A combinatorial Chevalley formula for semi-infinite flag manifolds and its applications

Cristian Lenart $^{\dagger 1}$, Satoshi Naito^2, and Daisuke Sagaki^3

State University of New York at Albany^{†1} Tokyo Institute of Technology, Japan² Tsukuba University, Japan³

Geometric Aspects of Algebraic Combinatorics AMS special session, University of Massachusetts Amherst October 1-2, 2022

C. Lenart was supported by the NSF grant DMS-1855592.

Chevalley formulas

Schur functions s_{λ} , for partitions $\lambda = (\lambda_1 \ge \lambda_2 \ge ...)$: basis of the algebra of symmetric functions *Sym*.

Chevalley formulas

Schur functions s_{λ} , for partitions $\lambda = (\lambda_1 \ge \lambda_2 \ge ...)$: basis of the algebra of symmetric functions *Sym*.

Simplest multiplication formula (Pieri):

$$s_\lambda \cdot s_{(1)} = \sum_{\mu = \lambda \cup \{\Box\}} s_\mu \, ,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

where $s_{(1)} = s_{\Box} = x_1 + x_2 + \dots$

Chevalley formulas

Schur functions s_{λ} , for partitions $\lambda = (\lambda_1 \ge \lambda_2 \ge ...)$: basis of the algebra of symmetric functions *Sym*.

Simplest multiplication formula (Pieri):

$$s_{\lambda} \cdot s_{(1)} = \sum_{\mu = \lambda \cup \{\Box\}} s_{\mu} \, ,$$

where $s_{(1)} = s_{\Box} = x_1 + x_2 + \dots$

Geometric interpretation (Schubert calculus on flag manifolds): $s_{\lambda}(x_1, \ldots, x_k)$ represent Schubert classes σ_{λ} (i.e., cohomology classes of Schubert varieties) in the cohomology of Grassmannians $Gr_k(\mathbb{C}^n) = SL_n/P_k$:

$$H^*(Gr_k(\mathbb{C}^n)) \simeq Sym(x_1,\ldots,x_k)/I$$
.

Chevalley formulas (cont.)

Consider the complete flag variety

$$FI_n = \{(\{0\} \subset V_1 \subset V_2 \subset \ldots \subset \mathbb{C}^n)\} = SL_n/B.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Chevalley formulas (cont.)

Consider the complete flag variety

$$FI_n = \{(\{0\} \subset V_1 \subset V_2 \subset \ldots \subset \mathbb{C}^n)\} = SL_n/B.$$

Its cohomology $H^*(Fl_n)$ has a basis of Schubert classes

 $\{\sigma_w: w \in S_n\},\$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

represented by Schubert polynomials $\mathfrak{S}_w \in \mathbb{Z}[x_1, \ldots, x_n]$.

Chevalley formulas (cont.)

Consider the complete flag variety

$$FI_n = \{(\{0\} \subset V_1 \subset V_2 \subset \ldots \subset \mathbb{C}^n)\} = SL_n/B$$
.

Its cohomology $H^*(Fl_n)$ has a basis of Schubert classes

$$\{\sigma_{w}:w\in S_{n}\},\$$

represented by Schubert polynomials $\mathfrak{S}_w \in \mathbb{Z}[x_1, \ldots, x_n]$.

Chevalley (Monk) formula:

$$\mathfrak{S}_w \cdot \mathfrak{S}_{s_k} = \sum_{\substack{i \leq k < j \ \ell(wt_{ij}) = \ell(w) + 1}} \mathfrak{S}_{wt_{ij}} \, ,$$

where $s_k = t_{k,k+1}$ and $\mathfrak{S}_{s_k} = x_1 + \ldots + x_k$.

(1) Replace cohomology $H^*(\,\cdot\,)$ with

• K-theory $K(\cdot)$;

(1) Replace cohomology $H^*(\,\cdot\,)$ with

- K-theory $K(\cdot)$;
- ▶ torus *T*-equivariant versions $H_T^*(\cdot)$, $K_T(\cdot)$;

(1) Replace cohomology $H^*(\,\cdot\,)$ with

- K-theory $K(\cdot)$;
- torus *T*-equivariant versions $H^*_T(\cdot)$, $K_T(\cdot)$;

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• quantum versions $QH_T^*(\cdot)$, $QK_T(\cdot)$.

