A combinatorial Chevalley formula for semi-infinite flag manifolds and its applications

Cristian Lenart ${ }^{\dagger 1}$, Satoshi Naito ${ }^{2}$, and Daisuke Sagaki ${ }^{3}$

State University of New York at Albany ${ }^{\dagger 1}$
Tokyo Institute of Technology, Japan ${ }^{2}$
Tsukuba University, Japan ${ }^{3}$

Geometric Aspects of Algebraic Combinatorics AMS special session, University of Massachusetts Amherst October 1-2, 2022
C. Lenart was supported by the NSF grant DMS-1855592.

Chevalley formulas

Schur functions s_{λ}, for partitions $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \ldots\right)$: basis of the algebra of symmetric functions Sym.

Chevalley formulas

Schur functions s_{λ}, for partitions $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \ldots\right)$: basis of the algebra of symmetric functions Sym.

Simplest multiplication formula (Pieri):

$$
s_{\lambda} \cdot s_{(1)}=\sum_{\mu=\lambda \cup\{\square\}} s_{\mu}
$$

where $s_{(1)}=s_{\square}=x_{1}+x_{2}+\ldots$.

Chevalley formulas

Schur functions s_{λ}, for partitions $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \ldots\right)$: basis of the algebra of symmetric functions Sym.

Simplest multiplication formula (Pieri):

$$
s_{\lambda} \cdot s_{(1)}=\sum_{\mu=\lambda \cup\{\square\}} s_{\mu},
$$

where $s_{(1)}=s_{\square}=x_{1}+x_{2}+\ldots$.
Geometric interpretation (Schubert calculus on flag manifolds): $s_{\lambda}\left(x_{1}, \ldots, x_{k}\right)$ represent Schubert classes σ_{λ} (i.e., cohomology classes of Schubert varieties) in the cohomology of Grassmannians $G r_{k}\left(\mathbb{C}^{n}\right)=S L_{n} / P_{k}$:

$$
H^{*}\left(G r_{k}\left(\mathbb{C}^{n}\right)\right) \simeq \operatorname{Sym}\left(x_{1}, \ldots, x_{k}\right) / I
$$

Chevalley formulas (cont.)

Consider the complete flag variety

$$
F I_{n}=\left\{\left(\{0\} \subset V_{1} \subset V_{2} \subset \ldots \subset \mathbb{C}^{n}\right)\right\}=S L_{n} / B
$$

Chevalley formulas (cont.)

Consider the complete flag variety

$$
F I_{n}=\left\{\left(\{0\} \subset V_{1} \subset V_{2} \subset \ldots \subset \mathbb{C}^{n}\right)\right\}=S L_{n} / B
$$

Its cohomology $H^{*}\left(F I_{n}\right)$ has a basis of Schubert classes

$$
\left\{\sigma_{w}: w \in S_{n}\right\}
$$

represented by Schubert polynomials $\mathfrak{S}_{w} \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$.

Chevalley formulas (cont.)

Consider the complete flag variety

$$
F I_{n}=\left\{\left(\{0\} \subset V_{1} \subset V_{2} \subset \ldots \subset \mathbb{C}^{n}\right)\right\}=S L_{n} / B
$$

Its cohomology $H^{*}\left(F I_{n}\right)$ has a basis of Schubert classes

$$
\left\{\sigma_{w}: w \in S_{n}\right\}
$$

represented by Schubert polynomials $\mathfrak{S}_{w} \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$.
Chevalley (Monk) formula:

$$
\mathfrak{S}_{w} \cdot \mathfrak{S}_{s_{k}}=\sum_{\substack{i \leq k<j \\ \ell\left(w t_{i j}\right)=\ell(w)+1}} \mathfrak{S}_{w t_{i j}}
$$

where $s_{k}=t_{k, k+1}$ and $\mathfrak{S}_{s_{k}}=x_{1}+\ldots+x_{k}$.

Generalizations

(1) Replace cohomology $\boldsymbol{H}^{*}(\cdot)$ with

- K-theory $K(\cdot)$;

Generalizations

(1) Replace cohomology $H^{*}(\cdot)$ with

- K-theory $K(\cdot)$;
- torus T-equivariant versions $H_{T}^{*}(\cdot), K_{T}(\cdot)$;

Generalizations

(1) Replace cohomology $H^{*}(\cdot)$ with

- K-theory $K(\cdot)$;
- torus T-equivariant versions $H_{T}^{*}(\cdot), K_{T}(\cdot)$;
- quantum versions $Q H_{T}^{*}(\cdot), Q K_{T}(\cdot)$.

