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Chevalley formulas

Schur functions sλ, for partitions λ = (λ1 ≥ λ2 ≥ . . .): basis of the
algebra of symmetric functions Sym.

Simplest multiplication formula (Pieri):

sλ · s(1) =
∑

µ=λ∪{□}

sµ ,

where s(1) = s□ = x1 + x2 + . . ..

Geometric interpretation (Schubert calculus on flag manifolds):
sλ(x1, . . . , xk) represent Schubert classes σλ (i.e., cohomology
classes of Schubert varieties) in the cohomology of Grassmannians
Grk(Cn) = SLn/Pk :

H∗(Grk(Cn)) ≃ Sym(x1, . . . , xk)/I .
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Chevalley formulas (cont.)

Consider the complete flag variety

Fln = {({0} ⊂ V1 ⊂ V2 ⊂ . . . ⊂ Cn)} = SLn/B .

Its cohomology H∗(Fln) has a basis of Schubert classes

{σw : w ∈ Sn} ,

represented by Schubert polynomials Sw ∈ Z[x1, . . . , xn].

Chevalley (Monk) formula:

Sw ·Ssk =
∑

i≤k<j
ℓ(wtij )=ℓ(w)+1

Swtij ,

where sk = tk,k+1 and Ssk = x1 + . . .+ xk .
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Generalizations

(1) Replace cohomology H∗( · ) with
▶ K -theory K ( · );

▶ torus T -equivariant versions H∗
T ( · ), KT ( · );

▶ quantum versions QH∗
T ( · ), QKT ( · ).

(2) Replace the flag variety SLn/B or the Grassmannian SLn/Pk

with

▶ generalized flag varieties G/B or partial flag varieties G/P
(G semisimple Lie group over C, B Borel subgroup,
P parabolic subgroup);

▶ affine versions: affine flag manifold, semi-infinite flag manifold
QG .
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Motivation

▶ Quantum cohomology and quantum K -theory are closely
related to certain integrable multi-particle dynamical systems
based on root systems (Toda lattices);

▶ QKT (G/B) is closely related to KT (QG ) (breakthrough of
Syu Kato);

▶ The semi-infinite flag manifolds have applications to the
representation theory of affine Lie algebras (level 0 extremal
weight modules, Kato-Naito-Sagaki).
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Plan of the talk

▶ Background.

▶ The quantum alcove model: based on root system
combinatorics, so it works uniformly in all Lie types.

▶ A Chevalley formula for KT (QG ) based on the quantum
alcove model (QG is the semi-infinite flag manifold
corresponding to G of arbitrary Lie type).

▶ Chevalley formulas for QKT (G/B) and QKT (G/P)
(for G of arbitrary Lie type).

▶ Applications: more explicit computations and results in type
A, for QK (Fln).



Plan of the talk

▶ Background.

▶ The quantum alcove model: based on root system
combinatorics, so it works uniformly in all Lie types.

▶ A Chevalley formula for KT (QG ) based on the quantum
alcove model (QG is the semi-infinite flag manifold
corresponding to G of arbitrary Lie type).

▶ Chevalley formulas for QKT (G/B) and QKT (G/P)
(for G of arbitrary Lie type).

▶ Applications: more explicit computations and results in type
A, for QK (Fln).



Plan of the talk

▶ Background.

▶ The quantum alcove model: based on root system
combinatorics, so it works uniformly in all Lie types.

▶ A Chevalley formula for KT (QG ) based on the quantum
alcove model (QG is the semi-infinite flag manifold
corresponding to G of arbitrary Lie type).

▶ Chevalley formulas for QKT (G/B) and QKT (G/P)
(for G of arbitrary Lie type).

▶ Applications: more explicit computations and results in type
A, for QK (Fln).



Plan of the talk

▶ Background.

▶ The quantum alcove model: based on root system
combinatorics, so it works uniformly in all Lie types.

▶ A Chevalley formula for KT (QG ) based on the quantum
alcove model (QG is the semi-infinite flag manifold
corresponding to G of arbitrary Lie type).

▶ Chevalley formulas for QKT (G/B) and QKT (G/P)
(for G of arbitrary Lie type).

▶ Applications: more explicit computations and results in type
A, for QK (Fln).



Plan of the talk

▶ Background.

▶ The quantum alcove model: based on root system
combinatorics, so it works uniformly in all Lie types.

▶ A Chevalley formula for KT (QG ) based on the quantum
alcove model (QG is the semi-infinite flag manifold
corresponding to G of arbitrary Lie type).

▶ Chevalley formulas for QKT (G/B) and QKT (G/P)
(for G of arbitrary Lie type).

▶ Applications: more explicit computations and results in type
A, for QK (Fln).



Root system notation

T ⊂ B ⊂ G as before.

Type An−1: G = SLn, B = {upper triangular matrices in SLn}.

Q root lattice, Q∨ coroot lattice, αi simple roots (i ∈ I ).

Type An−1: roots αij = α∨
ij = εi − εj ∈ Rn, αi = αi ,i+1.