(1) Replace cohomology $H^*(\,\cdot\,)$ with

- ► K-theory K(·);
- torus *T*-equivariant versions $H^*_T(\cdot)$, $K_T(\cdot)$;
- quantum versions $QH_T^*(\cdot)$, $QK_T(\cdot)$.

(2) Replace the flag variety SL_n/B or the Grassmannian SL_n/P_k with

 generalized flag varieties G/B or partial flag varieties G/P (G semisimple Lie group over C, B Borel subgroup, P parabolic subgroup);

(1) Replace cohomology $H^*(\,\cdot\,)$ with

- ► K-theory K(·);
- torus *T*-equivariant versions $H^*_T(\cdot)$, $K_T(\cdot)$;
- quantum versions $QH_T^*(\cdot)$, $QK_T(\cdot)$.

(2) Replace the flag variety SL_n/B or the Grassmannian SL_n/P_k with

- generalized flag varieties G/B or partial flag varieties G/P (G semisimple Lie group over C, B Borel subgroup, P parabolic subgroup);
- affine versions: affine flag manifold, semi-infinite flag manifold
 Q_G.

Motivation

 Quantum cohomology and quantum K-theory are closely related to certain integrable multi-particle dynamical systems based on root systems (Toda lattices);

Motivation

- Quantum cohomology and quantum K-theory are closely related to certain integrable multi-particle dynamical systems based on root systems (Toda lattices);
- ▶ QK_T(G/B) is closely related to K_T(Q_G) (breakthrough of Syu Kato);

Motivation

- Quantum cohomology and quantum K-theory are closely related to certain integrable multi-particle dynamical systems based on root systems (Toda lattices);
- ▶ QK_T(G/B) is closely related to K_T(Q_G) (breakthrough of Syu Kato);
- The semi-infinite flag manifolds have applications to the representation theory of affine Lie algebras (level 0 extremal weight modules, Kato-Naito-Sagaki).

Background.

Background.

The quantum alcove model: based on root system combinatorics, so it works **uniformly** in all Lie types.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Background.

- The quantum alcove model: based on root system combinatorics, so it works uniformly in all Lie types.
- ► A Chevalley formula for K_T(Q_G) based on the quantum alcove model (Q_G is the semi-infinite flag manifold corresponding to G of arbitrary Lie type).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Background.

- The quantum alcove model: based on root system combinatorics, so it works uniformly in all Lie types.
- ► A Chevalley formula for K_T(Q_G) based on the quantum alcove model (Q_G is the semi-infinite flag manifold corresponding to G of arbitrary Lie type).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 Chevalley formulas for QK_T(G/B) and QK_T(G/P) (for G of arbitrary Lie type).

Background.

- The quantum alcove model: based on root system combinatorics, so it works uniformly in all Lie types.
- ► A Chevalley formula for K_T(Q_G) based on the quantum alcove model (Q_G is the semi-infinite flag manifold corresponding to G of arbitrary Lie type).
- Chevalley formulas for QK_T(G/B) and QK_T(G/P) (for G of arbitrary Lie type).
- Applications: more explicit computations and results in type A, for QK(Fl_n).

 $T \subset B \subset G$ as before.

 $T \subset B \subset G$ as before.

Type A_{n-1} : $G = SL_n$, $B = \{$ upper triangular matrices in $SL_n \}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 $T \subset B \subset G$ as before. Type A_{n-1} : $G = SL_n$, $B = \{$ upper triangular matrices in $SL_n \}$.

Q root lattice, Q^{\vee} coroot lattice, α_i simple roots $(i \in I)$.

 $T \subset B \subset G$ as before. Type A_{n-1} : $G = SL_n$, $B = \{$ upper triangular matrices in $SL_n \}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Q root lattice, Q^{\vee} coroot lattice, α_i simple roots $(i \in I)$. Type A_{n-1} : roots $\alpha_{ij} = \alpha_{ij}^{\vee} = \varepsilon_i - \varepsilon_j \in \mathbb{R}^n$, $\alpha_i = \alpha_{i,i+1}$.

 $T \subset B \subset G$ as before. Type A_{n-1} : $G = SL_n$, $B = \{$ upper triangular matrices in $SL_n \}$.