Generalizations

(1) Replace cohomology $H^{*}(\cdot)$ with

- K-theory $K(\cdot)$;
- torus T-equivariant versions $H_{T}^{*}(\cdot), K_{T}(\cdot)$;
- quantum versions $Q H_{T}^{*}(\cdot), Q K_{T}(\cdot)$.
(2) Replace the flag variety $S L_{n} / B$ or the Grassmannian $S L_{n} / P_{k}$ with
- generalized flag varieties G / B or partial flag varieties G / P (G semisimple Lie group over \mathbb{C}, B Borel subgroup, P parabolic subgroup);

Generalizations

(1) Replace cohomology $H^{*}(\cdot)$ with

- K-theory $K(\cdot)$;
- torus T-equivariant versions $H_{T}^{*}(\cdot), K_{T}(\cdot)$;
- quantum versions $Q H_{T}^{*}(\cdot), Q K_{T}(\cdot)$.
(2) Replace the flag variety $S L_{n} / B$ or the Grassmannian $S L_{n} / P_{k}$ with
- generalized flag varieties G / B or partial flag varieties G / P (G semisimple Lie group over \mathbb{C}, B Borel subgroup, P parabolic subgroup);
- affine versions: affine flag manifold, semi-infinite flag manifold \mathbf{Q}_{G}.

Motivation

- Quantum cohomology and quantum K-theory are closely related to certain integrable multi-particle dynamical systems based on root systems (Toda lattices);

Motivation

- Quantum cohomology and quantum K-theory are closely related to certain integrable multi-particle dynamical systems based on root systems (Toda lattices);
- $Q K_{T}(G / B)$ is closely related to $K_{T}\left(\mathbf{Q}_{G}\right)$ (breakthrough of Syu Kato);

Motivation

- Quantum cohomology and quantum K-theory are closely related to certain integrable multi-particle dynamical systems based on root systems (Toda lattices);
- $Q K_{T}(G / B)$ is closely related to $K_{T}\left(\mathbf{Q}_{G}\right)$ (breakthrough of Syu Kato);
- The semi-infinite flag manifolds have applications to the representation theory of affine Lie algebras (level 0 extremal weight modules, Kato-Naito-Sagaki).

Plan of the talk

- Background.

Plan of the talk

- Background.
- The quantum alcove model: based on root system combinatorics, so it works uniformly in all Lie types.

Plan of the talk

- Background.
- The quantum alcove model: based on root system combinatorics, so it works uniformly in all Lie types.
- A Chevalley formula for $K_{T}\left(\mathbf{Q}_{G}\right)$ based on the quantum alcove model (\mathbf{Q}_{G} is the semi-infinite flag manifold corresponding to G of arbitrary Lie type).

Plan of the talk

- Background.
- The quantum alcove model: based on root system combinatorics, so it works uniformly in all Lie types.
- A Chevalley formula for $K_{T}\left(\mathbf{Q}_{G}\right)$ based on the quantum alcove model (\mathbf{Q}_{G} is the semi-infinite flag manifold corresponding to G of arbitrary Lie type).
- Chevalley formulas for $Q K_{T}(G / B)$ and $Q K_{T}(G / P)$ (for G of arbitrary Lie type).

Plan of the talk

- Background.
- The quantum alcove model: based on root system combinatorics, so it works uniformly in all Lie types.
- A Chevalley formula for $K_{T}\left(\mathbf{Q}_{G}\right)$ based on the quantum alcove model (\mathbf{Q}_{G} is the semi-infinite flag manifold corresponding to G of arbitrary Lie type).
- Chevalley formulas for $Q K_{T}(G / B)$ and $Q K_{T}(G / P)$ (for G of arbitrary Lie type).
- Applications: more explicit computations and results in type A, for $Q K\left(F I_{n}\right)$.

Root system notation

$T \subset B \subset G$ as before.

Root system notation

$T \subset B \subset G$ as before.
Type $A_{n-1}: G=S L_{n}, B=\left\{\right.$ upper triangular matrices in $\left.S L_{n}\right\}$.

Root system notation

$T \subset B \subset G$ as before.
Type $A_{n-1}: G=S L_{n}, B=\left\{\right.$ upper triangular matrices in $\left.S L_{n}\right\}$.
Q root lattice, Q^{\vee} coroot lattice, α_{i} simple roots $(i \in I)$.

Root system notation

$T \subset B \subset G$ as before.
Type $A_{n-1}: G=S L_{n}, B=\left\{\right.$ upper triangular matrices in $\left.S L_{n}\right\}$.
Q root lattice, Q^{\vee} coroot lattice, α_{i} simple roots $(i \in I)$.
Type A_{n-1} : roots $\alpha_{i j}=\alpha_{i j}^{\vee}=\varepsilon_{i}-\varepsilon_{j} \in \mathbb{R}^{n}, \alpha_{i}=\alpha_{i, i+1}$.

Root system notation

$T \subset B \subset G$ as before.
Type $A_{n-1}: G=S L_{n}, B=\left\{\right.$ upper triangular matrices in $\left.S L_{n}\right\}$.
Q root lattice, Q^{\vee} coroot lattice, α_{i} simple roots $(i \in I)$.
Type A_{n-1} : roots $\alpha_{i j}=\alpha_{i j}^{\vee}=\varepsilon_{i}-\varepsilon_{j} \in \mathbb{R}^{n}, \alpha_{i}=\alpha_{i, i+1}$.
P weight lattice, ω_{i} fundamental weights, P^{+}dominant weights.

