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Abstract. We consider a class of relatively hyperbolic groups in the sense

of Gromov and use an argument modeled after Carlsson–Pedersen to prove

Novikov conjectures for these groups. This proof is related to [16, 17] which

dealt with arithmetic lattices in rank one symmetric spaces and some other

arithmetic groups of higher rank. Here we view the rank one lattices in this

different larger context of relative hyperbolicity which also includes funda-

mental groups of pinched hyperbolic manifolds. Another large family of

groups from this class is produced using combinatorial hyperbolization tech-

niques.

1. Introduction

This paper is concerned with an application of algebraic K-theory to ques-

tions in geometric topology. We study the assembly map which can be con-

jecturally used to assemble the K-theory of a group ring from the information

about the classifying space of the group and the K-theory of the ring. There is

at least a couple of reasons why this algebraic map is of importance in topol-

ogy. One is the involvement of the K-theory of the integral group ring ZG in

the description of the space of automorphisms of a manifold with fundamental

group G. The other is the connection with Novikov and Borel conjectures.

It is known that the homotopy invariance of higher signatures conjectured

by S.P. Novikov follows from the splitting of the rational assembly map in L-

theory. This assembly naturally maps the rational group homology containing

the signature to the surgery L-group where the image is a priori homotopy

invariant. If the assembly is actually a split injection then the signature is

homotopy invariant. This is the modern approach to proving the conjecture

which is believed to be true for all torsion-free groups G. In fact, stronger

integral conjectures can be stated when integral group homology is used, and

there are K-, A-theoretic, and C∗-algebraic analogues of these integral maps.

So by the integral Novikov conjecture for a discrete group G in S-theory we

understand the statement that the assembly map α(G) : BG+ ∧ S(R) → S(RG)
is a split injection, where S denotes the corresponding S-theory spectrum. The

approach to these conjectures initiated in [4] and developed further in [5, 6, 7,

8, 9] can be made to apply in each of these situations. For simplicity, we will

consider only the assembly map in algebraic K-theory. We will show

Main Theorem. If G is a relatively hyperbolic group satisfying two assumptions

(2.3) and (3.4) below then the assembly map α(G) is a split injection.
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Of the two assumptions in the statement, (2.3) is rather standard in the

recent work on Novikov conjectures and (3.4) is a certain induction hypothesis

special to our geometric situation.

The prime examples of this situation are torsion-free fundamental groups

of pinched hyperbolic manifolds. It is known from Gromov–Thurston [19] that

this class is already larger than the rank one lattices. The hyperbolization

techniques of Gromov–Charney–Davis–Januszkiewicz produce many other ex-

amples which justify our use of metric, non-differential geometry.

Section 2 introduces relatively hyperbolic groups, formulates Assumption

2.3, and establishes some geometric properties. Section 3 sketches the method

from [17] and formulates Assumption 3.4. Section 4 compactifies EG for a

relatively hyperbolic group G satisfying our assumptions. Section 5 completes

the proof of the Main Theorem and demonstrates examples of groups to which

our theorem applies.

2. Relatively Hyperbolic Groups

In his seminal article [18] on hyperbolic groups, M. Gromov considered cer-

tain groups he called hyperbolic relative to a given system of subgroups (§0.2(F))

in the context of his “non-definition” of semi-hyperbolicity (§0.2(E)) and con-

cluded his paper with §8.6 studying them. The notion of semi-hyperbolicity

has been made precise later by Alonso–Bridson [1], and Farb [14] defined rel-

ative hyperbolicity in the way which extends naturally to automatic groups.

(There seems to be no direct relation between these notions any longer.) We

will be using the term relatively hyperbolic groups in the original sense of Gro-

mov. They are not semi-hyperbolic in the sense of Alonso–Bridson but are

relatively hyperbolic in the sense of Farb.