Q root lattice, Q^{\vee} coroot lattice, α_i simple roots $(i \in I)$. Type A_{n-1} : roots $\alpha_{ij} = \alpha_{ij}^{\vee} = \varepsilon_i - \varepsilon_j \in \mathbb{R}^n$, $\alpha_i = \alpha_{i,i+1}$.

P weight lattice, ω_i fundamental weights, *P*⁺ dominant weights.

 $T \subset B \subset G$ as before. Type A_{n-1} : $G = SL_n$, $B = \{$ upper triangular matrices in $SL_n \}$.

Q root lattice, Q^{\vee} coroot lattice, α_i simple roots $(i \in I)$. Type A_{n-1} : roots $\alpha_{ij} = \alpha_{ij}^{\vee} = \varepsilon_i - \varepsilon_j \in \mathbb{R}^n$, $\alpha_i = \alpha_{i,i+1}$.

P weight lattice, ω_i fundamental weights, *P*⁺ dominant weights. Type A_{n-1} : $P = \{\sum_{i=1}^n \lambda_i \varepsilon_i = (\lambda_1, \dots, \lambda_{n-1}) : \lambda_i \in \mathbb{Z}_{\geq 0}\}$ – compositions; $P^+ = \{(\lambda_1 \geq \dots \geq \lambda_{n-1} \geq 0)\}$ – partitions, $\omega_i = (1^i)$.

 $T \subset B \subset G$ as before. Type A_{n-1} : $G = SL_n$, $B = \{$ upper triangular matrices in $SL_n \}$.

Q root lattice, Q^{\vee} coroot lattice, α_i simple roots $(i \in I)$. Type A_{n-1} : roots $\alpha_{ij} = \alpha_{ij}^{\vee} = \varepsilon_i - \varepsilon_j \in \mathbb{R}^n$, $\alpha_i = \alpha_{i,i+1}$.

P weight lattice, ω_i fundamental weights, *P*⁺ dominant weights. Type A_{n-1} : $P = \{\sum_{i=1}^n \lambda_i \varepsilon_i = (\lambda_1, \dots, \lambda_{n-1}) : \lambda_i \in \mathbb{Z}_{\geq 0}\}$ – compositions; $P^+ = \{(\lambda_1 \geq \dots \geq \lambda_{n-1} \geq 0)\}$ – partitions, $\omega_i = (1^i)$.

 $\mathbb{Z}[P] = R(T) = \bigoplus_{\lambda \in P} \mathbb{Z} \mathbf{e}^{\lambda}.$

 $T \subset B \subset G$ as before. Type A_{n-1} : $G = SL_n$, $B = \{$ upper triangular matrices in $SL_n \}$.

Q root lattice, Q^{\vee} coroot lattice, α_i simple roots $(i \in I)$. Type A_{n-1} : roots $\alpha_{ij} = \alpha_{ij}^{\vee} = \varepsilon_i - \varepsilon_j \in \mathbb{R}^n$, $\alpha_i = \alpha_{i,i+1}$.

P weight lattice, ω_i fundamental weights, *P*⁺ dominant weights. Type A_{n-1} : $P = \{\sum_{i=1}^n \lambda_i \varepsilon_i = (\lambda_1, \dots, \lambda_{n-1}) : \lambda_i \in \mathbb{Z}_{\geq 0}\}$ – compositions; $P^+ = \{(\lambda_1 \geq \dots \geq \lambda_{n-1} \geq 0)\}$ – partitions, $\omega_i = (1^i)$.

 $\mathbb{Z}[P] = R(T) = \bigoplus_{\lambda \in P} \mathbb{Z} \mathbf{e}^{\lambda}.$

W finite Weyl group, s_i simple reflections.

 $T \subset B \subset G$ as before.

Type A_{n-1} : $G = SL_n$, $B = \{$ upper triangular matrices in $SL_n \}$.

Q root lattice, Q^{\vee} coroot lattice, α_i simple roots $(i \in I)$. Type A_{n-1} : roots $\alpha_{ij} = \alpha_{ij}^{\vee} = \varepsilon_i - \varepsilon_j \in \mathbb{R}^n$, $\alpha_i = \alpha_{i,i+1}$.