Root system notation

$T \subset B \subset G$ as before.
Type $A_{n-1}: G=S L_{n}, B=\left\{\right.$ upper triangular matrices in $\left.S L_{n}\right\}$.
Q root lattice, Q^{\vee} coroot lattice, α_{i} simple roots $(i \in I)$.
Type A_{n-1} : roots $\alpha_{i j}=\alpha_{i j}^{\vee}=\varepsilon_{i}-\varepsilon_{j} \in \mathbb{R}^{n}, \alpha_{i}=\alpha_{i, i+1}$.
P weight lattice, ω_{i} fundamental weights, P^{+}dominant weights.
Type A_{n-1} :
$P=\left\{\sum_{i=1}^{n} \lambda_{i} \varepsilon_{i}=\left(\lambda_{1}, \ldots, \lambda_{n-1}\right): \lambda_{i} \in \mathbb{Z}_{\geq 0}\right\}$ - compositions;
$P^{+}=\left\{\left(\lambda_{1} \geq \ldots \geq \lambda_{n-1} \geq 0\right)\right\}-$ partitions, $\omega_{i}=\left(1^{i}\right)$.

Root system notation

$T \subset B \subset G$ as before.
Type $A_{n-1}: G=S L_{n}, B=\left\{\right.$ upper triangular matrices in $\left.S L_{n}\right\}$.
Q root lattice, Q^{\vee} coroot lattice, α_{i} simple roots $(i \in I)$.
Type A_{n-1} : roots $\alpha_{i j}=\alpha_{i j}^{\vee}=\varepsilon_{i}-\varepsilon_{j} \in \mathbb{R}^{n}, \alpha_{i}=\alpha_{i, i+1}$.
P weight lattice, ω_{i} fundamental weights, P^{+}dominant weights.
Type A_{n-1} :
$P=\left\{\sum_{i=1}^{n} \lambda_{i} \varepsilon_{i}=\left(\lambda_{1}, \ldots, \lambda_{n-1}\right): \lambda_{i} \in \mathbb{Z}_{\geq 0}\right\}$ - compositions;
$P^{+}=\left\{\left(\lambda_{1} \geq \ldots \geq \lambda_{n-1} \geq 0\right)\right\}-$ partitions, $\omega_{i}=\left(1^{i}\right)$.
$\mathbb{Z}[P]=R(T)=\bigoplus_{\lambda \in P} \mathbb{Z} \mathbf{e}^{\lambda}$.

Root system notation

$T \subset B \subset G$ as before.
Type $A_{n-1}: G=S L_{n}, B=\left\{\right.$ upper triangular matrices in $\left.S L_{n}\right\}$.
Q root lattice, Q^{\vee} coroot lattice, α_{i} simple roots $(i \in I)$.
Type A_{n-1} : roots $\alpha_{i j}=\alpha_{i j}^{\vee}=\varepsilon_{i}-\varepsilon_{j} \in \mathbb{R}^{n}, \alpha_{i}=\alpha_{i, i+1}$.
P weight lattice, ω_{i} fundamental weights, P^{+}dominant weights.
Type A_{n-1} :
$P=\left\{\sum_{i=1}^{n} \lambda_{i} \varepsilon_{i}=\left(\lambda_{1}, \ldots, \lambda_{n-1}\right): \lambda_{i} \in \mathbb{Z}_{\geq 0}\right\}$ - compositions;
$P^{+}=\left\{\left(\lambda_{1} \geq \ldots \geq \lambda_{n-1} \geq 0\right)\right\}-$ partitions, $\omega_{i}=\left(1^{i}\right)$.
$\mathbb{Z}[P]=R(T)=\bigoplus_{\lambda \in P} \mathbb{Z} \mathbf{e}^{\lambda}$.
W finite Weyl group, s_{i} simple reflections.

Root system notation

$T \subset B \subset G$ as before.
Type $A_{n-1}: G=S L_{n}, B=\left\{\right.$ upper triangular matrices in $\left.S L_{n}\right\}$.
Q root lattice, Q^{\vee} coroot lattice, α_{i} simple roots $(i \in I)$.
Type A_{n-1} : roots $\alpha_{i j}=\alpha_{i j}^{\vee}=\varepsilon_{i}-\varepsilon_{j} \in \mathbb{R}^{n}, \alpha_{i}=\alpha_{i, i+1}$.
P weight lattice, ω_{i} fundamental weights, P^{+}dominant weights.
Type A_{n-1} :
$P=\left\{\sum_{i=1}^{n} \lambda_{i} \varepsilon_{i}=\left(\lambda_{1}, \ldots, \lambda_{n-1}\right): \lambda_{i} \in \mathbb{Z}_{\geq 0}\right\}$ - compositions;
$P^{+}=\left\{\left(\lambda_{1} \geq \ldots \geq \lambda_{n-1} \geq 0\right)\right\}-$ partitions, $\omega_{i}=\left(1^{i}\right)$.
$\mathbb{Z}[P]=R(T)=\bigoplus_{\lambda \in P} \mathbb{Z} \mathbf{e}^{\lambda}$.
W finite Weyl group, s_{i} simple reflections.
Type $A_{n-1}: W=S_{n}, s_{i}=t_{i, i+1}$.

