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Autonomous Agents With Cardinality
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Abstract—The distributed nature of policy violations in spec-
trum sharing necessitate the use of mobile autonomous agents
(e.g., UAVs, self-driving cars, and crowdsourcing) to implement
cost-effective enforcement systems. We define this problem as
multiagent planning with cardinality (MPC), where cardinality
represents multiple, unique agents visiting each infraction loca-
tion to collectively improve the accuracy of the enforcement tasks.
Designed as a practical and deployable system, our solution lever-
ages crowdsourced information to determine the optimum cardi-
nality and provide a routing schedule for the agents to achieve the
desired level of accuracy of detection and localization at minimum
possible cost. We show that by estimating spatial orientation of
the agents with single antenna, the accuracy is improved by 96%
over crowdsourcing only. Using geographical maps as the basis,
we solve the scheduling problem with a 3-approximation ratio
in polynomial time that exhibits statistically similar performance
under variety of urban locale across multiple continents. The
longest path traversed by an agent on average is 1.2 km per unit
diagonal length of a rectangular geographic area, even when there
are twice as many infractions as agents. Deploying UAVs to the
estimated region of infraction improves localization accuracy by
≈≈≈70% compared to ground vehicles.

Index Terms—Enforcement of spectrum policies, multi-agent
systems, crowdsourcing, localization, path planning, dynamic
spectrum access.

I. INTRODUCTION

E
NFORCEMENT of spectrum policies is complementary

to the well-studied problem of Dynamic Spectrum Access

(DSA). However, the distributed nature of these policy vio-

lations (defined as “Targets”) require accurate, cost-effective

and mobile, autonomous entities1 (defined as “Agents”) to

carry out enforcement tasks. These tasks can be generalized

as various levels of signal measurement, waveform classifica-

tion and localization in order to pin-point rogue sources with

very high accuracy. The balance between cost and accuracy of

such an enforcement system critically depend on the appropri-

ate amount of resources (agents) mobilized to the right location
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Fig. 1. MPC blocks: Crowdsourced measurements provide the basis for
deploying mobile agents to detect and localize targets. The shaded blocks are
the contribution of this work.

in the shortest possible time. More so because wireless signal

classification greatly benefits from proximity to the potential

source, different sensing parameters (bandwidth, sample rate,

battery constraints, etc) and aggregation of observations from

multiple agents.

To this end, crowdsourced paradigm [1], [2], [3] has been

shown as a viable apparatus. However, it suffers from many

inefficiencies like lack of trust and efficient incentive mech-

anism that may not provide bounded guarantees of accuracy

(e.g., detection and location) and cost (e.g., incentives, capital

and operational costs). Instead, we envision a hybrid approach

that leverage crowdsourced measurements (akin to eye-witness

accounts) to deploy mobile, autonomous agents to the tar-

get sites depending on the veracity of these measurements.

Our work builds on any crowdsourced paradigm, where the

wisdom of crowd is simply used to assess the need for addi-

tional resources to achieve a desired level of accuracy and

cost, thus avoiding unnecessary and restrictive burden on the

crowd (like undesired mobility, prioritized sensing, low incen-

tive, etc [3], [4]). This MPC system operates in two steps

as shown in figure 1. The Fusion center collects the initial

assessment of the target2 and derives the cardinality necessary

to collectively improve the accuracy at a bounded cost. This

information is used to deploy mobile agents to perform the

additional detection and localization tasks under the constraint

of scheduling a fixed number of agents in minimum time.

Cardinality, refers to the number of unique, mobile and

homogeneous agents (not including the participants from

the crowd) visiting targets, simultaneously or otherwise, to

achieve a target accuracy of the enforcement tasks. Accuracy

has two primary dimensions: a) Detection of a bad signal

(often expressed as a confusion matrix [5] and b) Location

estimate. Since the agents are homogeneous they can be

2Crowdsourced agents may detect infractions with a wide variety of accu-
racy (false and true positives) due to heterogeneous hardware and their relative
proximity to the target. There are many crowdsourced models [1], [3] but our
work subsumes any such paradigm without loss of generality.
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directed (although at a cost) to a near-optimal orientation or

detect signals with desirable operating points to independently

maximize along both the dimensions. We adopt the widely

used geometric trilateration [1], [6] as the basis to locate a

target and calculate the optimum cardinality that minimizes

the Geometric Dilution of Precision (GDOP). This is followed

by routing a finite number of agents to multiple targets while

fulfilling the cardinality determined in the previous step. The

solution to this lies at the intersection of finding the short-

est path between nodes in a graph and finding a schedule (or

order) for the agents to visit a set of targets. However, in

MPC, the additional requirement of fulfilling the cardinality

for each target, makes the solution orthogonal to the existing

literature [7], [8]. It is not necessary to route all the agents (as

per the cardinality) to a target at the same time. To ensure a

fast convergence of the scheduling algorithm the agents may

start from any point and take any path as long as it covers all

the targets in the least possible time.

In the final step the accuracy is iteratively improved until

the target level is achieved. Trilateration with no GDOP results

in a convex polygon that includes the target (Section III). Each

agent is initially routed to the centroid of the polygon and then

visits each vertex to collect measurements and report to the

Fusion center. This ensures, aggregation of multiple sensing

results (using some form of weighted combination) at a very

high SNR. It is to be noted that these tasks may involve deeper

signal processing and possible indoor sensing as well, which

is not in the scope of this work. Since, the cost incurred to

conduct this localized sensing, is small compared to the overall

cost of scheduling it can be safely ignored in the larger context

of the cost of enforcement.

Collectively, these three parts constitute a solution to the

MPC problem that operate in lock-step with any crowdsourced

paradigm to achieve very high accuracy at a bounded cost that

is also minimum under the above constraints.

II. RELATED WORK

Recent research has shown growing interest in collaborative

autonomous agents (Unmanned Aerial Vehicles (UAVs) and

Unmanned Ground Vehicles (UGVs)) for applications rang-

ing from multi-agent cooperation [9], planning [10], [11] and

sensing [12], [13]. Most applications of hybrid UAV-UGV

planning have limited scope to small sets of agents & targets.

The Scheduling problem has its roots in Multiagent planning

(MP) [14] which is the NP-hard problem [15] of finding the

shortest paths of agents with targets visited at least once.

In general, these methods do not enforce unique visits at

targets. In the context of Multiagent Planning with unique-

ness (MPU), an intriguing class of problems is the Multiple

Traveling Salesmen Problem (MTSP), which finds closed tours

for agents, while enforcing uniqueness. MTSP is challenging

due to its combinatorial nature and NP-hardness [16]), and it

does not solve the MPU directly as it yields tours (not paths)

for agents. Reference [17] proposes a heuristic search method

to solve the Multiagent Path Finding problem, which is sim-

ilar to MPU, except that endpoints of tours are also fixed.

Reference [16] presents a genetic algorithm based method for

solving the MPU.

For detecting and localizing infractions we require multiple,

unique agents visiting each infraction to address its hostil-

ity (Cardinality). An exact method for heterogeneous MTSP

(some targets can be visited only by a specific agent) is pro-

vided in [18]. The class of MTSP does not addresses the

notion of multiple visits. An interesting class of problems

here, is the Vehicular Routing Problems (VRP) [8], which

might facilitate multiple visits [19], however does not ensure

uniqueness or constraints on number of visits (i.e., the cardi-

nality). Multi-Depot VRP (MDVRP), introduce some notion of

heterogeneity (some targets can be visited only by a specific

agent), for which a 8-approximation algorithm is presented

in [20]. However, these approaches are based on graph parti-

tioning, where imposing cardinality constraint is challenging.

Multiagent patrolling problems [21] enable targets to be visited

multiple times, however by the same agent. Under the con-

straint of Cardinality, the MP problem evolves to Multiagent

Planning with Cardinality (MPC) problem. To the authors best

knowledge, the challenging problem of Multiagent planning

with Cardinality and the notion of using the crowd as eyewit-

nesses to efficiently deploy agents, to improve the enforcement

of spectrum policies, is unprecedented in literature.