P weight lattice, ω_i fundamental weights, *P*⁺ dominant weights. Type A_{n-1} : $P = \{\sum_{i=1}^n \lambda_i \varepsilon_i = (\lambda_1, \dots, \lambda_{n-1}) : \lambda_i \in \mathbb{Z}_{\geq 0}\}$ – compositions; $P^+ = \{(\lambda_1 \geq \dots \geq \lambda_{n-1} \geq 0)\}$ – partitions, $\omega_i = (1^i)$.

 $\mathbb{Z}[P] = R(T) = \bigoplus_{\lambda \in P} \mathbb{Z} \mathbf{e}^{\lambda}.$

W finite Weyl group, s_i simple reflections. Type A_{n-1} : $W = S_n$, $s_i = t_{i,i+1}$.

 $K_T(G/B)$, as module over $K_T(\text{pt}) = \mathbb{Z}[P]$, has a basis of Schubert classes $[\mathcal{O}_{X_w}]$, $w \in W$ (classes of the structure sheaves of Schubert varieties X_w).

 $K_T(G/B)$, as module over $K_T(\text{pt}) = \mathbb{Z}[P]$, has a basis of Schubert classes $[\mathcal{O}_{X_w}]$, $w \in W$ (classes of the structure sheaves of Schubert varieties X_w).

For $\lambda \in P$, consider the line bundle (on G/B) $\mathcal{L}_{\lambda} := G \times_B \mathbb{C}_{-\lambda}$.

 $K_T(G/B)$, as module over $K_T(\text{pt}) = \mathbb{Z}[P]$, has a basis of Schubert classes $[\mathcal{O}_{X_w}]$, $w \in W$ (classes of the structure sheaves of Schubert varieties X_w).

For $\lambda \in P$, consider the line bundle (on G/B) $\mathcal{L}_{\lambda} := G \times_B \mathbb{C}_{-\lambda}$.

Chevalley formula for $K_T(G/B)$:

$$\left[\mathcal{L}_{\lambda}
ight]\cdot\left[\mathcal{O}_{X_{w}}
ight]=\sum_{oldsymbol{v}\in W,\,\mu\in P}c_{w,v}^{\lambda,\mu}\,\mathbf{e}^{\mu}\left[\mathcal{O}_{X_{v}}
ight],\quad c_{w,v}^{\lambda,\mu}\in\mathbb{Z}\,.$$

 $K_T(G/B)$, as module over $K_T(\text{pt}) = \mathbb{Z}[P]$, has a basis of Schubert classes $[\mathcal{O}_{X_w}]$, $w \in W$ (classes of the structure sheaves of Schubert varieties X_w).

For $\lambda \in P$, consider the line bundle (on G/B) $\mathcal{L}_{\lambda} := G \times_B \mathbb{C}_{-\lambda}$.

Chevalley formula for $K_T(G/B)$:

$$[\mathcal{L}_{\lambda}] \cdot [\mathcal{O}_{X_w}] = \sum_{v \in W, \, \mu \in P} c_{w,v}^{\lambda,\mu} \, \mathbf{e}^{\mu} \left[\mathcal{O}_{X_v} \right], \quad c_{w,v}^{\lambda,\mu} \in \mathbb{Z}.$$

[L.-Postnikov, 2003]: combinatorial Chevalley formula in terms of the alcove model.

Quantum alcove model: quantum Bruhat graph on the finite Weyl group

The quantum Bruhat graph on W, denoted QBG(W), is the directed graph with labeled edges

$$w \xrightarrow{\alpha} ws_{\alpha}$$
, where

 $\ell(ws_{\alpha}) = \ell(w) + 1$ (covers of Bruhat order), or $\ell(ws_{\alpha}) = \ell(w) - 2ht(\alpha^{\vee}) + 1.$

(If $\alpha^{\vee} = \sum_{i} c_{i} \alpha_{i}^{\vee}$, then $\operatorname{ht}(\alpha^{\vee}) := \sum_{i} c_{i}$.)

Hasse diagram of the Bruhat order for S_3 :

 Quantum Bruhat graph for S_3 :

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

The quantum alcove model [L.-Lubovsky, 2011]

Given **any** weight λ , we associate with it a sequence of roots, called a λ -chain:

$$\Gamma = (\beta_1, \ldots, \beta_m).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The quantum alcove model [L.-Lubovsky, 2011]

Γ

Given **any** weight λ , we associate with it a sequence of roots, called a λ -chain:

$$\overline{} = (\beta_1, \ldots, \beta_m).$$

This is determined by a reduced decomposition of the affine Weyl group element corresponding to $A_{\circ} - \lambda$ (where A_{\circ} is the fundamental alcove).