P weight lattice, ωi fundamental weights, P+ dominant weights.

Type An−1:
P = {

∑n
i=1 λiεi = (λ1, . . . , λn−1) : λi ∈ Z≥0} − compositions;

P+ = {(λ1 ≥ . . . ≥ λn−1 ≥ 0)} − partitions, ωi = (1i ).

Z[P] = R(T ) =
⊕

λ∈P Zeλ.

W finite Weyl group, si simple reflections.

Type An−1: W = Sn, si = ti ,i+1.
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Previous work

KT (G/B), as module over KT (pt) = Z[P], has a basis of Schubert
classes [OXw ], w ∈ W (classes of the structure sheaves of Schubert
varieties Xw ).

For λ ∈ P, consider the line bundle (on G/B) Lλ := G ×B C−λ.

Chevalley formula for KT (G/B):

[Lλ] · [OXw ] =
∑

v∈W , µ∈P
cλ,µw ,v e

µ [OXv ] , cλ,µw ,v ∈ Z .

[L.-Postnikov, 2003]: combinatorial Chevalley formula in terms of
the alcove model.



Previous work

KT (G/B), as module over KT (pt) = Z[P], has a basis of Schubert
classes [OXw ], w ∈ W (classes of the structure sheaves of Schubert
varieties Xw ).

For λ ∈ P, consider the line bundle (on G/B) Lλ := G ×B C−λ.

Chevalley formula for KT (G/B):

[Lλ] · [OXw ] =
∑

v∈W , µ∈P
cλ,µw ,v e

µ [OXv ] , cλ,µw ,v ∈ Z .

[L.-Postnikov, 2003]: combinatorial Chevalley formula in terms of
the alcove model.



Previous work

KT (G/B), as module over KT (pt) = Z[P], has a basis of Schubert
classes [OXw ], w ∈ W (classes of the structure sheaves of Schubert
varieties Xw ).

For λ ∈ P, consider the line bundle (on G/B) Lλ := G ×B C−λ.

Chevalley formula for KT (G/B):

[Lλ] · [OXw ] =
∑

v∈W , µ∈P
cλ,µw ,v e

µ [OXv ] , cλ,µw ,v ∈ Z .

[L.-Postnikov, 2003]: combinatorial Chevalley formula in terms of
the alcove model.



Previous work

KT (G/B), as module over KT (pt) = Z[P], has a basis of Schubert
classes [OXw ], w ∈ W (classes of the structure sheaves of Schubert
varieties Xw ).

For λ ∈ P, consider the line bundle (on G/B) Lλ := G ×B C−λ.

Chevalley formula for KT (G/B):

[Lλ] · [OXw ] =
∑

v∈W , µ∈P
cλ,µw ,v e

µ [OXv ] , cλ,µw ,v ∈ Z .

[L.-Postnikov, 2003]: combinatorial Chevalley formula in terms of
the alcove model.



Quantum alcove model: quantum Bruhat graph on the
finite Weyl group

The quantum Bruhat graph on W , denoted QBG(W ), is the
directed graph with labeled edges

w
α−→ wsα , where

ℓ(wsα) = ℓ(w) + 1 (covers of Bruhat order) , or

ℓ(wsα) = ℓ(w)− 2ht(α∨) + 1 .

(If α∨ =
∑

i ciα
∨
i , then ht(α∨) :=

∑
i ci .)



Hasse diagram of the Bruhat order for S3:

321

2312

1223

1313

2312

αα

αα

αα

αα

123

132213

231 312



Quantum Bruhat graph for S3:

321

α 13

2312

1223

1313

2312

αα

αα

αα

αα

123

132213

231 312



The quantum alcove model [L.-Lubovsky, 2011]

Given any weight λ, we associate with it a sequence of roots,
called a λ-chain:

Γ = (β1, . . . , βm) .

This is determined by a reduced decomposition of the affine Weyl
group element corresponding to A◦ − λ (where A◦ is the
fundamental alcove).

The latter gives a shortest sequence of adjacent alcoves from A◦ to
A◦ − λ.
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Example. Type A2, λ = (3, 1, 0) = 3ε1 + ε2,
Γ = ( (1, 2), (1, 3), (2, 3), (1, 3), (1, 2), (1, 3) ).

=s

αα

ε

ε

ε

−2,

0,α

α

r
233

136
=sr

23

13

121

2

3

α

−λ



The quantum alcove model (cont.)

Given Γ = (β1, . . . , βm), let ri := sβi
and r̂i := sβi ,−li .

The objects of the model: subsets of positions in Γ

A = {j1 < . . . < js} ⊆ {1, . . . ,m} .

For w ∈ W and A, construct the chain π(w ,A) of elements in W :

w0 = w , . . . , wi := wrj1 . . . rji , . . . , ws = end(w ,A) .

The main structure structure: w -admissible subsets

A(w , Γ) := {A : π(w ,A) path in QBG(W )} .
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The quantum alcove model (cont.)