Previous work

$K_{T}(G / B)$, as module over $K_{T}(\mathrm{pt})=\mathbb{Z}[P]$, has a basis of Schubert classes $\left[\mathcal{O}_{X_{w}}\right], w \in W$ (classes of the structure sheaves of Schubert varieties X_{w}).

Previous work

$K_{T}(G / B)$, as module over $K_{T}(\mathrm{pt})=\mathbb{Z}[P]$, has a basis of Schubert classes $\left[\mathcal{O}_{X_{w}}\right], w \in W$ (classes of the structure sheaves of Schubert varieties X_{w}).

For $\lambda \in P$, consider the line bundle (on G / B) $\mathcal{L}_{\lambda}:=G \times_{B} \mathbb{C}_{-\lambda}$.

Previous work

$K_{T}(G / B)$, as module over $K_{T}(\mathrm{pt})=\mathbb{Z}[P]$, has a basis of Schubert classes $\left[\mathcal{O}_{X_{w}}\right], w \in W$ (classes of the structure sheaves of Schubert varieties X_{w}).

For $\lambda \in P$, consider the line bundle (on $G / B) \mathcal{L}_{\lambda}:=G \times_{B} \mathbb{C}_{-\lambda}$.
Chevalley formula for $K_{T}(G / B)$:

$$
\left[\mathcal{L}_{\lambda}\right] \cdot\left[\mathcal{O}_{X_{w}}\right]=\sum_{v \in W, \mu \in P} c_{w, v}^{\lambda, \mu} \mathbf{e}^{\mu}\left[\mathcal{O}_{X_{v}}\right], \quad c_{w, v}^{\lambda, \mu} \in \mathbb{Z}
$$

Previous work

$K_{T}(G / B)$, as module over $K_{T}(\mathrm{pt})=\mathbb{Z}[P]$, has a basis of Schubert classes $\left[\mathcal{O}_{X_{w}}\right], w \in W$ (classes of the structure sheaves of Schubert varieties X_{w}).

For $\lambda \in P$, consider the line bundle (on $G / B) \mathcal{L}_{\lambda}:=G \times_{B} \mathbb{C}_{-\lambda}$.
Chevalley formula for $K_{T}(G / B)$:

$$
\left[\mathcal{L}_{\lambda}\right] \cdot\left[\mathcal{O}_{X_{w}}\right]=\sum_{v \in W, \mu \in P} c_{w, v}^{\lambda, \mu} \mathbf{e}^{\mu}\left[\mathcal{O}_{X_{v}}\right], \quad c_{w, v}^{\lambda, \mu} \in \mathbb{Z}
$$

[L.-Postnikov, 2003]: combinatorial Chevalley formula in terms of the alcove model.

Quantum alcove model: quantum Bruhat graph on the finite Weyl group

The quantum Bruhat graph on W, denoted $\operatorname{QBG}(W)$, is the directed graph with labeled edges

$$
w \xrightarrow{\alpha} w s_{\alpha}, \quad \text { where }
$$

$$
\begin{aligned}
& \ell\left(w s_{\alpha}\right)=\ell(w)+1 \quad(\text { covers of Bruhat order }), \quad \text { or } \\
& \ell\left(w s_{\alpha}\right)=\ell(w)-2 h t\left(\alpha^{\vee}\right)+1 .
\end{aligned}
$$

$$
\text { (If } \alpha^{\vee}=\sum_{i} c_{i} \alpha_{i}^{\vee} \text {, then } \operatorname{ht}\left(\alpha^{\vee}\right):=\sum_{i} c_{i} \text {.) }
$$

Hasse diagram of the Bruhat order for S_{3} :

Quantum Bruhat graph for S_{3} :

The quantum alcove model [L.-Lubovsky, 2011]

Given any weight λ, we associate with it a sequence of roots, called a λ-chain:

$$
\Gamma=\left(\beta_{1}, \ldots, \beta_{m}\right)
$$

The quantum alcove model [L.-Lubovsky, 2011]

Given any weight λ, we associate with it a sequence of roots, called a λ-chain:

$$
\Gamma=\left(\beta_{1}, \ldots, \beta_{m}\right) .
$$

This is determined by a reduced decomposition of the affine Weyl group element corresponding to $A_{\circ}-\lambda$ (where A_{\circ} is the fundamental alcove).