The quantum alcove model [L.-Lubovsky, 2011]

Given **any** weight λ , we associate with it a sequence of roots, called a λ -chain:

$$\overline{} = (\beta_1, \ldots, \beta_m).$$

This is determined by a reduced decomposition of the affine Weyl group element corresponding to $A_{\circ} - \lambda$ (where A_{\circ} is the fundamental alcove).

The latter gives a shortest sequence of adjacent alcoves from A_{\circ} to $A_{\circ} - \lambda$.

Example. Type A_2 , $\lambda = (3, 1, 0) = 3\varepsilon_1 + \varepsilon_2$, $\Gamma = ((1, 2), (1, 3), (2, 3), (1, 3), (1, 2), (1, 3)).$

・ロト・西・・田・・田・・日・

Given
$$\Gamma = (\beta_1, \dots, \beta_m)$$
, let $r_i := s_{\beta_i}$ and $\widehat{r_i} := s_{\beta_i, -l_i}$.

Given
$$\Gamma = (\beta_1, \ldots, \beta_m)$$
, let $r_i := s_{\beta_i}$ and $\widehat{r_i} := s_{\beta_i, -l_i}$.

The objects of the model: subsets of positions in Γ

$$A = \{j_1 < \ldots < j_s\} \subseteq \{1, \ldots, m\}.$$

Given
$$\Gamma = (\beta_1, \ldots, \beta_m)$$
, let $r_i := s_{\beta_i}$ and $\widehat{r_i} := s_{\beta_i, -l_i}$.

The objects of the model: subsets of positions in Γ

$$A = \{j_1 < \ldots < j_s\} \subseteq \{1, \ldots, m\}.$$

For $w \in W$ and A, construct the chain $\pi(w, A)$ of elements in W:

$$w_0 = w, \ldots, w_i := wr_{j_1} \ldots r_{j_i}, \ldots, w_s = end(w, A).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Given
$$\Gamma = (\beta_1, \ldots, \beta_m)$$
, let $r_i := s_{\beta_i}$ and $\widehat{r_i} := s_{\beta_i, -l_i}$.

The objects of the model: subsets of positions in Γ

$$A = \{j_1 < \ldots < j_s\} \subseteq \{1, \ldots, m\}.$$

For $w \in W$ and A, construct the chain $\pi(w, A)$ of elements in W:

$$w_0 = w, \ldots, w_i := wr_{j_1} \ldots r_{j_i}, \ldots, w_s = end(w, A).$$

The main structure structure: w-admissible subsets

$$\mathcal{A}(w,\Gamma) := \{A : \pi(w,A) \text{ path in QBG}(W)\}.$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

In addition to end(w, A), we associate the following statistics with a pair (w, A), for $A = \{j_1 < \ldots < j_s\} \in \mathcal{A}(w, \Gamma)$:

In addition to end(w, A), we associate the following statistics with a pair (w, A), for $A = \{j_1 < \ldots < j_s\} \in \mathcal{A}(w, \Gamma)$:

• wt(w, A) :=
$$-w\widehat{r}_{j_1}\ldots\widehat{r}_{j_s}(-\lambda)$$
;

In addition to end(w, A), we associate the following statistics with a pair (w, A), for $A = \{j_1 < \ldots < j_s\} \in \mathcal{A}(w, \Gamma)$:

• wt(w, A) :=
$$-w \hat{r}_{j_1} \dots \hat{r}_{j_s}(-\lambda)$$
;
• $A^- := \{ j_i \in A : wr_{j_1} \dots r_{j_{i-1}} > wr_{j_1} \dots r_{j_{i-1}} r_{j_i} \};$

In addition to end(w, A), we associate the following statistics with a pair (w, A), for $A = \{j_1 < \ldots < j_s\} \in \mathcal{A}(w, \Gamma)$:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$wt(w, A) := -w \widehat{r}_{j_1} \dots \widehat{r}_{j_s}(-\lambda);$$

$$A^- := \{ j_i \in A : wr_{j_1} \dots r_{j_{i-1}} > wr_{j_1} \dots r_{j_{i-1}}r_{j_i} \};$$

• down $(w, A) := \sum_{j \in A^-} |\beta_j|^{\vee} \in Q^{\vee, +}$.

