CURRICULUM VITAE
Academic History
 Assistant Professor (University at Albany SUNY,
Albany NY, September 2016  Present)

Postdoctoral Associate (US DOE Ames Laboratory, Ames IA, August 2014  August 2016)

Research Advisor : Dr. V. V. Dobrovitski

Postdoctoral Fellowship (Georgetown University, Washington DC, August 2011  July 2014)

Research Advisor : Prof. Jim Freericks

Ph. D.(Louisiana State University)

Research Advisor : Prof. Mark Jarrell

M. Sc (University of Yaounde I)

B. Sc. (University of Yaounde I)
Research Interests : Computational Condensed Matter
Physics
 Quantum Optics and Quantum Information Processing
 High Temperature Superconductivity
 2Particle Level Perturbation Theory
 Ultracold Atomic Gases in Optical Lattices

Thermalization of Nonequilibrium Quantum Systems

Dynamics of Quantum Systems Away From Equilibrium
 Computational Methods for Strongly Correlated Systems
Publications
 Emission and Absorption Spectrum of PulseDriven TwoLevel Systems in Dynamic Environments, Herbert F. Fotso, arXiv:1801.04442 (2018).
 Absorption
Spectrum of a TwoLevel System Subjected to a
Periodic Pulse Sequence,
Herbert F. Fotso and V. V. Dobrovitski, Phys.
Rev. B 95, 214301 (2017).
Suppressing Spectral Diffusion of the
Emitted Photons with Optical Pulses,
Herbert F. Fotso, A. E. Feiguin, D. D.
Awschalom, and V. V. Dobrovitski, Phys. Rev.
Lett. 116, 033603 (2016).
 Thermalization of field driven quantum
systems, Herbert F. Fotso, K.
Mikelsons and J. K. Freericks, Nature's Scientific
Reports 4, 4699 (2014).
 Using an
artificial electric field to create the analog of
the red spot of Jupiter in lightheavy FermiFermi
mixtures of ultracold atoms, Herbert F. Fotso,
J Vicente and J. K. Freericks, Phys. Rev. A 90, 053630
(2014). Chosen for Phys. Rev. A Kaleidoscope.
 Solving the
Parquet Equations for the Hubbard model beyond
weak coupling, K.M. Tam, Herbert Fotso,
S.X. Yang, TaeWoo Lee, J. Moreno, J. Ramanujam, and
M. Jarrell, Phys. Rev. E 87, 013311 (2013).
 Herbert Fotso, S. Yang, K. Chen, S. Pathak, J. Moreno, M. Jarrell, K. Mikelsons, E. Khatami, and D. Galanakis, Dynamical Cluster Approximation. In A. Avella and F. Mancini (eds.), Theoretical Methods for Strongly Correlated Systems (271302),, Springer Series in SolidState Sciences 171 (2011).
Dual fermion dynamical cluster approach for strongly correlated systems, S.X. Yang, Herbert Fotso, H. Hafermann, K.M. Tam, J. Moreno, T. Pruschke, and M. Jarrell, Phys. Rev. B 84, 155106 (2011).
Proximity of the Superconducting Dome and the Quantum Critical Point in the TwoDimensional Hubbard Model, S.X. Yang, Herbert Fotso, S.Q. Su, D. Galanakis, E. Khatami, J.H. She, J. Moreno, J. Zaanen, and M. Jarrell, Phys. Rev. Lett. 106, 047004 (2011).
Parquet approximation for the
4x4 Hubbard cluster , S. X. Yang, Herbert Fotso, J. Liu, T.
A. Maier, K. Tomko, E. F. Dâ€™Azevedo, R. T.
Scalettar, T. Pruschke, and M. Jarrell, Phys.
Rev. E 80, 046706 (2009).
Thesis: TwoParticle
Level Diagrammatic Approaches for
Strongly Correlated Systems, H. F. Fotso,
URN: etd07062011140052, (2011).
Research Experience
Quantum
Information Processing
Quantum Optics
Dynamics of nonequilibrium quantum systems
Ultracold atomic
gases in optical lattices
Dual Fermions approach to nonlocal correlations in Strongly Correlated Electron Systems.
Investigation of the relationship between the Quantum Critical Point and High Temperature Superconductivity using the Dynamical Cluster Approximation.
Quantum Monte Carlo and Dynamical Cluster Approximation for Strongly Correlated Systems.
PETSc as a tool for the numerical solutions of the parquet equations.
Selfconsistent solution of the Hubbard model with the Parquet Formalism.
Developpement of petascale optimized codes for Strongly Correlated Systems.
Numerical Simulation of Percolation Theory.