III. BACKGROUND AND KNOWN RESULTS

Trilateration under noise: Although our solution is inde-

pendent of the underlying crowdsourced paradigm, we adopt

trilateration based localization [1] to derive the cardinality

for the infractions. Trilateration [6] involves estimating the

distance (also called range) of a receiver from a potential

source based on the path loss incurred by a signal using

an approximation of the wireless channel. For example, in

the Hata-Urban [22] channel model, the distance from a

transmitter, d is related to the path-loss, PLout as,

PLout = A + B log(d) + C =⇒ d = 10
PLout−A−C

B

where, A = 69.55 + 26.16 log(fc) − 13.82 log(hb)

− 3.2(log(11.75hm ))2 − 4.97

B = 44.9 − 6.55 log(hb) and C = 0 (Large metropolitan areas)

PLb [dBm] = Pt [dBm] − SNR[dB] − PN [dBm] (1)

Pt is the transmit power and SNR is the received signal to

noise ratio at the agent. PN denotes the average noise power

in absence of any signal is assumed to be −96 dBm.

In (1), uncertainty arise from the assumption about Pt , mea-

surement noise in estimating the SNR and approximation of

the channel model. These errors are collectively modeled as a

random variable X ∼ N (µ, σ2), with µ = 0 and σ2 = 2 dB.

This noise model leads to two limits, [SNR± (X = x)] dB that

translates to two range values using (1): douter and dinner ,

resulting in annular regions (instead of circles) of thickness

d = (douter − dinner ) for each enforcer. Thus, geometric tri-

lateration using these annular regions provides an estimate of

the location of the violator. The overlapping area of the annular

regions creates a convex polygon containing the violator and

its area is a measure of accuracy of localization. Figure 2a

shows an ideal scenario where the location of the violator is
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Fig. 2. In trilateration, the location of a target is given by the intersection of the annular regions. The thickness of the annular regions reduces with SNR
based on (1). However, GDOP depends on the relative positioning of the agents as well. Also, An ROC curve dictates the performance of any detector and
assimilating results from various agents leads to higher accuracy. (a) Ideal arrangement of agents leads to low GDOP. (b) High GDOP using crowdsourced
measurements. (c) Thickness of the annulus, d decreases with SNR. (d) Receiver operating Characteristic of a detector.

estimated by using the measurements reported by three clos-

est (highest SNR) members of the crowd. It has a very low

GDOP because the crowd agents are uniformly distributed on

all sides of the violator providing an accurate estimate of the

target. While, figure 2b shows such a scenario where the agents

are located within a certain angle of the violation. This pro-

duces multiple convex polygons because of GDOP. This is

precisely the drawback of any crowdsourced paradigm. It is

to be noted that the GDOP can only be eliminated if there is

a viable way of positioning the agents, which is not possible

in a purely crowdsourced enforcement paradigm. The GDOP

is used as the guiding metric to derive the cardinality of a

target.

Accuracy and GDOP: Intuitively, it is desirable to choose

crowd agents that are operating at high SNR (closer to tar-

get). The area of the convex polygon is a function of SNR

and the noise model given by (1), which defines the thick-

ness of annular regions. Figure 2c shows that higher the SNR,

lower is the median width of the annular region, d and conse-

quently lower is the uncertainty in the location of the targets

Hence, it is desirable to position the agents as close to the tar-

get as possible. Therefore, one of the objectives is to deploy

mobile agents to surround the initial crowdsourced estimate

of the convex polygon in order to minimize GDOP. The num-

ber of agents required for this is also the cardinality of the

target.

ROC of a signal detector: Signal detection and parame-

ter estimation is a rich and well-studied area. The Receiver

Operating Characteristic (ROC) curve (figure 2d shows the

ROC curve for Neyman-Pearson detector [23]) is universally

used to define the performance of a classifier or an estima-

tor. In this work, the agents rely on the ROC curve to choose

an operating point based on the SNR of the received signal

similar to [1], [24]. Directing crowd agents to always oper-

ate at a desirable operating point can be cost prohibitive but

a group of homogeneous autonomous agents can be man-

dated to yield a high detection result, especially since the

SNR is also very high at the vertices of the polygon as

mentioned above. Therefore, our work is independent of any

specific detection scheme and simply ensures that the agents

are always delivering the highest possible accuracy, e.g., aggre-

gating the operating points chosen by the agents on the

15 dB curve in figure 2d will always yield the best result for

detection.

Algorithm 1: MPC Algorithm

1 Function MPC(Map, a, ZC )

2 γth = 10m2; tC = getCentroids(ZC );
3 while True do

4 [C,ZA] = findCardinality(Map, tC ,ZC );
5 t = getCentroids(ZA);
6 P = findAgentSchedule(Map,a, t, C);

// Take measurements & evaluate

actual t

7 if ZA < γth then break; else ZC = ZA;tC = t;

8 end

9 return P;

10 end

IV. MULTI-AGENT PLANNING WITH CARDINALITY

In the context of the MPC problem, let the set of m tar-

gets be denoted by T = {T1, . . . ,Tm} located at coordinates

specified by the set t = {t1, . . . , tm}. Let the crowd-

sourced estimates of the locations of the set of m targets

be tC = {tC ,1, . . . , tC ,m}. Let the set of n autonomous

agents be denoted by A = {A1, . . . ,An}, with coordinates

a = {a1, . . . , an}. Let the set of m convex polygons for targets

T, as determined by the crowdsourced and autonomous agent

based localization, be denoted by ZC = {ZC ,1, . . . ,ZC ,m}
and ZA = {ZA,1, . . . ,ZA,m} respectively. Algorithm 1 shows

the steps in solving the MPC problem. It is initialized with

the starting locations of the autonomous agents, a, and ZC ,

followed by updating the target location set, tC with the geo-

metric centroids of ZC in line 2. The accuracy of localization

is defined by the area of ZA, and the target value is chosen

to be 10 m2. Although a higher accuracy can be achieved in

theoretical sense, in practice, the accuracy is limited by the

feasibility of deploying agents to the vertices of ZA. In other

words, if the vertices of ZA fall over (or inside) any structure,

then it requires additional resources to further improve the

accuracy of localization. Algorithm 1 terminates under such

infeasible conditions but provides the maximum accuracy in

outdoor setting.

This algorithm has two key steps: A) Derivation of

Cardinality, and B) Scheduling of autonomous agents. Step-

A calculates the cardinality (C) and the convex polygons
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Fig. 3. (a) Crowdsourced localization and ZC . Colored disks portray the annular regions of the crowd agents. (b) Autonomous agent localization and
ZA. Colored disks portray annular regions of autonomous agents. The autonomous agent based localization achieves a 92.25% reduction in the area of the
convex polygon containing the violation. (c) Example routes and the cost metric (details in Section VII) for 5 agents and 10 targets in New York City. Cost
metric = 2.374 km/km.

(ZA) in findCardinality (line 4), using the estimates from the

crowdsourced phase, ZC and tC . Figure 3(a) shows an exam-

ple of a target with crowdsourced detection and localization.

Figure 3(b) shows the cardinality for that target, the optimal

orientation of the autonomous agents and the improvement

in the accuracy of localization over crowdsourced localization

by employing Algorithm 2 in Section V. Then the target loca-

tion set, t is updated with the geometric centroids of ZA in

line 5.

Step-B uses the locations, t and cardinality C from Step-A

to determine the paths, P for each agent by calling the sub-

routine findAgentSchedule in line 6, outlined in Section VI.