Geodesic Metric Spaces. Let (X,d) be a metric space. A geodesic segment be-

tween two points x and y in X is an isometry φ : [0, d(x,y)]→ X with φ(0) =
x, φ(d(x,y)) = y . A metric space X is called geodesic if every two points in X
can be joined by a segment. It is complete if every geodesic segment in X can

be extended to [0,∞) so that each φ|[0, l] is a geodesic segment.

A geodesic metric space X is δ-hyperbolic or simply hyperbolic if there ex-

ists δ > 0 such that geodesic triangles in X are uniformly δ-thin, i.e., the δ-

neighborhood of any two sides of a geodesic triangle contains the other side.

Given a real number κ, letMκ be the complete simply connected Riemannian

surface of constant curvature κ. For any geodesic triangle ∆ with vertices p, q,

r in a geodesic metric space (X,d), there is a comparison triangle ∆̄ inMκ with

vertices p̄, q̄, and r̄ , so that the lengths of the corresponding sides are d(p, q),
d(q, r), d(r ,p). Given a side of ∆ and a point x on it, let x̄ be the comparison

point dividing the corresponding side of ∆̄ in the same proportion. The space

X is a CAT(κ) space if d(x,y) ≤ d(x̄, ȳ) for each geodesic triangle ∆ in X and

each pair of points x andy on the sides of∆. It is known that all CAT(κ) spaces

for κ < 0 are hyperbolic and that CAT(κ1) implies CAT(κ2) for all κ1 < κ2 ≤ 0.

Each hyperbolic or CAT(0) space X has the ideal boundary ∂X, and there

is a way to topologize εX = X ∪ ∂X so that it becomes a compact metrizable

space with the action of self-isometries of X extending to ∂X (see [15, Ch. 7]).
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Hyperbolic and Relatively Hyperbolic Groups. Let G be a discrete group with

finite generating set Σ. The Cayley graph is a 1-complex with vertices V(G,Σ) =
G and edges E(G,Σ) = {{g,gσ} : g ∈ G, σ ∈ Σ}. Let each edge in Ca(G,Σ)
have unit length. This induces a path-metric on Ca(G,Σ).

2.1. Definition. A discrete group G is hyperbolic in the sense of Gromov if its

Cayley graph is hyperbolic. This property is independent of the choice of Σ.

Let X be a complete locally compact CAT(κ) space for some κ < 0 and

G be a discrete group of free isometries of X with the quotient V = X/G
quasi-isometric to the wedge of k copies of rays [0,∞) with the standard met-

ric. There is a quasi-isometric embedding of this wedge in V with each ray

Ri : [0,∞) → V representing a point ∂Ri ∈ ∂V . Choose a lift x0 ∈ X of the

wedge point in V and lifts ri : [0,∞) → X of the rays Ri. Denote by ∂ri ∈ ∂X
the corresponding limit points and by hi the corresponding ray horofunctions.

Let Gi ⊂ G be the isotropy subgroups of ∂ri and assume that each Gi pre-

serves hi. Denote by Bi(ρ) the open horoballs h−1
i (−∞, ρ) ⊂ X, by Xi(ρ) the

horospheres h−1
i (ρ), and assume that for sufficiently small ρ

gBi(ρ)∩ Bj(ρ) 6= ∅ ⇐⇒ i = j and g ∈ Gi.

Let B(ρ) =
⋃k
i=1 Bi(ρ). Define X(ρ) = X\GB(ρ).

2.2. Definition (Gromov [18, Definition 8.6.A]). A discrete group G is hyperbo-

lic relative to a finite system of subgroups G1, . . . , Gk if G admits an action on

some X with the above properties so that Gi are the isotropy subgroups of hi
and the action of G on X(ρ) is cocompact.

2.3. Assumption. We are going to assume that X(ρ) and the horospheres or

strata Xi(ρ) are contractible. This makes the quotients X(ρ)/G and Xi(ρ)/Gi,
1 ≤ i ≤ k, models for finite BG and BGi respectively.

Another assumption which we adopt henceforth that the system G1, . . . , Gk
consists of a single subgroup H does not affect the generality of our results

and is standard in the reduction theory for lattices.

