American Institute of Aeronautics and

Astronautics (1996)

[52] Gavish, B., Srikanth, K.: An optimal solution method for large-scale multiple traveling

salesmen problems. Operations Research 34(5) (1986) 698–717

[53] Xiong, J., Jamieson, K.: Arraytrack: A fine-grained indoor location system. In: Proceed-

ings of the 10th USENIX Conference on Networked Systems Design and Implementation.

nsdi’13, Berkeley, CA, USA, USENIX Association (2013) 71–84

[54] Levy, B.C.: Principles of Signal Detection and Parameter Estimation. 1st edn. Springer

Publishing Company, Incorporated (2010)

[55] Kumar, V., Park, J.M., Bian, K.: Blind transmitter authentication for spectrum security and

enforcement. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and

Communications Security. CCS ’14, New York, NY, USA, ACM (2014) 787–798

[56] Powers, D.M.W.: Evaluation: From precision, recall and f-measure to roc., informedness,

markedness & correlation. Journal of Machine Learning Technologies 2(1) (2011) 37–63

[57] OpenStreetMap: OpenStreetMap - http://www.openstreetmap.org

[58] Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman prob-

lem. Technical Report 388, Graduate School of Industrial Administration, Carnegie Mellon

University (1976)

[59] Prim, R.C.: Shortest connection networks and some generalizations. The Bell System Tech-

nical Journal 36(6) (Nov 1957) 1389–1401

70



[60] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C. In: Introduction to Algorithms, Third

Edition. 3rd edn. The MIT Press (2009) 1111–1115

[61] MacArthur, D.K., Crane, C.D.: Unmanned ground vehicle state estimation using an un-

manned air vehicle. In: 2007 International Symposium on Computational Intelligence in

Robotics and Automation. (June 2007) 473–478

[62] Federal Aviation Administration: Recreational fliers & modeler community-based organiza-

tions

[63] FAA: Fact sheet, small unmanned aircraft regulations (part 107)

[64] 3GPP, ETSI: “5G; Study on channel model for frequencies from 0.5 to 100 GHz (3GPP TR

38.901 version 14.1.1 Release 14),”

[65] NYC: Pluto and mappluto

[66] Wood, D.: Ethereum: A secure decentralised generalised transaction ledger. (2014)

[67] Buterin, V.: A next generation smart contract & decentralized application platform. (2015)

[68] Zekavat, R., Buehrer, R.M.: Handbook of Position Location: Theory, Practice and Advances.

1st edn. Wiley-IEEE Press (2011)

[69] Wang, J., Urriza, P., Han, Y., Cabric, D.: Weighted centroid localization algorithm: Theoreti-

cal analysis and distributed implementation. IEEE Transactions on Wireless Communications

10(10) (October 2011) 3403–3413

[70] Yang, J., Chen, Y., Lawrence, V.B., Swaminathan, V.: Robust wireless localization to attacks

on access points. In: 2009 IEEE Sarnoff Symposium. (March 2009) 1–5

[71] Altoaimy, L., Mahgoub, I., Rathod, M.: Weighted localization in vehicular ad hoc networks

using vehicle-to-vehicle communication. In: 2014 Global Information Infrastructure and

Networking Symposium (GIIS). (Sep. 2014) 1–5

[72] Meshkov, D., Chepurnoy, A., Jansen, M.: Revisiting difficulty control for blockchain sys-

tems. IACR Cryptology ePrint Archive 2017 (2017) 731

[73] Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system,” http://bitcoin.org/bitcoin.pdf

71



[74] Careem, M.A.A., Dutta, A., Wang, W.: Multi-agent planning with cardinality: Towards

autonomous enforcement of spectrum policies. (10 2018) 1–10

[75] Chawla, S., Gionis, A.: k-means-: A unified approach to clustering and outlier detection. In:

SDM. (2013)

[76] : IEEE standard for information technology–telecommunications and information exchange

between systems local and metropolitan area networks–specific requirements part 11: Wire-

less lan medium access control (mac) and physical layer (phy) specifications. IEEE Std

802.11-2012 (Revision of IEEE Std 802.11-2007) (March 2012) 1–2793

[77] Rappaport, T.: Wireless Communications: Principles and Practice. 2nd edn. Prentice Hall

PTR, Upper Saddle River, NJ, USA (2001)

[78] Khan, M.A., Salah, K.: IoT security: Review, blockchain solutions, and open challenges.

Future Generation Computer Systems 82 (2018) 395–411

[79] Eyal, I.: The miner’s dilemma. In: 2015 IEEE Symposium on Security and Privacy. (May

2015) 89–103

[80] O’Dwyer, K.J., Malone, D.: Bitcoin mining and its energy footprint. In: 25th IET Irish Sig-

nals Systems Conference 2014 and 2014 China-Ireland International Conference on Informa-

tion and Communications Technologies (ISSC 2014/CIICT 2014). (June 2014) 280–285

[81] Ethereum: Ethereum wire protocol (eth) (cited July 2019)

[82] Elfwing, S., Uchibe, E., Doya, K.: Sigmoid-weighted linear units for neural network function

approximation in reinforcement learning. Neural Networks 107 (Nov 2018) 3–11

[83] of Commerce, U.D., of Standards, N.I., Technology: Secure Hash Standard - SHS: Federal

Information Processing Standards Publication 180-4. CreateSpace Independent Publishing

Platform, USA (2012)

[84] Ettus Research: “USRP B200 and B210 Product Overview,”

[85] ArduPilot Dev Team: “Planning a Mission with Waypoints and Events,”

72