Figure 3(c) shows an example schedule in a major city in the

U.S. with a small set of agents and targets. Two properties are

evident from the schedule: 1) Paths for different agents over-

lap but the same agent never visits a target more than once

and 2) The agents can start and finish at any target as long as

it minimizes the length of the longest traversing agent. These

two properties collectively lead to Algorithm 3 in Section VI-A

that iteratively prunes the paths as the cardinality for the targets

are fulfilled, terminating with the quickest possible schedule

for all agents.

Then the agents are deployed to each target and measure-

ments are taken to validate the calculated ZA and [Pd ,Pf ]
(true and false positives). If ZA is greater than the threshold

γth , then steps A and B are repeated by setting ZC = ZA and

tC = t, until ZA is less than the threshold γth . In other words

at each round of enforcement we use the estimated convex

polygon, ZA and locations t as the inputs for the next round

of enforcement. This procedure ensures that each violation is

localized with target accuracy threshold with no ambiguity.

The output of Algorithm 1 are the paths of all the agents (P).

In practice, once an agent visits a target, it performs a sin-

gle round of patrolling by visiting the vertices of the optimal

polygon circumscribing ZC as shown in figure 3(b). At each

vertex the agent collects measurements (SNR) and estimates

the annular region based on the noise model mentioned in

Section III. Since, each target is visited by a number of agents

equal to its cardinality the average of all the measurements

minimizes the error in ZA and [Pd ,Pf ]. This aggregation

is independent of the MPC algorithm and can be designed

to achieve other objectives like trust and fault tolerance. The

Algorithm 2: Algorithm to Determine Cardinality

1 Function findCardinality(Map, tC , ZC )

2 for j=1:size(ZC ) do

3 numEdges = ZC .Edges;

// Find optimal circumscribing

polygon

4 for i=3:numEdges do

5 MinPoly[i] = findMinPoly(ZC ,i);

6 Z̄A[i ] =
findConvexPoly(MinPoly [i ], tC [j ]);

7 CostLoc [i] =
Z̄A[i ]
ZC

+ λi ;

8 end

9 [CostLoc [j], C[j]] = min(CostLoc);
10 ZA[j ] = Z̄A[C[j ]]; // Convex Polygons

11 end

12 return C, ZA;

13 end

cost of a single round of patrolling by the agents is negligible,

since the area of ZA are very small compared to the cost of

scheduling the agents to the the target locations. Hence, this

cost is ignored from the overall cost of scheduling.

V. STEP-A: DETERMINATION OF CARDINALITY

Definition 1 (Cost of Localization): The Cost of Localization

for target Tj ∈ T , given ZC ,j , i agents deployed to target Tj ,

and the convex polygon Zi
A,j is defined as,

Cost of Localization =
Z i

A,j

ZC ,j
+ λi (2)

where Zi
A,j denotes the convex polygon with i agents on

the vertices of the smallest polygon circumscribing ZC ,j and

Zi
A,j /ZC ,j denotes the improvement in the accuracy of local-

ization (Zi
A,j ≪ ZC ,j ) over crowdsourcing after deploying i

agents. The trade-off parameter, λ is a non-negative value that

trades off the localization accuracy with the cost of deploying

more agents.

Definition 2 (Cardinality): The Cardinality of a target Tj ∈
T , denoted by Cj is the total number of unique agents Ai ,
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Fig. 4. Accuracy and cost of localization using Algorithm 2. For λ =
0.01, the optimal cardinality is 5 and the median reduction in the area of the
convex polygon is 96%. (a) Reduction in the convex polygon (ZA/ZC ) with
Cardinality. (b) Cost of Localization vs Cardinality.

that are required to visit Tj . For each Tj ∃ Cj ≥ 1. The set of

cardinality for the m targets is denoted by C = {C1, . . . ,Cm}.

Thus, the desired cardinality, Cj for each target, Tj ∈ T ,

is the number of unique agents (i) for which the Cost of

Localization for target Tj is minimum.

Cj = arg min
i

(Cost of Localization). (3)

A. Algorithm to Determine Cardinality

The key idea here is to find an optimal polygon for each

target Tj that circumscribes the convex polygon, ZC ,j . By

deploying the autonomous agents to the vertices of this optimal

polygon we can ensure that the target is localized with low

GDOP and high accuracy while choosing optimum operating

points on the ROC for signal detection.

Initially the number of edges of ZC is extracted in line 3.

For each target Tj , the optimal polygon that circumscribes

ZC ,j is determined. To do this we scan through the number

of agents (i) starting from 3 agents to a maximum number

that is equivalent to the number of edges of ZC ,j . For each i

we find the smallest polygon, MinPoly with i number of sides

that circumscribes ZC ,j (line 5). Line 6 calculates the convex

regions Z̄A[i ], when i agents are deployed to the vertices of

MinPoly. This step involves, computing the annular regions

and trilaterating as described in Section III assuming that the

target is at tC [j] and the agents are at the vertices of MinPoly.

The overlapping area of these annular regions is the convex

polygon Z̄A[i ]. Next, we determine the cost of localization

for each i according to Definition 1. The optimal circumscrib-

ing polygon is the polygon that gives the minimum cost of

localization. Thus, line 9 gives the Cost of Localization for

target Tj and the cardinality of Tj is equal to the number of

sides of the optimal polygon. The above steps are repeated, to

determine the cardinality, Cj and ZA,j for all targets, Tj ∈ T .

B. Impact on Localization

Figure 4 shows the fidelity of localization of the autonomous

agents oriented as described in Algorithm 2. Figure 4a shows

the reduction in the area of the convex polygons encompass-

ing the targets over crowdsourced localization. It shows that

the higher the number of agents deployed to the target, the

smaller is ZA and the higher is the accuracy of localization.

Figure 4b shows the dependence of the optimal cardinality on

the trade-off parameter, λ. At larger values of λ the cost of

deploying more agents is higher. Hence, at larger values of λ,

a lower cardinality provides a lower cost of localization.

C. Impact on Detection

The set homogeneous autonomous agents can be directed

to operate at a desirable operating point on the ROC. Also,

since Algorithm 2 positions the agents on the vertices of the

optimal polygon (figure 3(b)) and the SNR is very high at

these vertices they guarantee a near optimum detection result

(F-score [25] ≈ 1) regardless of the chosen operating point,

as shown in figure 2(d). Such a guarantee cannot be made for

crowd agents as mandating the crowd to operate at a fixed

operating point may be cost prohibitive. Thus, it is guaranteed

that autonomous agents provide better detection accuracy than

crowd agents.

VI. STEP-B: SCHEDULE AUTONOMOUS AGENTS

After ascertaining the improvement in localization based on

the optimal cardinality, unique agents are routed to each target.

The starting point of the scheduling phase is the construc-

tion of an undirected, weighted graph G = (V, E) from the

road network of the geographical area being enforced for spec-

trum policies, where the roads are mapped as edges E and the

intersections as vertices V. A Path in G = (V, E) is defined as a

subgraph P = (Vs ,Es), if Vs is a set of k vertices of its base

graph G and Es = {(x1, x2), (x2, x3), . . . , (xk−1, xk )} ⊆ E

is the set of k − 1 edges that connect those vertices. The

length of a path depends on the number of its edges and their

weights, w(vi , vj ) = w(vj , vi ). In this paper, the weight asso-

ciated with each edge is the geographical distance between the

corresponding vertices.

The Cost of Scheduling n agents to visit m targets is the time

it takes for all the agents to cover m targets while satisfying

the cardinality for each target. This time is determined by the

agent that takes the longest time to traverse its path. Since, all

agents are assumed to travel at the same speed, the time taken

by an agent is determined by the sum of the edge weights of

Es . Finding the costliest path, P = (Vs, Es) is the central goal

of this work. For practical purposes, m ≥ n.

Definition 3 (Cost of Scheduling): Given the path Pi of an

agent ai of length li , the Cost of Scheduling is the length of

the path of the longest travelling agent.