2.4. Remark. Our definition differs from Gromov’s in that we require X to be

a CAT(κ) space for some κ < 0 instead of just being hyperbolic. It is not

known if this actually narrows the class of groups we handle in this paper (cf.

Bridson [2, Introduction]). In any case, all of the known examples of Gromov’s

relatively hyperbolic groups including the ones in Examples 5.4 and 5.5 satisfy

our requirement.

2.5. Convention. In the following κ will always denote a negative real number.

The Metric in X(ρ). Let dG be the metric in X(ρ) restricted from the hyperbolic

metric in X. The crucial property of dG is that by choosing a base point x0 ∈
X(ρ) and taking its orbit under the G-action we can embed the group G with

the word metric quasi-isometrically in X(ρ). This follows from the fact that the

hyperbolic G-fundamental domains in X restrict to G-fundamental domains in

X(ρ) which are bounded in this metric.



4 BORIS GOLDFARB

Geometry of Horospheres. Two sequences {x1
i }, {x

2
i } in a metric space (X,d)

are called fellow travelers if there is K > 0 such that d(x1
i , x

2
i ) ≤ K for every

i ∈ N.

2.6. Lemma. Let {yi} and {zi} be unbounded sequences in the horospheres

Xg1H(ρ) and Xg2H(ρ) with respect to the metric dG. If g1g
−1
2 ∉ H then the

sequences do not fellow-travel in this metric.

Proof. Consider the closure εX(ρ) of X(ρ) in the ideal compactification εX.

Now the cluster points of the two sequences are the distinct ideal points g1 ·
∂r and g2 · ∂r ; so the given sequences cannot fellow travel in the hyperbolic

metric.

2.7. Corollary (Bounded Horosphere Interaction). If G is relatively hyperbolic

and X(ρ) is the corresponding stratified space then the horospheres GXH(ρ)
satisfy the following property : g1XH(ρ)∩Nd(g2XH(ρ)) is bounded in g1XH(ρ)
for any d > 0 whenever g1g

−1
2 ∉ H.

2.8. Remark. The analogue of this property is a consequence of Farb’s Bounded

Coset Penetration property in his context.

Visibility in CAT(κ) spaces. Following Eberlein–O’Neill [13] we identify crucial

properties of CAT(κ) spaces as

Axiom 1 (Visibility). For any points c 6= d in ∂X there exists at least one geo-

desic line asymptotic to both c and d.

Axiom 2. For any points c 6= d in ∂X there exists at most one geodesic line

asymptotic to both c and d.

All CAT(κ) spaces are Gromov hyperbolic and so satisfy Axiom 1 according

to [15, Proposition 7.1.6].

2.9. Proposition. Each CAT(κ) space X satisfies Axiom 2.

Proof. Given two asymptotic geodesic lines γ, σ in X, let γ(0) = x, σ(0) = y ,

γ(∞) = σ(∞) = c. Consider an increasing sequence ti > 0 and the correspond-

ing geodesic triangles△(x,y, γ(ti)) in X where the side [y, γ(ti)] is the image

of the geodesic σi. If

yi
def
= σi

(

σ−1
i (γ(ti))+ t0 − ti

)

then limyi is the intersection of im(σ) and the horosphere centered at c pass-

ing through γ(t0). Comparing this picture with the comparison picture in Mκ ,

one sees that

lim
t0→∞

d(γ(t0), limyi) = 0.

Thus X satisfies

Zero Axiom. For any two geodesics γ and σ asymptotic to the same c ∈ ∂X,

d(γ,σ) = 0.

This implies Axiom 2 just as in [13, Remark 4.12]: let geodesics γ and σ
be asymptotic to two distinct ideal points of X. As in any hyperbolic CAT(0)
space, t ֏ d(γ(t),σ) is bounded and convex, hence constant. Butd(γ(t),σ)→
d(γ,σ) = 0 as t →∞, so γ = σ .
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3. The Method of Proof

The proof of the Main Theorem improves the method rather than generalizes

results from [16, 17]. This section recalls the structure of the argument and

explains the phenomenon which gets used inductively in §5.