Independence of the quantum alcove model from the $\lambda\text{-chain}$

Theorem. [Kouno-L.-Naito] Given λ -chains Γ , Γ' , there is a sijection [Fisher-Konvalinka] between $\mathcal{A}(w,\Gamma)$ and $\mathcal{A}(w,\Gamma')$ which preserves the relevant statistics.

Independence of the quantum alcove model from the $\lambda\text{-chain}$

Theorem. [Kouno-L.-Naito] Given λ -chains Γ , Γ' , there is a sijection [Fisher-Konvalinka] between $\mathcal{A}(w, \Gamma)$ and $\mathcal{A}(w, \Gamma')$ which preserves the relevant statistics.

Based on quantum Yang-Baxter moves, which are root system analogues of jeu de taquin slides for semistandard Young tableaux (in type A).

The Chevalley formula for semi-infinite flag manifolds Q_G

In $K_T(\mathbf{Q}_G)$, it expresses the product of a Schubert class (indexed by $w \in W_{\text{aff}} = W \ltimes Q^{\vee}$) with the class of a line bundle corresponding to $\lambda \in P$.

The Chevalley formula for semi-infinite flag manifolds \mathbf{Q}_{G}

In $K_T(\mathbf{Q}_G)$, it expresses the product of a Schubert class (indexed by $w \in W_{\text{aff}} = W \ltimes Q^{\vee}$) with the class of a line bundle corresponding to $\lambda \in P$.

[L.-Naito-Sagaki]:

► translate the Chevalley formulas for \u03c0 ∈ P⁺ [Kato-Naito-Sagaki] and \u03c0 ∈ P⁻ [Naito-Orr-Sagaki] from quantum LS paths to the quantum alcove model;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

The Chevalley formula for semi-infinite flag manifolds \mathbf{Q}_{G}

In $K_T(\mathbf{Q}_G)$, it expresses the product of a Schubert class (indexed by $w \in W_{\text{aff}} = W \ltimes Q^{\vee}$) with the class of a line bundle corresponding to $\lambda \in P$.

[L.-Naito-Sagaki]:

► translate the Chevalley formulas for \u03c0 ∈ P⁺ [Kato-Naito-Sagaki] and \u03c0 ∈ P⁻ [Naito-Orr-Sagaki] from quantum LS paths to the quantum alcove model;

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▶ generalize the new formulas to arbitrary $\lambda \in P$, via combinatorics of the quantum alcove model.

Consider variables Q_i for $i \in I$, and let

 $\mathbb{Z}[Q] := \mathbb{Z}[Q_1, \ldots, Q_r], \quad \mathbb{Z}[Q][P] := \mathbb{Z}[Q] \otimes_{\mathbb{Z}} \mathbb{Z}[P].$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Consider variables Q_i for $i \in I$, and let

 $\mathbb{Z}[Q] := \mathbb{Z}[Q_1, \ldots, Q_r], \quad \mathbb{Z}[Q][P] := \mathbb{Z}[Q] \otimes_{\mathbb{Z}} \mathbb{Z}[P].$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $QK_T(G/B)$ (small) is defined on $K_T(G/B) \otimes_{\mathbb{Z}[P]} \mathbb{Z}[Q][P]$ [Anderson-Chen-Tseng].

Consider variables Q_i for $i \in I$, and let

 $\mathbb{Z}[Q] := \mathbb{Z}[Q_1, \ldots, Q_r], \quad \mathbb{Z}[Q][P] := \mathbb{Z}[Q] \otimes_{\mathbb{Z}} \mathbb{Z}[P].$

 $QK_T(G/B)$ (small) is defined on $K_T(G/B) \otimes_{\mathbb{Z}[P]} \mathbb{Z}[Q][P]$ [Anderson-Chen-Tseng].

The algebra $QK_T(G/B)$ has a $\mathbb{Z}[Q][P]$ -basis given by the classes $[\mathcal{O}^w]$ of the structure sheaves of (opposite) Schubert varieties in G/B, for $w \in W$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Consider variables Q_i for $i \in I$, and let

 $\mathbb{Z}[Q] := \mathbb{Z}[Q_1, \ldots, Q_r], \quad \mathbb{Z}[Q][P] := \mathbb{Z}[Q] \otimes_{\mathbb{Z}} \mathbb{Z}[P].$

 $QK_T(G/B)$ (small) is defined on $K_T(G/B) \otimes_{\mathbb{Z}[P]} \mathbb{Z}[Q][P]$ [Anderson-Chen-Tseng].