Cost of Scheduling = max ∀ic(Pi ) = max ∀i li

where, the cost c(.) of a path of k vertices (targets) is the sum

of its edge weights,

c(P) =

k
∑

i=1

w(xi , xi+1).

Definition 4 (Uniqueness): Uniqueness is the necessary con-

dition that requires distinct agents Ai to visit each target Tj

in order to fulfill its cardinality Cj .

For example, if Cj = 2, Uniqueness guarantees that even

if agent Ai traverses multiple times through target Tj , it

still needs another agent, other than Ai to visit Tj to fulfill
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the cardinality of 2. In practice, unique agents provide addi-

tional layers of information that can be assimilated for higher

accuracy [1].

Definition 5 (Schedule): Given a set of m targets

{T1,T2, . . . ,Tm} at t1, t2, . . . , tm , where tj ∈ V , a set of

n agents {A1,A2, . . . ,An} at a1, a2, . . . , an , where ai ∈ V ,

m ≥ n, and max∀j (Cj ) < n , the Schedule is to find the paths

Pi ,∀Ai ∈ A to visit m targets in the shortest possible time

with Cj unique agents visiting Tj , ∀Tj ∈ T .

The solution is the set of paths, P = {P1, . . . ,Pn} such

that the the cost of scheduling (according to Definition 3) is

minimum, while ensuring the number of unique agents visit-

ing each target Tj is exactly equal to Cj ,∀Tj ∈ T (Definition

2 and 4). The targets can be visited at any time during their

traversal without any constraint of waiting time or synchro-

nization, until the cardinality is satisfied for each target.

A. Algorithm for the Schedule

The algorithm is initialized with the locations of the agents,

a and the targets, t with corresponding Cardinality C, pro-

jected on to a graph G = (V, E) (where V is the vertex

set and E is the edge set), extracted from open source map

engines like OpenStreetMap [26]. For one round of enforce-

ment activity, the locations of the targets are assumed to be

constant while the agents follow a schedule to visit the tar-

gets. Line 2 in Algorithm 3 initializes these steps. It is assumed

that the Dispatch, where the algorithm is executed has prior

information about the initial conditions.

The goal of finding the shortest path between the points

in a graph is accomplished by creating a Mission-Graph for

every agent in a as shown in line 3 and the corresponding

subroutine in lines 20 – 28. The Mission-Graph is defined

as a complete graph Ḡi = V̄i , Ēi , where, V̄i = T ∪ Ai .

The edge weight, w̄(p, q) is the length of the shortest route

between nodes p, q ∈ V̄ , computed using Dijkstra’s shortest

path algorithm in lines 24 and 25. In other words, the Mission-

Graph provides the best geographical route for each agent Ai

to reach every target Tj and also the shortest route between

any two targets in V̄ . Given, the shortest paths in the Mission-

Graph, Line 4 calculates the schedule (order) for each agent

to cover all the targets in V̄ in the shortest time, which is

also the sum of edge-weights w̄(p, q) in the path Pi . This is

equivalent to solving the TSP for each agent and dropping the

last edge of the TSP tour to obtain the path Pi . Considering

the best achievable performance to solve the TSP for each

agent, we utilize the approach in [27].

Pruning for least costly path: Given the objectives in

Definitions 2 & 5, the algorithm iteratively prunes the path of

the costliest agent obtained from line 4 (shortest tour on the

Mission-Graph) to find a schedule with the minimum cost of

scheduling. Central to the pruning step is the adherence to the

cardinality Cj for each target. This is outlined in Lines 5–17.

The pruning begins by selecting the costliest agent indexed

by k (the agent that traverses the longest path) and choosing

the farthest target (indexed by l) that the agent k visits, as

indicated in lines 6 and 8 respectively. Line 9 checks for the

condition if the cardinality of this target, C[l ] has been fulfilled

Algorithm 3: Path Pruning Algorithm

1 Function findAgentSchedule(Map, a, t, C)

2 targets_assigned=[t; ...; t]; X = [n, ...,n];
// Visits Count

3 Ḡ = findMissionGraphs(Map,a, t);
// Order for all agents to cover all

targets

4 [P, costs] = TSP(Ḡ ,a, t);
// Compute shortest path to find

Schedule

5 while X �= C do

6 i=0; k=getMax(costs);

// Prune redundant edges

7 while True do

8 l = P[k][end − i];
9 if X [l] > C[l] then

10 targets_assigned[k][end-i]=[]; break;

11 end

12 i=i+1;

13 end

// Reevaluate TSP for costliest

agent

14 Ḡ [k] = graph(Dijkstra([t,a(i)],G [k ]));
15 [P[k], costs[k]] =

TSP(Ḡ [k],a[k], targets_assigned[k]);
16 X [l] = X [l] − 1;

17 end

18 return P , max(costs);

19 end

20 Function findMissionGraphs(Map, a, t)

21 City_Graph=graph(Map);// Extract

connectivity

22 Ḡ=[]; // Extract Mission Graph for

each agent

23 for i = 0 to size(a) do

24 DistanceMatrix=Dijkstra([t,a(i)],City_Graph)

25 Ḡ[i]=graph([t,a(i)],DistanceMatrix)

26 end

27 return Ḡ ;

28 end

by other agents visiting it prior to the agent k. The variable X
keeps track of the number of visits for each target, which is

initialized in line 2 with the maximum number of visits pos-

sible for each agent, n (max∀j (Cj ) < n in Definition 5). It is

decremented by one in line 16 every time a target is removed

and the path is pruned to minimize the cost of scheduling. The

intuition behind this approach is that by removing this redun-

dant node (cardinality already fulfilled) from P[k ], it produces

a local minima for the overall time taken among all agents.

The condition in line 9 is checked for each target in P[k ]
and after all the redundant paths are removed, the shortest

route among the remaining targets in P[k ] is computed again

using Dijkstra’s algorithm, followed by finding the shortest

tour by solving the TSP [27] in lines 14 and 15 respectively

and the visits count variable X is decremented. The reason
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Example illustration of Algorithm 3 with 3 agents and 5 targets (T1 − T5 with cardinality {2, 1, 3, 2, 3} respectively). In each step the costliest
agent (longest travelling agent) is identified and the redundant target (cardinality already fulfilled) is removed. After 5 iterations, Agent A1 is the costliest.
This cost is normalized with the diameter of the graph used a cost metric for evaluation in Section VII. The algorithm also provides the best schedule for
the remaining agents. (a) City map with 3 agents, 5 targets with different cardinality and edge weights. (b) Iter 1: Initial Path Estimate: A2-costliest agent,
T4-farthest redundant target. (c) Iter 2: Remove T4 from A2’s path. A1-costliest agent, T2-farthest redundant target. (d) Iter 3: Remove T2 from A1’s path.
A3-costliest agent, T2-farthest redundant target. (e) Iter 4: Remove T2 from A3’s path. A3-costliest agent, T1-farthest redundant target. (f) Iter 5: Remove
T1 from A3’s path, A1- costliest agent with all cardinality fulfilled.

for recomputing Dijkstra’s algorithm and the shortest tour in

lines 14 and 15 is to ensure that once a node is removed from

the current TSP tour, the weight of the new edge between the

nodes immediately prior and after the one removed may not

be equal to the sum of the two edges prior to the removal. In

other words, if a → b → c is a TSP tour and edge b is removed

in line 10 then w(a, c) �= [w(a, b) + w(b, c)]. Although the

inequality strictly depend on the graph G (city map), it can-

not be ascertained a priori and hence line 14 and 15 ensures

that the final schedule is always has the minimum cost. This

process (lines 5-17) is repeated until the cardinality is fulfilled

for all targets in t (line 5) and the last calculated shortest tour

given by line 15 is the final schedule for the agents, returned

as P along with the final cost of scheduling in line 18.