First we should recall the strategy of Carlsson and Pedersen in [7]. They

use control at infinity over certain spaces whose properties are postulated as

hypotheses (with emphasized terms explained immediately after the list): the

admissible space must (1) be a model for EG with cocompact G-action, (2)

have a G-equivariant compactification X̂ = EG ⊔ Y , (3) the compactification

has to be acyclic with respect to the modified Čech homology with coefficients

in K(R), and (4) the boundary Y has to possess a G-invariant family A of

boundedly saturated open subsets so that a map defined between the Čech

homology spectrum of the one-point compactification EG+ and the suspension

of a similar functor from the coverings by the sets fromA is a weak homotopy

equivalence. The conclusion is that the corresponding assembly map α(G) is

a split injection.

3.1. Definition. For any subset K of a metric space (X,d) let K[D] denote the

set {x ∈ X : d(x,K) ≤ D}. If (X,d) is embedded in a topological space X̂ as

an open dense subset, a set A ⊂ Y = X̂ −X is boundedly saturated if for every

closed subset C of X̂ with C ∩ Y ⊂ A, the closure of each D-neighborhood of

C\Y for D ≥ 0 satisfies (C\Y)[D]∩ Y ⊂ A.

3.2. Definition. The Čech homology of a space Z with coefficients in S is the

simplicial spectrum valued functor

ȟ(Z ;S) = holim
←−−−−

CovZ

(N ∧ S),

where CovZ is the category of finite rigid open coverings of Z defined in [7].

This is a generalized Steenrod homology theory.

The analogous functor from a G-category of finite rigid coverings A of Y by

the sets from A is the homotopy limit of NA ∧ S. The map between these

functors will be defined shortly.

The idea of proof in [7] is to interpret α(G) as the G-fixed point set map

between two G-spectra

BG+ ∧K(R)
α(G)
−−−−→ K(RG)

≃





y

≃





y

RG
πG∗

−−−−→ T G

The fixed point set map induces a map on homotopy fixed points and the fol-

lowing commutative diagram:

RG
πG∗

−−−−→ T G

ρ∗




y





y

RhG
πhG∗
−−−−→ T hG

They show that ρ∗ : RG ≃ RhG.
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The next step is the construction of a new target and a map from T . The

target chosen in [7] is ΣholimNA∧K(R); the existence of a map fromT is guar-

anteed by the property of being excisive which all pairs of open sets possess.

Now there are equivariant weak homotopy equivalences

R -→ ȟ(EG+;K(R)) -→ Σholim
←−−−−

CovY

N ∧K(R)

and a map

θ : holim
←−−−−

CovY

N ∧K(R) -→ holim
←−−−−
A∈{A}

NA∧K(R)

such that Σθ completes the commutative diagram. If θ is a weak equivalence

then the induced map RhG → (holimNA ∧ K(R))hG is too, and one has α(G)
as the first map in a composition which is an equivalence. This makes α(G) a

split injection.

WhenA are open sets, θ coincides with the restriction map induced by the

inclusion {A} ⊂ CovY . This is precisely the map in hypothesis (4) above. In

a more general situation when A are not open but still excisive, one has the

same diagram. To identify θ, however, one has to impose the condition that

A is generated as a Boolean algebra from some excisive collection of subsets.

Then θ is induced by a functorial saturation procedure applied to open subsets

of Y .

There were additional nuances in applying even this generalized scheme to

the groups G in [17]. We do not need to repeat the details because they will

be essentially incorporated in the inductive assumption we are about to make.

Before doing that we simply collect the formal properties of A that are used

in the argument from [17, §9]. They ensure that the analogue of θ is again a

weak equivalence.