The quantum alcove model [L.-Lubovsky, 2011]

Given any weight λ, we associate with it a sequence of roots, called a λ-chain:

$$
\Gamma=\left(\beta_{1}, \ldots, \beta_{m}\right)
$$

This is determined by a reduced decomposition of the affine Weyl group element corresponding to $A_{\circ}-\lambda$ (where A_{\circ} is the fundamental alcove).

The latter gives a shortest sequence of adjacent alcoves from A_{\circ} to $A_{\circ}-\lambda$.

Example. Type $A_{2}, \lambda=(3,1,0)=3 \varepsilon_{1}+\varepsilon_{2}$,
$\Gamma=((1,2),(1,3),(2,3),(1,3),(1,2),(1,3))$.

The quantum alcove model (cont.)

Given $\Gamma=\left(\beta_{1}, \ldots, \beta_{m}\right)$, let $r_{i}:=s_{\beta_{i}}$ and $\widehat{r}_{i}:=s_{\beta_{i},-l_{i}}$.

The quantum alcove model (cont.)

Given $\Gamma=\left(\beta_{1}, \ldots, \beta_{m}\right)$, let $r_{i}:=s_{\beta_{i}}$ and $\widehat{r}_{i}:=s_{\beta_{i},-l_{i}}$.
The objects of the model: subsets of positions in 「

$$
A=\left\{j_{1}<\ldots<j_{s}\right\} \subseteq\{1, \ldots, m\}
$$

The quantum alcove model (cont.)

Given $\Gamma=\left(\beta_{1}, \ldots, \beta_{m}\right)$, let $r_{i}:=s_{\beta_{i}}$ and $\widehat{r}_{i}:=s_{\beta_{i},-l_{i}}$.
The objects of the model: subsets of positions in 「

$$
A=\left\{j_{1}<\ldots<j_{s}\right\} \subseteq\{1, \ldots, m\}
$$

For $w \in W$ and A, construct the chain $\pi(w, A)$ of elements in W :

$$
w_{0}=w, \quad \ldots, \quad w_{i}:=w r_{j_{1}} \ldots r_{j_{i}}, \ldots, \quad w_{s}=\operatorname{end}(w, A)
$$

The quantum alcove model (cont.)

Given $\Gamma=\left(\beta_{1}, \ldots, \beta_{m}\right)$, let $r_{i}:=s_{\beta_{i}}$ and $\widehat{r}_{i}:=s_{\beta_{i},-l_{i}}$.
The objects of the model: subsets of positions in 「

$$
A=\left\{j_{1}<\ldots<j_{s}\right\} \subseteq\{1, \ldots, m\}
$$

For $w \in W$ and A, construct the chain $\pi(w, A)$ of elements in W :

$$
w_{0}=w, \ldots, \quad w_{i}:=w r_{j_{1}} \ldots r_{j_{i}}, \ldots, \quad w_{s}=\operatorname{end}(w, A)
$$

The main structure structure: w-admissible subsets

$$
\mathcal{A}(w, \Gamma):=\{A: \pi(w, A) \text { path in } \operatorname{QBG}(W)\}
$$

The quantum alcove model (cont.)

In addition to $\operatorname{end}(w, A)$, we associate the following statistics with a pair (w, A), for $A=\left\{j_{1}<\ldots<j_{s}\right\} \in \mathcal{A}(w, \Gamma)$:

The quantum alcove model (cont.)

In addition to $\operatorname{end}(w, A)$, we associate the following statistics with a pair (w, A), for $A=\left\{j_{1}<\ldots<j_{s}\right\} \in \mathcal{A}(w, \Gamma)$:
$-\mathrm{wt}(w, A):=-w \widehat{r}_{j_{1}} \ldots \widehat{r}_{j_{s}}(-\lambda) ;$

The quantum alcove model (cont.)

In addition to $\operatorname{end}(w, A)$, we associate the following statistics with a pair (w, A), for $A=\left\{j_{1}<\ldots<j_{s}\right\} \in \mathcal{A}(w, \Gamma)$:
$-\operatorname{wt}(w, A):=-w \widehat{r}_{j_{1}} \ldots \widehat{r}_{j_{s}}(-\lambda) ;$

- $A^{-}:=\left\{j_{i} \in A: w r_{j_{1}} \ldots r_{j_{i-1}}>w r_{j_{1}} \ldots r_{j_{i-1}} r_{j_{i}}\right\} ;$

The quantum alcove model (cont.)

In addition to $\operatorname{end}(w, A)$, we associate the following statistics with a pair (w, A), for $A=\left\{j_{1}<\ldots<j_{s}\right\} \in \mathcal{A}(w, \Gamma)$:
$-\mathrm{wt}(w, A):=-w \widehat{r}_{j_{1}} \ldots{\widehat{j_{s}}}(-\lambda)$;
$\triangleright A^{-}:=\left\{j_{i} \in A: w r_{j_{1}} \ldots r_{j_{i-1}}>w r_{j_{1}} \ldots r_{j_{i-1}} r_{j_{i}}\right\} ;$
$\triangleright \operatorname{down}(w, A):=\sum_{j \in A^{-}}\left|\beta_{j}\right|^{\vee} \in Q^{\vee,+}$.