Example Illustration of Algorithm 3: Figure 5 shows an

example of the iterative evolution of Algorithm 3. Figure 5a

shows a simple city graph, G with edges representing the roads

along with 5 targets and 3 agents located at the intersection

of these roads. The cardinality of the targets T1 − T5 is

{2, 1, 3, 2, 3} respectively. After computing the shortest tour

in the Mission-Graph for all agents in lines 3 and 4, the costs

(length of the lines) and the resultant paths (order) for each

agent are indicated in Figure 5b. In the first iteration, agent

A2 travels the longest to cover all the targets and is identified

as the costliest agent. The farthest target in A2’s path is T4.

As T4 has a cardinality of 2, requiring only 2 of the 3 agents

to visit, it is considered to have a redundant visit in A2’s path.

In other words, T4 can be visited in shorter time by the other

two agents and fulfill the cardinality of 2. Hence, removing

this redundant and costly target T4 from agent A2’s path (as

per lines 9 – 11) reduces the cost of A2’s path while fulfilling

the cardinality for all the targets. The new path for A2 and its

cost is determined from the new Mission-Graph (without T4)

as per line 14 and 15.

Figure 5c shows the paths and the costs of the agents at the

beginning of Iteration 2. In the second iteration, A1 is deter-

mined to be the costliest agent and T4 as the farthest target.

However, as T4 has a cardinality of 2 and has two agents visit-

ing it (including A2). So, this is not considered as a redundant

visit. So, the algorithm continues to look for the farthest tar-

get in A1’s path that has redundant visits, until it detects T2

as the farthest redundant visit, which is removed from A1’s

path. Note, T5 and T3 in A1’s path, both require all three

agents to visit as they have cardinality of 3, hence those two

nodes cannot be removed from A1’s path. The updated path

and its corresponding cost is shown in figure 5d. Similarly,

in the third iteration, A3 is the costliest agent and T2 is the

farthest redundant target in its path (removing other nodes will

not meet the cardinality for those). While the removal of T2

does not improve the cost, as T4 can only be reached via

T2, it should be noted that removal of any targets and the

corresponding edges does not increase the cost (due to the tri-

angular rule governing Euclidean graphs [27]). In Iteration 4,

shown in figure 5e, A3 is still the costliest agent, and T1 is

the farthest redundant target because its cardinality can be met

in shorter time by the other two agents. Consequently, T1 is

removed from A3’s path and after recomputing the new sched-

ule and the path cost the final schedule is obtained as shown

in in figure 5f. The cost of scheduling for this graph is the

total cost of the A1’s path because that is the minimum time

required to visit all the targets while fulfilling the cardinality.

B. Analysis of Algorithm 3

We show that the Schedule is NP-hard, hence there is no

optimal solution in polynomial time.

Claim 1: The Schedule is NP-hard.
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Proof: Consider a subproblem of the Schedule, with 1 agent

having to visit all the targets, with all the targets having a

cardinality of 1. This is equivalent to solving the TSP for that

agent. Since, the TSP is NP-hard and it is a special case of

the Schedule, it is inferred to be at least NP hard.

C. Complexity of Algorithm 3

In absence of an optimal algorithm, Algorithm 3 yields a

solution for the Schedule in polynomial time.

Lemma 1: Algorithm 3 has complexity of O(nm4), where

n is the number of agents and m is the number of targets in G.

Proof: Since the cardinality of the targets is fixed, the num-

ber of iterations of Algorithm 3 is bounded by a fixed number.

The algorithm is initiated with all agents visiting all targets (X
in line 3) and executes until each target is visited by a number

of agents equal to its cardinality. Each iteration removes one

redundant visit from the costliest agent (as shown in Figure 5).

So, for each target Tj , the algorithm executes (n −Cj ) times

and therefore, the total iterations in Algorithm 3 for all the

targets is,

(n − C1) + (n − C2) + · · · + (n − Cm) = m.n −
m

∑

i=1

Ci

(4)

Recall that, n < m and max∀i∈m(Ci ) ≤ n . Hence,

m
∑

i=1

Ci ≤ m.n =⇒ m.n −
m

∑

i=1

Ci ≥ 0 (5)

The 3/2-approximation for TSP [27] used in Algorithm 3 has

a complexity of O(m3). Since, the TSP is computed once in

every iteration, the complexity of Algorithm 3 is,

= O

(

m.n −
m

∑

i=1

Ci

)

.O
(

m3
)

= O

((

m.n −
m

∑

i=1

Ci

)

.m3

)

= O

(

n.m4 − m3.
m

∑

i=1

Ci

)

= O
(

n.m4
)

From (5)

Hence, Algorithm 3 has a complexity of O(nm4).
Note: The 2-approximate solution of TSP based on

the Minimum Spanning Tree (MST) of the corresponding

graph [28], has a complexity of O(m.log(m)). Using such

an implementation in Algorithm 3, the complexity can be

improved to O(n.m2log(m)). Using the MST has the added

advantage of solving the Schedule for non-metric graphs, such

as in the presence of traffic the costs of edges are no longer

just a function of distance. This problem is out of scope of

this work and will be investigated in future.

D. Approximation Ratio for Algorithm 3

In absence of a polynomial time, optimal solution for the

Schedule, an approximation ratio is a bound, which guaran-

tees that any solution from Algorithm 3 is always within a

constant factor of the solution from an optimal algorithm. In

other words, using the notations in Table I, if agent p is the

costliest in Algorithm 3 and agent q is the costliest in the

optimal algorithm, then lp ≤ 3.l∗q is provably correct. Let,

TABLE I
NOTATIONS USED IN SECTION VI-D

OPT be the optimal algorithm for the Schedule problem that

returns the paths P∗
i ,∀i ∈ A, with minimum cost among all

the possible paths that fulfills the cardinality of the targets. It

is to be noted, that we do not make assertions on the design of

OPT except to acknowledge that a Minimum Spanning Tree

(MST) can be constructed from the targets in any optimal

path P∗
i ,∀i ∈ A, similar to deriving a solution of the TSP

problem (used in Algorithm 3) from a corresponding MST.

Also, Pi ,∀i ∈ A, in Algorithm 3 (computed in lines 6–21) can

be obtained using the round-trip MST of the Mission-Graphs

(Ḡi ) instead of the 3/2-approximate TSP approach [27]. Under

such implementation, we observe that if T i
y = 0, i.e., targets

in Pi ⊆ targets in P∗
i , then by the construction of MST [29]

we observe Property 1.

Property 1: If T i
y = 0, then li is no worse than twice the

optimal cost l∗i , i.e., li ≤ 2.l∗i .

Furthermore, the following properties can be observed based

on the design of Algorithm 3 and the definition of OPT.

Property 2: Since, Algorithm 3 and OPT both return the

costliest paths among all the agents (say lp and l∗q ), the paths

travelled by any other agent, must not be costlier than lp or l∗q .

Thus, for any agent i ∈ A we have, li ≤ lp for Algorithm 3

and l∗i ≤ l∗q for OPT.

Property 3: In Algorithm 3 and OPT, all targets must

be visited by the same number of agents (Definition 2 in

Section VI).

Property 4: If a target tk is removed from an agent i’s path,

it must have been the costliest path at some prior iteration of

the algorithm (line 8–15). So, if agent p is the costliest agent

at the end of the algorithm, the increase in agent i for visiting

tk must be such that li + li (tk ) ≥ lp .

Property 5: From Table I, we can express the costs li and

l∗i of agent i as,

li = li

(

T i
x

)

+ li

(

T i
y

)

l∗i = l∗i

(

T i
x

)

+ l∗i

(

T i
z

)

Theorem 1: Algorithm 3 is 3-approximation for the

Scheduling Problem.