3.3. Requirements. 1. There is a subcategory OrdY of CovY such that the

inclusion  : OrdY ֓ CovY induces a weak homotopy equivalence;

2. For each set U = φ(y) for φ ∈ OrdY there is an open set V(U) ⊂ X̂ with

the following properties: (1) V ∩ Y = U and (2) {V(U) : U ∈ imφ}OrdY

form a cofinal system of finite coverings of Y by open subsets of X̂;

3. Given a covering φ ∈ OrdY , there is an assignment (which we call satu-

ration and denote by sat) of a based boundedly saturated subset Ay ⊂ Y
to each set φ(y) so that sat induces a natural transformation

sat∗ : N ∧K(R) -→ Nsat( )∧K(R),

and the collection A in the previous paragraph is precisely the result

of applying saturation to OrdY . We require that each each morphism

sat∗ is a weak equivalence of spectra by Quillen’s Theorem A applied to

sat∗ : N → Nsat( ).

3.4. Assumption. One can handle EH = XH(ρ) as required by the method

producing a proof of the Novikov conjecture for H. In particular, there is a

compactification X̂H(ρ) of XH(ρ) by the boundary YH where a collection of

boundedly saturated subsets satisfies the requirements above.

3.5. Example (Cusp Subgroups in Hyperbolic Lattices). Choosing X to be the

negatively curved symmetric space associated to a semi-simple linear algebraic
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Q -group of real rank one and G a torsion-free arithmetic subgroup puts us in

the situation of [17, Theorem 3]. More generally, one can consider a complete

non-compact finite-volume Riemannian manifold V with pinched negative sec-

tional curvatures −a2 ≤ K ≤ −b2 < 0 and torsion-free fundamental group

G = π1(V). The universal cover X = Ṽ satisfies the requirements in Definition

2.2, so G is hyperbolic relative to the cusp subgroups. As before, we assume

that there is a unique cusp of V with the corresponding cusp subgroup H.

It is known that H is a torsion-free finitely generated nilpotent group. The

stratum XH(ρ) can be viewed as the underlying space of a connected simply

connected nilpotent Lie group, and H acts on XH(ρ) via the left multiplication

action. Since XH(ρ) is contractible, Assumption 2.3 is satisfied. By [17, §4]

Assumption 3.3 is also satisfied. Requirements 3.3 are verified in [17, §5 and

§9.2].

4. Compactification

According to Assumption 3.4, we have a compactification X̂H(ρ) with all

the required properties. The union of all horospheres XgH(ρ) = gXH(ρ) can

be written as the diagonal quotient XH(ρ) ×H G. These are the horospheres

corresponding to rays g · r from Definition 2.2. Such rays converge to points

in ∂X which we callG-rational . All the other points in ∂X are calledG-irrational ;

they form the subspace IG.

4.1. Definition. Let YH denote the boundary X̂H(ρ)−XH(ρ). Define

X̂(ρ)
def
= X(ρ)∪

(

X̂H(ρ)×H G
)

∪ IG,

δX(ρ)
def
=
(

X̂H(ρ)×H G
)

∪ IG,

Y
def
= X̂(ρ)−X(ρ) =

(

YH ×H G
)

∪ IG.

The topology in X̂(ρ) will be introduced à la Bourbaki. We have in mind

4.2. Proposition ([3, Proposition 1.2.2]). Let S be a set. If to each x ∈ S there

corresponds a set N (x) of subsets of S such that

1. every subset of S containing one from N (x) itself belongs to N (x),
2. a finite intersection of sets from N (x) belongs to N (x),
3. the element x belongs to every set in N (x),
4. for any N ∈ N (x) there is W ∈ N (x) such that N ∈ N (y) for every

y ∈ W ,

then there is a unique topology on S such that, for each x ∈ S, N (x) is the set

of neighborhoods of x.

By a neighborhood of a subset A in a topological space they understand any

subset which contains an open set containing A.

The subspace X(ρ) ⊂ X has the induced topology, so for y ∈ X(ρ) let

N (y) = {O ⊂ X̂(ρ) : O contains an open neighborhood of y in X(ρ)}.
If y ∈ IG ⊂ ∂X then let N (y) = {O ⊂ X̂(ρ) : W ∩ X(ρ) ⊂ O for some

neighborhood W of y in εX}.