In addition to end(w ,A), we associate the following statistics with
a pair (w ,A), for A = {j1 < . . . < js} ∈ A(w , Γ):

▶ wt(w ,A) := −wr̂j1 . . . r̂js (−λ) ;

▶ A− := {ji ∈ A : wrj1 . . . rji−1
> wrj1 . . . rji−1

rji} ;

▶ down(w ,A) :=
∑

j∈A− |βj |∨ ∈ Q∨,+ .
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▶ A− := {ji ∈ A : wrj1 . . . rji−1
> wrj1 . . . rji−1

rji} ;

▶ down(w ,A) :=
∑

j∈A− |βj |∨ ∈ Q∨,+ .



Independence of the quantum alcove model from the
λ-chain

Theorem. [Kouno-L.-Naito] Given λ-chains Γ, Γ′, there is a
sijection [Fisher-Konvalinka] between A(w , Γ) and A(w , Γ′) which
preserves the relevant statistics.

Based on quantum Yang-Baxter moves, which are root system
analogues of jeu de taquin slides for semistandard Young tableaux
(in type A).
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The Chevalley formula for semi-infinite flag manifolds QG

In KT (QG ), it expresses the product of a Schubert class (indexed
by w ∈ Waff = W ⋉ Q∨) with the class of a line bundle
corresponding to λ ∈ P.

[L.-Naito-Sagaki]:

▶ translate the Chevalley formulas for λ ∈ P+

[Kato-Naito-Sagaki] and λ ∈ P− [Naito-Orr-Sagaki] from
quantum LS paths to the quantum alcove model;

▶ generalize the new formulas to arbitrary λ ∈ P, via
combinatorics of the quantum alcove model.
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Quantum K -theory

Consider variables Qi for i ∈ I , and let

Z[Q] := Z[Q1, . . . ,Qr ] , Z[Q][P] := Z[Q]⊗Z Z[P] .

QKT (G/B) (small) is defined on KT (G/B)⊗Z[P] Z[Q][P]
[Anderson-Chen-Tseng].

The algebra QKT (G/B) has a Z[Q][P]-basis given by the classes
[Ow ] of the structure sheaves of (opposite) Schubert varieties in
G/B, for w ∈ W .

Given ξ = d1α
∨
1 + · · ·+ drα

∨
r in Q∨,+, let Qξ := Qd1

1 · · ·Qdr
r .
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The Chevalley formula in QKT (G/B)

Theorem. [L.-Naito-Sagaki, conjecture by L.-Postnikov 2003] Let
k ∈ I , and fix a (−ωk)-chain of roots Γ(−ωk). Then, in
QKT (G/B), we have the cancellation-free formula:

[Osk ] · [Ow ] = (1− ew(ωk )−ωk ) [Ow ]+∑
A∈A(w ,Γ(−ωk ))\{∅}

(−1)|A|−1Qdown(w ,A) e−ωk−wt(w ,A) [Oend(w ,A)] .

Proof: Translate the corresponding Chevalley formula for the
semi-infinite flag manifold via Kato’s isomorphism:

QKT (G/B)
≃−→ K ′

T (QG ) ⊂ KT (QG ) .
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Application: The quantum K -theory of partial flag
manifolds

[Kouno-L.-Naito-Sagaki] We give cancellation-free Chevalley
formulas for QKT (G/P) in the following cases:

▶ all Grassmannians of types A and C ;

▶ type A, 2-step flag manifolds.
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Application to type A: quantum Grothendieck polynomials

The Grothendieck polynomials [Lascoux-Schützenberger] Gw (x)
represent Schubert classes in K (Fln).

Define E k
p in Z[Q][x ], for x = (x1, . . . , xn), Q = (Q1, . . . ,Qn), such

that their specialization at Q1 = . . . = Qn = 0 is the elementary
symmetric polynomial ekp = ep(x1, . . . , xk).

Define a quantization map Q by

Q(e1i1 . . . e
n−1
in−1

) := E 1
i1 . . .E

n−1
in−1

, 0 ≤ ij ≤ j .

Definition. [L.-Maeno 2006, cf. Fomin-Gelfand-Postnikov] The
quantum Grothendieck polynomial GQ

w is

GQ
w := Q(Gw ) ∈ Z[Q, x ] for w ∈ Sn .
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Type An−1: QK (Fln)

Theorem. [L.-Maeno, 2006] The quantum Grothendieck
polynomials satisfy the version of the above Chevalley formula for
QK (Fln).

Corollary. [L.-Naito-Sagaki, conjecture by L.-Maeno 2006, cf.
Fomin-Gelfand-Postnikov] The quantum Grothendieck polynomials
represent Schubert classes in QK (Fln).

Consequence. The quantum Grothendieck polynomials can be used
to expand any product of Schubert classes in the basis of Schubert
classes (Littlewood-Richardson problem).

Theorem. [L.-Naito-Sagaki] In the expansion of [Osk ] · [Ow ], all
(non-zero) coefficients are ±1 (explicitly determined).
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