Proof Overview: Let the costliest paths returned by

Algorithm 3 and OPT be lp and l∗q respectively. Our goal

is to find a relationship between these two quantities, by first

establishing an inequality between the costs of the same agent
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Fig. 6. Normalized cost metric for Average Cardinality = 3 for (a) London (b) NYC and (c) Paris. The dark line highlights the points beyond which the
cost variation is below 10%. The variance is indicated using the color scale.

in Algorithm 3 and OPT, and then using the inequality and

the properties to relate the costs of different agents in the two

algorithms. This result is used to relate the costs of agents

which have non-overlapping targets in the paths obtained from

Algorithm 3 and OPT. We consider two cases: 1) The targets

in Pp ⊆ the targets in P∗
p and 2) The targets in Pp � the

targets in P∗
p .

The complete proof of the approximation ratio is detailed

in the Appendix.

VII. PERFORMANCE EVALUATION

For practicality, the algorithm was evaluated in three promi-

nent cities: New York City (NYC), Paris and London, primar-

ily to understand the performance on different graphs, with the

roads mapped as edges, and the intersections to vertices. To

compare the outcome of Algorithm 3 among different cities,

the cost metric (Definition 3) is normalized by the diameter of

the graph and its unit is represented as km/km. For a rectan-

gular area, the diameter is simply the diagonal. Figure 3(c)

shows the cost metric and paths for one instance in NYC

where 5 agents are routed using Algorithm 3 among 10 targets

with different cardinality. To further investigate the Scheduling

performance, we perform a parameter space analysis on larger

geographical area and more agents and targets.

A. Parameter Space Analysis

For each graph (city) the number of agents (n), the number

of targets (m), the location of agents (a), the location of tar-

gets (t) and the cardinality of targets (Cj ) were varied and the

effect on the paths (Pi ) and the costs (li ) of the agents were

recorded. The location of agents and targets were chosen ran-

domly among the available nodes in the graph. The agents are

varied from 4 to 20 and number of targets from 4 to 30 and

executed 500 unique arrangements of agents and targets. The

cardinality was varied from 1 to n (1 ≤ Cj ≤ n). However, the

distribution of Cj is controlled in two ways: 1) Constant aver-

age cardinality, and 2) Constant number of total visits across

all the agents (Constant total cardinality).

1) Constant Average Cardinality: The cardinality was dis-

tributed among the targets such that an average cardinality

of 3 is maintained across all agents. This ensures that even

with increasing number of agents, the average number of vis-

its required for the targets is 3, such that for a fixed number of

violations the cost reduces as we deploy more agents. Figure 6

shows the mean and variance of the normalized cost metric

for the three cities. The fixed average cardinality justifies the

drop in cost observed when more agents are deployed. The

cost increases with increasing violations, since the total num-

ber of visits required also increases linearly as the average

cardinality is fixed. However, it is observed that the rate of

reduction in the cost metric drops with increasing number

of agents, denoted by the dark line, which shows the 10%

reduction in the cost metric for different number of targets.

This line indicates a boundary for cost-effective enforcement

as adding more agents does not lead to substantial improve-

ment in the cost metric. Further, the variance of the cost metric

(the color axis) increases with the number of targets and drops

with the number of agents. This is influenced by the fact that,

as there are more infractions, the potential of having diverse

target distributions (such as clusters or well separated tar-

gets) increases resulting in a larger variation. Figure 6 also

reveals that the algorithm performs statistically similar with

respect to the mean and variance of the cost metric among the

cities regardless of the attributes of the city maps. However,

closer inspection indicates that Paris portrays a slightly larger

cost followed by New York and London. This behaviour is

attributed to the features of the road network in these cities. In

Paris, the agents have to travel via the central hub to cover the

targets. This feature contributes to a higher travel time. In com-

parison, NYC has highly connected, grid-like road systems

with plenty of connectivity between the targets, resulting in a

relatively lower cost metric compared to Paris. It is interesting

to observe that in London and New York the 10% line is

located between 10-12 agents and for Paris between 8-10, sug-

gesting that in London and New York the costs can be further

improved by increasing the number of agents compared to

Paris.

2) Constant Total Number of Visits: The total number of

visits was fixed at 40 to ensure that even with increasing

number of targets the total number of visits required by all

the targets combined is limited to 40, such that the average

cardinality reduces as the number of targets increases, limiting

the growth in the cost. Due to this constraint, it is observed

that the change in cost with the number of targets was minimal

compared to the previous case. Practical implications of limit-

ing the total number of visits include situations where the cost

must be maintained at a specific value even with increasing
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Fig. 7. Normalized cost metric for Total Visits = 40. The dark line highlights the points beyond which the cost variation is below 10%. The variance is
indicated using the color scale. (a) Normalized cost spread in London. (b) Normalized cost spread in NYC. (c) Normalized cost spread in Paris.

violations. This is a metric that is controlled by the Dispatch

to conserve enforcement resources. The variation of the mean

normalized cost metric in Figure 7 display a similar pattern

with minuscule increase from London to Paris. However, it

is observed that the variance decreases with increasing num-

ber of targets unlike in the previous case. This is because the

lesser the targets the higher is the average cardinality intro-

ducing more variation in the paths of agents for lesser number

of violations.

B. Overall System Performance

The overall performance metrics for Algorithm 3 is shown

in Figure 8 for an average cardinality of 3. Figure 8a indicates

increasing cost metric with increasing separation of targets,

confirming its influence on the cost. The large variation of cost

observed at the same target separation, is due to the depen-

dence of the cost metric on the distribution of the targets.

Among the regions highlighted on Figure 8a at a target separa-

tion of 1, region A exhibits expected behaviour, where the cost

metric is comparable to the separation of the targets. Region B

has an unusually high cost metric due to widely distributed and

hostile violations (high cardinality) with few available agents.

On the contrary, region C portrays a much lower cost than

the separation, which occurs when there are more agents than

targets that are clustered within a small area. The variation

of the average cost metric with the ratio of agents to tar-

gets shown in figure 8b, confirms that deploying more agents

for the same number of infractions, decreases the cost. The

plot shows the scalability of the algorithm to larger systems

of agents and targets, i.e., if the hostility in an environment

increases, increasing the number of agents by the same factor

will ensure similar cost performance. The figure also shows the

load balancing capability of the algorithm, which is naturally

guaranteed, since it prunes the path of the costliest agents. This

balances the number of targets visited by each agent, ensuring

that no agent is overworked. The behaviour of the cost metric

with a feature of the city graph (length of the edges in the city

graph) and a feature of the mission graph (average inter-target

distance) are shown as QQ plots in figures 8c and 8d. The high

correlation of the cost metric with the average inter-target dis-

tance in figure 8d is due to the fact that, at larger inter-target

distances, the cost metric is influenced more by the average

target separation and less by other factors such as clustering of

Fig. 8. Comparison of the distribution of Normalized Cost Metric for NYC
with parameters of the mission and city graphs. (a) Variation of Cost with
maximum separation of targets. (b) Variation of Cost with ratio of agents to
targets. (c) QQ plot of the cost with the edge length between nodes. (d) QQ
plot of the cost with average distance between targets.

targets and features of the road network. In fact, while the city

graphs differ among the cities (due to different road topolo-

gies), the features of the mission graphs are similar, explaining

the similar trends of the cost metric among the cities observed

in figures 6 and 7.

VIII. 3D LOCALIZATION AND DETECTION

In general, the targets can be located in a 3-dimensional

space. For infractions that occur at ground level or low

elevations, Unmanned Ground Vehicles (UGVs) are sufficient

for desired accuracy of localization and detection. However,

for targets in higher elevations (e.g., drones) or in high-rise

buildings, Unmanned Aerial Vehicles (UAVs) are a better

choice. UAV systems have broader perception [30], better

tracking, and a higher degree of flexibility in terms of

mobility compared to UGVs, but may be constrained in terms

of battery life, and radio resources. On the other hand, UGVs

are more capable of patrolling larger areas, carry higher
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Fig. 9. (a) Localization of a target at a high elevation from UGV agents and the region ZA,3D . The 2D projection of ZA,3D is ZA,2D . Polygon around
ZA,2D is shown, (b) The UAV agents are scheduled to the vertices of a polygon around ZA,2D and at an elevation hUAV , (c) Comparison of localization
accuracy for UGVs and UAVs. The volume of the estimated polyhedron is much less for UAVs, showing ≈ 70% improvement.

payload and radio equipment and can act as a mother-ship

for the UAVs. Coordinated as a team, UGVs and UAVs

can deliver exponentially more effective operations than as

separate, non-integrated systems. The accuracy of localization

of targets in 3D space can be improved by deploying UAVs as

it has low 3D-GDOP and the volume of the estimated convex

polyhedron containing the target is reduced.3 Moreover, since

UAVs are able to navigate closer to the infractions, the SNR

of the received signal is very high, leading to high accuracy

of detection.