4.3. Notation. Given an open subset U ⊂ X̂gH(ρ), consider all geodesic lines

ℓ in X which (1) converge to g · ∂r ∈ ∂X and satisfy (2) im(ℓ) ∩ U 6= ∅. Let

L(U) =
⋃

ℓ im(ℓ) and let O(U) = int(L(U)∩X(ρ)). Now define C(U) = O(U)∪
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{z ∈ Yg′H : there is ℓ ∈ L(U) such that g · ∂r = lim(ℓ)} ∪ {z ∈ IG ⊂ ∂X : there

is ℓ ∈ L(U) such that z = lim(ℓ)}.

Now for y ∈ YgH , let N (y) = {O ⊂ X̂(ρ) : there is an open set U ⊂ YgH
containing y with C(U) ⊂ O}.

This defines a system of subsets N (y) for any y ∈ X̂(ρ). For a subset

S ⊂ X̂(ρ) let N (S) = {O ⊂ X̂(ρ) : O ∈ N (y) for every y ∈ S} and call S open

if S ∈ N (S).

4.4. Proposition. If U ⊂ X̂gH(ρ) is an open subset then C(U) is open in X̂(ρ).

The proof will rely on the combination of visibility and convexity properties

of CAT(κ) spaces. We are greatly aided by the exposition in Bridson [2, §§1, 2].

Let cn be a sequence in ∂X coverging to c. We will use the notation cp, cn,p for

the unique geodesic rays representing these points and based at some p ∈ X.

According to [2, Lemma 1.6], cn converge to c if and only if cn,q converge to cq
pointwise for all q ∈ X. Combining this with Proposition 2.9 one has

4.5. Lemma. Given a geodesic line ℓ in a hyperbolic CAT(0) space X and a

sequence cn ∈ ∂X converging to ∂+ℓ, there is a sequence of geodesic lines ℓn
with ∂−ℓn = ∂−ℓ and ∂+ℓn = cn which converges to ℓ pointwise.

Proof of Proposition 4.4. We will show that the complement of C(U) is closed.

If x ∈ X(ρ) and xn ∉ C(U) is a sequence in X̂(ρ) converging to x then we

can assume that xn ∈ X(ρ) ⊂ X. For the unique rays σn : (−∞, Sn] → X such

that σn(Sn) = xn, σn(0) ∈ XgH , ∂−σn = g · ∂r , the unique ray σ : (−∞, S]→ X
with σ(S) = x, σ(0) ∈ XgH , ∂−σ = g · ∂r is the pointwise limit of σn. Thus

σ(0) = limσn(0) ∉ U and x ∉ O(U).
If x ∈ Y , consider the corresponding ideal point c = c(x) which is either

g′ · ∂r if x ∈ Yg′H or x itself if x ∈ IG and a sequence xn in ∂X converging to

c so that im(γ)∩U = ∅ for all geodesic lines γ with ∂−γ = g ·∂r , ∂+γ = xn. It

remains to prove that im(ℓ)∩U = ∅ for each geodesic line ℓ with ∂−ℓ = g ·∂r ,

∂+ℓ = c. Apply Lemma 4.5 to cn = xn. The lines ℓn can be parametrized so

that ℓn(0) ∈ XgH , hence ℓ(0) = im(ℓ)∩XgH = limℓn(0) ∉ U .

4.6. Proposition. If U1, U2 ⊂ X̂gH(ρ) are open subsets, then

C(U1)∩C(U2) = C(U1 ∩U2).

Proof. This follows from Proposition 2.9.