Independence of the quantum alcove model from the

 λ-chainTheorem. [Kouno-L.-Naito] Given λ-chains Γ, Γ^{\prime}, there is a sijection [Fisher-Konvalinka] between $\mathcal{A}(w, \Gamma)$ and $\mathcal{A}\left(w, \Gamma^{\prime}\right)$ which preserves the relevant statistics.

Independence of the quantum alcove model from the

 λ-chainTheorem. [Kouno-L.-Naito] Given λ-chains Γ, Γ^{\prime}, there is a sijection [Fisher-Konvalinka] between $\mathcal{A}(w, \Gamma)$ and $\mathcal{A}\left(w, \Gamma^{\prime}\right)$ which preserves the relevant statistics.

Based on quantum Yang-Baxter moves, which are root system analogues of jeu de taquin slides for semistandard Young tableaux (in type A).

The Chevalley formula for semi-infinite flag manifolds \mathbf{Q}_{G}

In $K_{T}\left(\mathbf{Q}_{G}\right)$, it expresses the product of a Schubert class (indexed by $\left.w \in W_{\text {aff }}=W \ltimes Q^{\vee}\right)$ with the class of a line bundle corresponding to $\lambda \in P$.

The Chevalley formula for semi-infinite flag manifolds \mathbf{Q}_{G}

In $K_{T}\left(\mathbf{Q}_{G}\right)$, it expresses the product of a Schubert class (indexed by $\left.w \in W_{\text {aff }}=W \ltimes Q^{\vee}\right)$ with the class of a line bundle corresponding to $\lambda \in P$.
[L.-Naito-Sagaki]:

- translate the Chevalley formulas for $\lambda \in P^{+}$ [Kato-Naito-Sagaki] and $\lambda \in P^{-}$[Naito-Orr-Sagaki] from quantum LS paths to the quantum alcove model;

The Chevalley formula for semi-infinite flag manifolds \mathbf{Q}_{G}

In $K_{T}\left(\mathbf{Q}_{G}\right)$, it expresses the product of a Schubert class (indexed by $\left.w \in W_{\text {aff }}=W \ltimes Q^{\vee}\right)$ with the class of a line bundle corresponding to $\lambda \in P$.
[L.-Naito-Sagaki]:

- translate the Chevalley formulas for $\lambda \in P^{+}$ [Kato-Naito-Sagaki] and $\lambda \in P^{-}$[Naito-Orr-Sagaki] from quantum LS paths to the quantum alcove model;
- generalize the new formulas to arbitrary $\lambda \in P$, via combinatorics of the quantum alcove model.

Quantum K-theory

Consider variables Q_{i} for $i \in I$, and let

$$
\mathbb{Z}[Q]:=\mathbb{Z}\left[Q_{1}, \ldots, Q_{r}\right], \quad \mathbb{Z}[Q][P]:=\mathbb{Z}[Q] \otimes_{\mathbb{Z}} \mathbb{Z}[P] .
$$

Quantum K-theory

Consider variables Q_{i} for $i \in I$, and let

$$
\mathbb{Z}[Q]:=\mathbb{Z}\left[Q_{1}, \ldots, Q_{r}\right], \quad \mathbb{Z}[Q][P]:=\mathbb{Z}[Q] \otimes_{\mathbb{Z}} \mathbb{Z}[P]
$$

$Q K_{T}(G / B)($ small $)$ is defined on $K_{T}(G / B) \otimes_{\mathbb{Z}[P]} \mathbb{Z}[Q][P]$ [Anderson-Chen-Tseng].

Quantum K-theory

Consider variables Q_{i} for $i \in I$, and let

$$
\mathbb{Z}[Q]:=\mathbb{Z}\left[Q_{1}, \ldots, Q_{r}\right], \quad \mathbb{Z}[Q][P]:=\mathbb{Z}[Q] \otimes_{\mathbb{Z}} \mathbb{Z}[P]
$$

$Q K_{T}(G / B)$ (small) is defined on $K_{T}(G / B) \otimes_{\mathbb{Z}[P]} \mathbb{Z}[Q][P]$ [Anderson-Chen-Tseng].

The algebra $Q K_{T}(G / B)$ has a $\mathbb{Z}[Q][P]$-basis given by the classes [\mathcal{O}^{w}] of the structure sheaves of (opposite) Schubert varieties in G / B, for $w \in W$.