A. Outdoor-to-Indoor Path Loss

The trilateration based localization for targets located in

3D (typically within buildings) is dictated by the Outdoor-

to-Indoor (O2I) building penetration loss is modeled [33],

PL = PLout + PLin + PLtw + N
(

0, σ2
P

)

PLout = A + B log(d) + C and PLin = 0.5d2D−in

PLtw = PLnpi − 10 log10

N
∑

i=1

(

pi × 10−0.1Lmaterial_i

)

(6)

where PL [dBm] = Pt [dBm] − SNR [dB] − PN[dBm].

PLout is the outdoor path loss as in (1). The distance to

the target, d is a function of PLout . PLin is the inside loss

dependent on the depth into the building, and d2D−in is a

single, link-specific, uniformly distributed variable between 0

and 25 m for Urban environments [33]. PLtw is the build-

ing penetration loss through the external wall with standard

deviation σP . PLnpi is an additional loss added to the exter-

nal wall loss to account for non-perpendicular incidence.

Lmaterial−i = amaterial−i + fc · bmaterial−i
is the penetration

loss of material i and pi is proportion of i th material, where
∑N

i=1 pi = 1 and N is the number of materials. The value

of Lmaterial−i for a building is determined by the construc-

tion material (from OpenStreetMap[26]) and its penetration

loss [33]. From (6), the distance d from each Agent to the

Target is,

d = 10

(

PL−PLin−PLtw−A−C

B

)

(7)

3Regulations by the FAA [31], impose restrictions on path planning of
UAVs above 400 ft and above groups of people. These regulations may be
wavered [32], and are subject to constant revision.

Algorithm 4: Algorithm to Perform 3D Localization

1 Function do3DLocalization(Map, ZA,3D , tA,3D , C)

2 tA,2D = tA,3D [:,1:2]; ZA,2D = ZA,3D [:,1:2];

σh = 20m
3 [xUAV , yUAV ] = findMinPoly(ZA,2D , C);
4 hUAV ∼ N (tA,3D [:, 3], σh );
5 Z ′

A = findConvexPoly([xUAV , yUAV , hUAV ], tA,3D );

6 return Z ′
A;

7 end

This estimated range range along with the noise model (in

Section III) produces the 3D annular region as shown in

figure 9a. In presence of multiple Agents, the intersection of

these 3D regions result in a convex polyhedron, that contain

the target.

B. 3D Trilateration

In the context of the 3D localization problem, let the UGV

estimates of the locations of the set of m targets be tA,3D . Let

the set of m convex polyhedrons for targets T, as determined

by the UGV and UAV based localization, be ZA,3D and Z ′
A

respectively. ZA,3D and tA,3D is determined by Algorithm 2

for targets distributed in 3D. tA,3D are the centroids of ZA,3D .

Algorithm 4 computes the 3D localization. ZA,2D and tA,2D
are the 2D projection of ZA,3D and tA,3D on to the city map,

as shown in line 2 figure 9a.

We deploy the same number of UAVs to each target as

UGVs (equal to the cardinality, C[j] of each target, Tj ). The

x and y coordinates of the UAVs are the vertices of the mini-

mum polygon (with a number of sides equal to the cardinality

of each target) circumscribing each convex polyhedron in the

set, ZA,2D as in line 3. The heights of each UAV is sampled

from the normal distribution, N (tA,3D [:, 3], σh ). Line 5 calcu-

lates the 3D convex regions Z ′
A, when i UAVs are deployed to

[xUAV , yUAV , hUAV ]. This step involves, computing the 3D

annular regions and trilaterating as described in Section VIII-A

assuming that the target is at tA,3D and the agents are at

[xUAV , yUAV , hUAV ]. The overlapping volume of these 3D

annular regions is the convex polyhedron Z ′
A. Circumscribing

the estimates tA,3D at different elevations improves the
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Fig. 10. (a) Localization from UGV agents only (3 UGVs) and ZA,3D . (b) Replacing one UGV with one UAV (2 UGVs and 1 UAV) achieves 40%
reduction in the volume of the convex polyhedron, compared to (a). (c) Localization with UAVs alone (3 UAVs) achieves 85% reduction compared to (a) in
the volume of the convex polyhedron. The colored rings portray the inner spheres of the autonomous agents.

accuracy of localization (reduces the volume of Z ′
A) and the

likelihood of the target being located in Z ′
A. Each agent has a

complete topological view of the geographical area of interest

(city). The exact location of each building on the city map

is extracted from [26] and the dimension of each building is

obtained from city databases such as [34]. For targets approx-

imately located in buildings (as estimated from Z ′
A), the 3D

convex polyhedron containing the target can be further reduced

by considering its overlap with the building dimensions,

thereby increasing the accuracy of localization. Figure 9c

shows the performance of UGV and UAV localization for 1000

targets scattered at various elevations (less than 100m) and

achieve ≈70% improvement in localization accuracy.

Figure 10 shows an example of an infraction event occurring

at an elevation (at an altitude of 30m in a high-rise build-

ing) and the improvement in the accuracy of localization over

UGVs, when UAVs are deployed. Figure 10a shows the 3D

convex polyhedron, ZA,3D containing the target as estimated

by three UGVs positioned at the vertices of ZC as described

in Section V. Eventhough, the UGVs can estimate the target

location with reasonable accuracy (as the centroid of ZA,3D ),

we can further improve the accuracy of localization by deploy-

ing UAVs. The volume of the 3D convex polyhedron estimated

by deploying a single UAV in conjunction with two UGVs,

shows a 40% improvement in the localization accuracy over a

purely UGV based localization (as in figure 10b). Localization

from a set of UAVs, results in more accurate localization of

the target as depicted in figure 10c, showing a 85% improve-

ment over the localization from UGVs. This demonstrates the

superiority of UAVs in 3D localization.

IX. DISCUSSIONS

Other Enforcement Paradigms: In practice, networks com-

prised of opportunistic users have limited communication

range and transmit power [35], [36], to avoid interference to

neighboring networks sharing the same frequency band. This

increases the difficulty of detecting spectrum infractions with

the desired accuracy unless the detector is in the vicinity of

the infraction. So, dense deployment of static infrastructure

with a wide coverage can be prohibitively expensive for prac-

tical purposes. Even with mesh deployments of static enforcers

unless the policy violation events occur in the vicinity of

the enforcers, it would lead to poor localization and false

alarms [1]. Hence, autonomous agents are required to be

routed to the vicinity of the infraction to achieve the desired

performance.

Future Experimental Testbed: The theoretical and simu-

lated results in this work is currently being validated by

over the air experiments. The Targets are emulated with soft-

ware defined radios (e.g., Ettus USRP B210 [37]) transmitting

in the 3.6 GHz band scattered geographically (outdoor and

indoor). The cardinality of the violations is first estimated by

a crowdsourced paradigm [1], [38]. The autonomous agents

are a combination of UAVs and UGVs with software defined

radios mounted on them. Each agent is provided with a set

of rules (signal detectors) to check for infraction. The dis-

patch computes the schedule for each agent (Algorithm 3) and

communicate to the Agents. The agent uses GNSS (Global

Navigation Satellite System) based automated navigation [39]

to navigate to each target. At each target Agents perform SNR

measurements, and report the quadruplet, [SNR, loc,Pd ,Pf ]
to the dispatch and moves on to the next Target. At the end

of a single round of enforcement (when the cardinality of all

the targets have been met), the dispatch computes the convex

zone containing the target and the overall time of scheduling

(determined by the agent travelling the longest path traversed).