The algebra $QK_T(G/B)$ has a $\mathbb{Z}[Q][P]$ -basis given by the classes $[\mathcal{O}^w]$ of the structure sheaves of (opposite) Schubert varieties in G/B, for $w \in W$.

Given $\xi = d_1 \alpha_1^{\vee} + \cdots + d_r \alpha_r^{\vee}$ in $Q^{\vee,+}$, let $Q^{\xi} := Q_1^{d_1} \cdots Q_r^{d_r}$.

The Chevalley formula in $QK_T(G/B)$

Theorem. [L.-Naito-Sagaki, conjecture by L.-Postnikov 2003] Let $k \in I$, and fix a $(-\omega_k)$ -chain of roots $\Gamma(-\omega_k)$. Then, in $QK_T(G/B)$, we have the cancellation-free formula:

The Chevalley formula in $QK_T(G/B)$

Theorem. [L.-Naito-Sagaki, conjecture by L.-Postnikov 2003] Let $k \in I$, and fix a $(-\omega_k)$ -chain of roots $\Gamma(-\omega_k)$. Then, in $QK_T(G/B)$, we have the cancellation-free formula:

$$egin{aligned} &[\mathcal{O}^{s_k}] \cdot [\mathcal{O}^w] = (1 - \mathbf{e}^{w(\omega_k) - \omega_k}) \, [\mathcal{O}^w] + \ &\sum_{A \in \mathcal{A}(w, \Gamma(-\omega_k)) \setminus \{\emptyset\}} (-1)^{|A| - 1} \, Q^{\operatorname{down}(w, A)} \, \mathbf{e}^{-\omega_k - \operatorname{wt}(w, A)} \, [\mathcal{O}^{\operatorname{end}(w, A)}] \,. \end{aligned}$$

The Chevalley formula in $QK_T(G/B)$

Theorem. [L.-Naito-Sagaki, conjecture by L.-Postnikov 2003] Let $k \in I$, and fix a $(-\omega_k)$ -chain of roots $\Gamma(-\omega_k)$. Then, in $QK_T(G/B)$, we have the cancellation-free formula:

$$egin{aligned} & [\mathcal{O}^{s_k}] \cdot [\mathcal{O}^w] = (1 - \mathbf{e}^{w(\omega_k) - \omega_k}) \, [\mathcal{O}^w] + \ & \sum_{A \in \mathcal{A}(w, \Gamma(-\omega_k)) \setminus \{\emptyset\}} (-1)^{|A| - 1} \, Q^{\operatorname{down}(w, A)} \, \mathbf{e}^{-\omega_k - \operatorname{wt}(w, A)} \, [\mathcal{O}^{\operatorname{end}(w, A)}] \,. \end{aligned}$$

Proof: Translate the corresponding Chevalley formula for the semi-infinite flag manifold via Kato's isomorphism:

$$\mathsf{QK}_{\mathsf{T}}(\mathsf{G}/\mathsf{B}) \xrightarrow{\simeq} \mathsf{K}'_{\mathsf{T}}(\mathbf{Q}_{\mathsf{G}}) \subset \mathsf{K}_{\mathsf{T}}(\mathbf{Q}_{\mathsf{G}}).$$

Application: The quantum *K*-theory of partial flag manifolds

[Kouno-L.-Naito-Sagaki] We give cancellation-free Chevalley formulas for $QK_T(G/P)$ in the following cases:

Application: The quantum *K*-theory of partial flag manifolds

[Kouno-L.-Naito-Sagaki] We give cancellation-free Chevalley formulas for $QK_T(G/P)$ in the following cases:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

all Grassmannians of types A and C;

Application: The quantum *K*-theory of partial flag manifolds

[Kouno-L.-Naito-Sagaki] We give cancellation-free Chevalley formulas for $QK_T(G/P)$ in the following cases:

- ▶ all Grassmannians of types A and C;
- ▶ type *A*, 2-step flag manifolds.