Quantum K-theory

Consider variables Q_{i} for $i \in I$, and let

$$
\mathbb{Z}[Q]:=\mathbb{Z}\left[Q_{1}, \ldots, Q_{r}\right], \quad \mathbb{Z}[Q][P]:=\mathbb{Z}[Q] \otimes_{\mathbb{Z}} \mathbb{Z}[P] .
$$

$Q K_{T}(G / B)$ (small) is defined on $K_{T}(G / B) \otimes_{\mathbb{Z}[P]} \mathbb{Z}[Q][P]$ [Anderson-Chen-Tseng].

The algebra $Q K_{T}(G / B)$ has a $\mathbb{Z}[Q][P]$-basis given by the classes [\mathcal{O}^{w}] of the structure sheaves of (opposite) Schubert varieties in G / B, for $w \in W$.

Given $\xi=d_{1} \alpha_{1}^{\vee}+\cdots+d_{r} \alpha_{r}^{\vee}$ in $Q^{\vee,+}$, let $Q^{\xi}:=Q_{1}^{d_{1}} \cdots Q_{r}^{d_{r}}$.

The Chevalley formula in $Q K_{T}(G / B)$

Theorem. [L.-Naito-Sagaki, conjecture by L.-Postnikov 2003] Let $k \in I$, and fix a $\left(-\omega_{k}\right)$-chain of roots $\Gamma\left(-\omega_{k}\right)$. Then, in $Q K_{T}(G / B)$, we have the cancellation-free formula:

The Chevalley formula in $Q K_{T}(G / B)$

Theorem. [L.-Naito-Sagaki, conjecture by L.-Postnikov 2003] Let $k \in I$, and fix a $\left(-\omega_{k}\right)$-chain of roots $\Gamma\left(-\omega_{k}\right)$. Then, in $Q K_{T}(G / B)$, we have the cancellation-free formula:

$$
\begin{aligned}
& {\left[\mathcal{O}^{s_{k}}\right] \cdot\left[\mathcal{O}^{w}\right]=\left(1-\mathbf{e}^{w\left(\omega_{k}\right)-\omega_{k}}\right)\left[\mathcal{O}^{w}\right]+} \\
& \quad \sum_{A \in \mathcal{A}\left(w, \Gamma\left(-\omega_{k}\right)\right) \backslash\{\emptyset\}}(-1)^{|A|-1} Q^{\operatorname{down}(w, A)} \mathbf{e}^{-\omega_{k}-\operatorname{wt}(w, A)}\left[\mathcal{O}^{\operatorname{end}(w, A)}\right]
\end{aligned}
$$

The Chevalley formula in $Q K_{T}(G / B)$

Theorem. [L.-Naito-Sagaki, conjecture by L.-Postnikov 2003] Let $k \in I$, and fix a $\left(-\omega_{k}\right)$-chain of roots $\Gamma\left(-\omega_{k}\right)$. Then, in $Q K_{T}(G / B)$, we have the cancellation-free formula:

$$
\begin{aligned}
& {\left[\mathcal{O}^{S_{k}}\right] \cdot\left[\mathcal{O}^{w}\right]=\left(1-\mathbf{e}^{w\left(\omega_{k}\right)-\omega_{k}}\right)\left[\mathcal{O}^{w}\right]+} \\
& \quad \sum_{A \in \mathcal{A}\left(w, \Gamma\left(-\omega_{k}\right)\right) \backslash\{\emptyset\}}(-1)^{|A|-1} Q^{\operatorname{down}(w, A)} \mathbf{e}^{-\omega_{k}-w t(w, A)}\left[\mathcal{O}^{\operatorname{end}(w, A)}\right]
\end{aligned}
$$

Proof: Translate the corresponding Chevalley formula for the semi-infinite flag manifold via Kato's isomorphism:

$$
Q K_{T}(G / B) \xrightarrow{\simeq} K_{T}^{\prime}\left(\mathbf{Q}_{G}\right) \subset K_{T}\left(\mathbf{Q}_{G}\right)
$$

Application: The quantum K-theory of partial flag manifolds
[Kouno-L.-Naito-Sagaki] We give cancellation-free Chevalley formulas for $Q K_{T}(G / P)$ in the following cases:

Application: The quantum K-theory of partial flag manifolds
[Kouno-L.-Naito-Sagaki] We give cancellation-free Chevalley formulas for $Q K_{T}(G / P)$ in the following cases:

- all Grassmannians of types A and C;

Application: The quantum K-theory of partial flag manifolds

[Kouno-L.-Naito-Sagaki] We give cancellation-free Chevalley formulas for $Q K_{T}(G / P)$ in the following cases:

- all Grassmannians of types A and C;
- type $A, 2$-step flag manifolds.

Application to type A : quantum Grothendieck polynomials

The Grothendieck polynomials [Lascoux-Schützenberger] $\mathfrak{G}_{w}(x)$ represent Schubert classes in $K\left(F I_{n}\right)$.

Application to type A : quantum Grothendieck polynomials

The Grothendieck polynomials [Lascoux-Schützenberger] $\mathfrak{G}_{w}(x)$ represent Schubert classes in $K\left(F I_{n}\right)$.

