Academic History

  • Assistant Professor (University at Albany SUNY, Albany NY, September 2016 - Present)
  • Postdoctoral Associate (US DOE Ames Laboratory, Ames IA, August 2014 - August 2016)

  • Postdoctoral Fellowship (Georgetown University, Washington DC, August 2011 - July 2014)

  • Ph. D.(Louisiana State University)

  • M. Sc (University of Yaounde I)

  • B. Sc. (University of Yaounde I)

Research Interests : Computational Condensed Matter Physics

  • Quantum Optics and Quantum Information Processing
  • High Temperature Superconductivity
  • 2-Particle Level Perturbation Theory
  • Ultracold Atomic Gases in Optical Lattices
  • Thermalization of Nonequilibrium Quantum Systems

  • Dynamics of Quantum Systems Away From Equilibrium

  • Computational Methods for Strongly Correlated Systems


- Emission and Absorption Spectrum of Pulse-Driven Two-Level Systems in Dynamic Environments,  Herbert F. Fotso, arXiv:1801.04442 (2018).

- Absorption Spectrum of a Two-Level System Subjected to a Periodic Pulse Sequence,  Herbert F. Fotso and V. V. Dobrovitski, Phys. Rev. B 95, 214301 (2017).

-Suppressing Spectral Diffusion of the Emitted Photons with Optical Pulses, Herbert F. Fotso,  A. E. Feiguin, D. D. Awschalom, and V. V. Dobrovitski,  Phys. Rev. Lett.  116, 033603 (2016).

- Thermalization of field driven quantum systems, Herbert F. Fotso, K. Mikelsons and J. K. Freericks, Nature's Scientific Reports 4, 4699 (2014).

Using an artificial electric field to create the analog of the red spot of Jupiter in light-heavy Fermi-Fermi mixtures of ultracold atoms, Herbert F. Fotso, J Vicente and J. K. Freericks, Phys. Rev. A 90, 053630 (2014). Chosen for Phys. Rev. A Kaleidoscope.

- Solving the Parquet Equations for the Hubbard model beyond weak coupling, K.-M. Tam, Herbert  Fotso, S.-X. Yang, Tae-Woo Lee, J. Moreno, J. Ramanujam, and M. Jarrell, Phys. Rev. E 87, 013311 (2013).

- Herbert Fotso, S. Yang, K. Chen, S. Pathak, J. Moreno, M. Jarrell, K. Mikelsons, E. Khatami, and D. Galanakis, Dynamical Cluster Approximation. In A. Avella and F. Mancini (eds.), Theoretical Methods for Strongly Correlated Systems (271-302),, Springer Series in Solid-State Sciences 171 (2011).

-Dual fermion dynamical cluster approach for strongly correlated systems, S.-X. Yang, Herbert Fotso, H. Hafermann, K.-M. Tam, J. Moreno, T. Pruschke, and M. Jarrell, Phys. Rev. B 84, 155106 (2011).

-Proximity of the Superconducting Dome and the Quantum Critical Point in the Two-Dimensional Hubbard Model, S.-X. Yang, Herbert Fotso, S.-Q. Su, D. Galanakis, E. Khatami, J.-H. She, J. Moreno, J. Zaanen, and M. Jarrell, Phys. Rev. Lett. 106, 047004 (2011).

-Parquet approximation for the 4x4 Hubbard cluster , S. X. Yang,  Herbert Fotso, J. Liu, T. A. Maier, K. Tomko, E. F. D’Azevedo, R. T. Scalettar, T. Pruschke, and M. Jarrell, Phys. Rev. E 80, 046706 (2009).

Thesis: Two-Particle Level Diagrammatic Approaches for Strongly Correlated Systems, H. F. Fotso,
URN: etd-07062011-140052,  (2011).

Research Experience

-Quantum Information Processing

-Quantum Optics

-Dynamics of nonequilibrium  quantum systems

-Ultracold atomic gases in optical lattices

-Dual Fermions approach to nonlocal correlations in Strongly Correlated Electron Systems.

-Investigation of the relationship between the Quantum Critical Point and High Temperature Superconductivity using the Dynamical Cluster Approximation.

-Quantum Monte Carlo and Dynamical Cluster Approximation for Strongly Correlated Systems.

-PETSc as a tool for the numerical solutions of the parquet equations.

-Self-consistent solution of the Hubbard model with the Parquet Formalism.

-Developpement of petascale optimized codes for Strongly Correlated Systems.

-Numerical Simulation of Percolation Theory.