The Grothendieck polynomials [Lascoux-Schützenberger] $\mathfrak{G}_w(x)$ represent Schubert classes in $K(Fl_n)$.

The Grothendieck polynomials [Lascoux-Schützenberger] $\mathfrak{G}_w(x)$ represent Schubert classes in $K(Fl_n)$.

Define E_p^k in $\mathbb{Z}[Q][x]$, for $x = (x_1, \ldots, x_n)$, $Q = (Q_1, \ldots, Q_n)$, such that their specialization at $Q_1 = \ldots = Q_n = 0$ is the elementary symmetric polynomial $e_p^k = e_p(x_1, \ldots, x_k)$.

The Grothendieck polynomials [Lascoux-Schützenberger] $\mathfrak{G}_w(x)$ represent Schubert classes in $K(Fl_n)$.

Define E_p^k in $\mathbb{Z}[Q][x]$, for $x = (x_1, \ldots, x_n)$, $Q = (Q_1, \ldots, Q_n)$, such that their specialization at $Q_1 = \ldots = Q_n = 0$ is the elementary symmetric polynomial $e_p^k = e_p(x_1, \ldots, x_k)$.

Define a quantization map Q by

$$Q(e_{i_1}^1 \dots e_{i_{n-1}}^{n-1}) := E_{i_1}^1 \dots E_{i_{n-1}}^{n-1}, \quad 0 \le i_j \le j.$$

The Grothendieck polynomials [Lascoux-Schützenberger] $\mathfrak{G}_w(x)$ represent Schubert classes in $K(Fl_n)$.

Define E_p^k in $\mathbb{Z}[Q][x]$, for $x = (x_1, \ldots, x_n)$, $Q = (Q_1, \ldots, Q_n)$, such that their specialization at $Q_1 = \ldots = Q_n = 0$ is the elementary symmetric polynomial $e_p^k = e_p(x_1, \ldots, x_k)$.

Define a quantization map Q by

$$Q(e_{i_1}^1 \dots e_{i_{n-1}}^{n-1}) := E_{i_1}^1 \dots E_{i_{n-1}}^{n-1}, \quad 0 \le i_j \le j.$$

Definition. [L.-Maeno 2006, cf. Fomin-Gelfand-Postnikov] The quantum Grothendieck polynomial \mathfrak{G}_w^Q is

$$\mathfrak{G}^Q_w := Q(\mathfrak{G}_w) \in \mathbb{Z}[Q,x] \quad ext{for } w \in S_n.$$

(日)((1))

Theorem. [L.-Maeno, 2006] The quantum Grothendieck polynomials satisfy the version of the above Chevalley formula for $QK(Fl_n)$.

Theorem. [L.-Maeno, 2006] The quantum Grothendieck polynomials satisfy the version of the above Chevalley formula for $QK(Fl_n)$.

Corollary. [L.-Naito-Sagaki, conjecture by L.-Maeno 2006, cf. Fomin-Gelfand-Postnikov] The quantum Grothendieck polynomials represent Schubert classes in $QK(Fl_n)$.

Theorem. [L.-Maeno, 2006] The quantum Grothendieck polynomials satisfy the version of the above Chevalley formula for $QK(Fl_n)$.

Corollary. [L.-Naito-Sagaki, conjecture by L.-Maeno 2006, cf. Fomin-Gelfand-Postnikov] The quantum Grothendieck polynomials represent Schubert classes in $QK(Fl_n)$.

Consequence. The quantum Grothendieck polynomials can be used to expand any product of Schubert classes in the basis of Schubert classes (Littlewood-Richardson problem).

Theorem. [L.-Maeno, 2006] The quantum Grothendieck polynomials satisfy the version of the above Chevalley formula for $QK(Fl_n)$.

Corollary. [L.-Naito-Sagaki, conjecture by L.-Maeno 2006, cf. Fomin-Gelfand-Postnikov] The quantum Grothendieck polynomials represent Schubert classes in $QK(FI_n)$.

Consequence. The quantum Grothendieck polynomials can be used to expand any product of Schubert classes in the basis of Schubert classes (Littlewood-Richardson problem).

Theorem. [L.-Naito-Sagaki] In the expansion of $[\mathcal{O}^{s_k}] \cdot [\mathcal{O}^w]$, all (non-zero) coefficients are ± 1 (explicitly determined).