Define E_{p}^{k} in $\mathbb{Z}[Q][x]$, for $x=\left(x_{1}, \ldots, x_{n}\right), Q=\left(Q_{1}, \ldots, Q_{n}\right)$, such that their specialization at $Q_{1}=\ldots=Q_{n}=0$ is the elementary symmetric polynomial $e_{p}^{k}=e_{p}\left(x_{1}, \ldots, x_{k}\right)$.

Application to type A : quantum Grothendieck polynomials

The Grothendieck polynomials [Lascoux-Schützenberger] $\mathfrak{G}_{w}(x)$ represent Schubert classes in $K\left(F I_{n}\right)$.

Define E_{p}^{k} in $\mathbb{Z}[Q][x]$, for $x=\left(x_{1}, \ldots, x_{n}\right), Q=\left(Q_{1}, \ldots, Q_{n}\right)$, such that their specialization at $Q_{1}=\ldots=Q_{n}=0$ is the elementary symmetric polynomial $e_{p}^{k}=e_{p}\left(x_{1}, \ldots, x_{k}\right)$.

Define a quantization map Q by

$$
Q\left(e_{i_{1}}^{1} \ldots e_{i_{n-1}}^{n-1}\right):=E_{i_{1}}^{1} \ldots E_{i_{n-1}}^{n-1}, \quad 0 \leq i_{j} \leq j .
$$

Application to type A : quantum Grothendieck polynomials

The Grothendieck polynomials [Lascoux-Schützenberger] $\mathfrak{G}_{w}(x)$ represent Schubert classes in $K\left(F I_{n}\right)$.

Define E_{p}^{k} in $\mathbb{Z}[Q][x]$, for $x=\left(x_{1}, \ldots, x_{n}\right), Q=\left(Q_{1}, \ldots, Q_{n}\right)$, such that their specialization at $Q_{1}=\ldots=Q_{n}=0$ is the elementary symmetric polynomial $e_{p}^{k}=e_{p}\left(x_{1}, \ldots, x_{k}\right)$.

Define a quantization map Q by

$$
Q\left(e_{i_{1}}^{1} \ldots e_{i_{n-1}}^{n-1}\right):=E_{i_{1}}^{1} \ldots E_{i_{n-1}}^{n-1}, \quad 0 \leq i_{j} \leq j .
$$

Definition. [L.-Maeno 2006, cf. Fomin-Gelfand-Postnikov] The quantum Grothendieck polynomial \mathfrak{G}_{w}^{Q} is

$$
\mathfrak{G}_{w}^{Q}:=Q\left(\mathfrak{G}_{w}\right) \in \mathbb{Z}[Q, x] \quad \text { for } w \in S_{n}
$$

Type $A_{n-1}: Q K\left(F I_{n}\right)$

Theorem. [L.-Maeno, 2006] The quantum Grothendieck polynomials satisfy the version of the above Chevalley formula for $Q K\left(F I_{n}\right)$.

Type $A_{n-1}: Q K\left(F I_{n}\right)$

Theorem. [L.-Maeno, 2006] The quantum Grothendieck polynomials satisfy the version of the above Chevalley formula for $Q K\left(F I_{n}\right)$.

Corollary. [L.-Naito-Sagaki, conjecture by L.-Maeno 2006, cf. Fomin-Gelfand-Postnikov] The quantum Grothendieck polynomials represent Schubert classes in $Q K\left(F I_{n}\right)$.

Type $A_{n-1}: Q K\left(F I_{n}\right)$

Theorem. [L.-Maeno, 2006] The quantum Grothendieck polynomials satisfy the version of the above Chevalley formula for $Q K\left(F I_{n}\right)$.

Corollary. [L.-Naito-Sagaki, conjecture by L.-Maeno 2006, cf. Fomin-Gelfand-Postnikov] The quantum Grothendieck polynomials represent Schubert classes in $Q K\left(F I_{n}\right)$.

Consequence. The quantum Grothendieck polynomials can be used to expand any product of Schubert classes in the basis of Schubert classes (Littlewood-Richardson problem).

Type $A_{n-1}: Q K\left(F I_{n}\right)$

Theorem. [L.-Maeno, 2006] The quantum Grothendieck polynomials satisfy the version of the above Chevalley formula for $Q K\left(F I_{n}\right)$.

Corollary. [L.-Naito-Sagaki, conjecture by L.-Maeno 2006, cf. Fomin-Gelfand-Postnikov] The quantum Grothendieck polynomials represent Schubert classes in $Q K\left(F I_{n}\right)$.

Consequence. The quantum Grothendieck polynomials can be used to expand any product of Schubert classes in the basis of Schubert classes (Littlewood-Richardson problem).

Theorem. [L.-Naito-Sagaki] In the expansion of $\left[\mathcal{O}^{s_{k}}\right] \cdot\left[\mathcal{O}^{w}\right]$, all (non-zero) coefficients are ± 1 (explicitly determined).