These measures are used to test this hybrid framework.

X. CONCLUSION

In this paper, we architected and analyzed a solution for the

MPC problem using algorithms to derive the near-optimum

cardinality of the targets and to compute schedule for all the

agents to fulfill the cardinality in the shortest possible time.

This contribution is a complementary and necessary precursor

to advance signal processing for enforcing spectrum etiquette

using mobile, autonomous agents. Through simulations and

analysis, we draw four firm conclusions: 1) The autonomous

agents are able to detect and localize targets with higher

accuracy than a purely crowdsourced regime. 2) The schedul-

ing algorithm is polynomial, has a provable bound of 3-

approximation ratio, and provides the shortest paths for the

agents while conforming to the cardinality requirement, 3) The

scheduling algorithm exhibits strong generality across different

geographical regions, by producing statistically similar results
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for varying degree of violations, 4) UAVs achieve signifi-

cant improvement in localization accuracy over UGVs. While

we await practical system implementation, the encouraging

results from this work lay the foundation towards adopting

a real-time, autonomous enforcement system for spectrum

policies.

APPENDIX

APPROXIMATION RATIO OF SCHEDULING ALGORITHM 3

Proof (CASE 1): If the targets in Pp ⊆ the targets in P∗
p

(i.e., T
p
y = 0) , then it follows from Properties 1 and 2 that

lp ≤ 2.l∗p ≤ 2.l∗q . Hence, the approximation ratio is 2.

CASE 2: In the the case where the targets in Pp � the

targets in P∗
p (i.e., T

p
y > 0), from Property 3, there must exist

a target tk and an agent i such that tk is in P∗
i but not in Pi

(otherwise, in Algorithm 3, some targets would be visited by

more agents than in OPT). Hence from Property 4 we have,

lp ≤ li + li (tk )

≤ li

(

T i
x

)

+ li

(

T i
y

)

+ li (tk ) From Property 5

≤ 2l∗i + li

(

T i
y

)

From Properties 5 & 1

≤ 2l∗q + li

(

T i
y

)

From Property 2 (8)

CASE 2a: If li (T
i
y ) ≤ l∗q , then we have, lp ≤ 2l∗q +li (T

i
y ) ≤

3l∗q , giving an approximation ratio of 3.

CASE 2b: If li (T
i
y ) > l∗q , consider a set Ac ⊆ A with c,

for which there is a target in P∗
i but not in Pi (i.e., T i

z > 0).

Then Pi must be costlier than P∗
i ,∀i ∈ Ac (since li (T

i
y ) >

l∗q ,∀i ∈ Ac). For the set of all agents j /∈ Ac since T
j
z = 0,

the targets in Pj must at least include the same set of targets as

in P∗
j . Then, from Property 3, for the set of all agents i ∈ Ac ,

the collection of all P∗
i must at least include all the targets

visited by the collection of Pi . Hence we have,
∑

i∈Ac

T i
y ⊆

∑

i∈Ac

T i
z (9)

Then from Property 1 and 2 we have,
∑

i∈Ac

li ≤ 2.
∑

i∈Ac

l∗i ≤ 2.c.l∗q (10)

Now from (9) and Property 5 and 1,

c.l∗q ≤
∑

i∈Ac

li

(

T i
y

)

≤ 2.
∑

i∈Ac

l∗i

(

T i
z

)

≤ 2.c.l∗q (11)

From (10), since
∑

i∈Ac
li ≤ 2.

∑

i∈Ac
l∗i , there must exist

some agents i ∈ Ad such that Ad ⊆ Ac , for which li ≤ 2.l∗i .

Let any agent i ∈ Ad contain b number of targets in T i
z .

Then by considering b iterations of Property 4 to remove all

T i
z from i, we have,

b.lp ≤ b.li + li
(

T i
z

)

≤ 2b.l∗i + 2l∗i
(

T i
z

)

From Property 1

≤ 2b.l∗i
(

T i
x

)

+ 2(b + 1).l∗i
(

T i
z

)

From Property 5

≤ 2(b + 1).
(

l∗i
(

T i
x

)

+ l∗i
(

T i
z

))

≤ 2(b + 1).l∗i ≤ 2(b + 1).l∗q From Property 5, 2

=⇒ lp ≤ (2 + 2/b).l∗q (12)

Let |T i
z | and |T i

y | denote the number of targets in T i
z

and T i
y respectively. For Property 3 to be satisfied, we have,

∑

i∈A |T i
z | =

∑

i∈A |T i
y |. Since for all agents j /∈ Ac ,

|T j
z | ≤ |T j

y |, we have
∑

i∈Ac
|T i

z | ≥
∑

i∈Ac
|T i

y |, ∀i ∈ Ac .

Since, for all such agents, T i
y contains at least one target, and

predominantly T i
z contains more targets than T i

y , then at least

some agents should have more than a single target in T i
z , i.e.,

there will exist some agents i such that b > 1. Thus, consid-

ering any such agent i, from (12) we have, lp ≤ 3.l∗q . Hence,

Algorithm 3 is 3-approximation for the U-MPC problem.

In cases where ∀i ∈ Ac , T i
z consists of only a single tar-

get, i.e., b = 1, from (9), all T i
y cannot contain more than

a single target. This leads to the fact that,
∑

i∈Ac
T i

y =
∑

i∈Ac
T i

z ,∀i ∈ Ac , which is only possible if ∀j /∈ Ac ,

all Pj and P∗
j contain the same set of targets (i.e., T

j
y = 0).

Now, if p /∈ Ac , then it is similar to CASE 1 (since T
p
y = 0)

and we have, lp ≤ 2.l∗q . Now, consider the case where p ∈ Ac .

For any agent g ∈ Ac , from Property 3, it follows that, the

single target in T
g
y (say ty ) should also be in T i

z for some

other agent i ∈ Ac . This means that ty = T
g
y = T i

z , and

hence, we have lg (ty ) = lg (T i
y ) ≥ l∗q . Since lg (ty ) is the cost

calculated based on the round-trip MST, and since agents g

and i and the target ty belong to the same graph of the city,

we have, lg (ty ) = li (ty ), provided that ty is not the first target

visited by agents g or i. Similarly, the single target in T i
y must

also be in T h
z (say tz ) for some agent h ∈ Ac . This means

that tz = T i
y = T h

z , and from Property 1 and 5 we have,

lh(tz ) = lh(T h
z ) ≤ 2l∗h (T h

z ) ≤ 2l∗h ≤ 2l∗q and li (tz ) = lh(tz ).
Therefore, for any agent i ∈ Ac , we get,

l∗q ≥ l∗i = l∗i

(

T i
x

)

+ l∗i

(

T i
z

)

From Property 1 & 5

≥ li

(

T i
x

)

/2 + li

(

T i
z

)

/2 From Property 1

≥ li

(

T i
x

)

/2 + li
(

ty
)

/2

≥ li

(

T i
x

)

/2 + lg
(

ty
)

/2

Since lg (ty ) ≥ l∗q , therefore we get, li (T
i
x ) ≤ l∗q . Considering

agents i and h, we get,

li = li

(

T i
x

)

+ li

(

T i
y

)

= li

(

T i
x

)

+ li (tz ) FromProperty 5

= li

(

T i
x

)

+ lh(tz ) ≤ l∗q + 2.l∗q

≤ 3.l∗q

Thus, if p ∈ Ac , we get, lp ≤ 3.l∗q . Hence, we conclude

that the approximation ratio for Algorithm 3 is no worse

than 3.
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