4.7. Theorem. The open subsets of X̂(ρ) form a well-defined topology in X̂(ρ).

Proof. We need to check that the four characteristic properties from Proposi-

tion 4.2 are satisfied by the system of neighborhoods N (x), x ∈ X̂(ρ). (1)

and (3) are clear from definitions. (2) follows from Proposition 4.6. Given any

N ∈ N (x), x ∈ δXgH(ρ), there is U ∈ X̂gH(ρ) such that C(U) ⊂ N . Take

W = C(U). By Proposition 4.4, N ∈ N (y) for any y ∈ W . Thus (4) is also

satisfied.

This construction properly generalizes that of X̂ in [17, §6]. See [17, Example

6.2.7] for an explicit example.

4.8. Theorem. The space X̂(ρ) is Hausdorff, compact, and Čech-acyclic.
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Proof. This proof uses the same strategy as the proofs in [17, §7] and some

of the results from that section. In particular, we use the easy fact that the

projectionp : X̂(ρ)→ ε(intX(ρ))which collapses each X̂gH(ρ) to an ideal point

is continuous.

Given two points x1, x2 ∈ X̂(ρ) with p(x1) 6= p(x2), for any two neighbor-

hoods U1, U2 ⊂ ε(intX(ρ)) of x1 and x2 respectively, if U1 ∩ U2 = ∅ then

p−1(U1) ∩ p−1(U2) = ∅. Since ε(intX(ρ)) is Hausdorff, one is always able to

separate such x1 and x2. If p(x1) = p(x2) and x1 6= x2 then x1, x2 ∈ X̂gH(ρ)

for some g ∈ G. Using the assumption that X̂gH(ρ) is Hausdorff, let V1 and V2

be open neighborhoods ofx1 andx2 with V1∩V2 = ∅. ThenC(V1)∩C(V2) = ∅.

This proves the Hausdorff property.

Compactness follows as in [17, §7.3] from Proposition 4.6 and compactness

of the ideal compactification ε(intX(ρ)) and of X̂H(ρ).
There is a weak Vietoris–Begle theorem for the modified Čech homology [17,

Theorem 7.4.1]. The fibers need only be acyclic for the result of Inassaridze

used in the proof of that theorem, so if f : X → Y is a surjective continuous

map, where Y is contractible and f−1(y) are acyclic for all y ∈ Y , then

f∗ : ȟ(X;KR) -→ ȟ(Y ;KR)

is a weak homotopy equivalence. Now the ideal compactification ε(X) is con-

tractible for any CAT(0) space X, so ε(intX(ρ)) homotopy equivalent to ε(X)
is contractible. The fibers of p are either assumed to be acyclic or consist of

single points. This shows Čech-acyclicity of X̂(ρ).

5. Proof of the Main Theorem

Bounded Saturation in YG. We will use the geometry of Y to identify a suffi-

ciently fine collection of subsets which are boundedly saturated in the sense

of Definition 3.1.

5.1. Proposition. Each G-irrational point y ∈ IG ⊂ Y is boundedly saturated. If

a subset Ω ⊂ YgH is boundedly saturated with respect to the metric in XgH(ρ)
then it is also boundedly saturated with respect to the metric dG in X(ρ).

Proof. First, let y ∈ IG. Consider any closed subset C ⊂ X̂(ρ) with C ∩ YG =
{y}. We can without a loss of generality assume that C\YG ∩YG = {y} so that

y is the unique cluster point in ∂X of any unbounded sequence in C . Suppose

that z ∈ (C\YG)[D]∩YG. Then there is an unbounded sequence in (C\YG)[D]
converging to z which must be a fellow-traveler of a sequence converging to

y . If z ∉ IG then any sequence converging to z converges to ∂rgH 6= y in ∂X.

Finally, if z ∈ IG then z = y .

Suppose Ω ⊂ YgH is boundedly saturated with respect to d|XgH(ρ). Con-

sider a closed set C with C\YG∩YG ⊂ Ω. By the argument above and Corollary

2.7, (C\YG)[D] ∩ ∂X = ∂rgH . So (C\YG)[D] ∩ δX ⊂ X̂gH and (C\YG)[D] ∩
∂XgH ⊂ Ω.

The rest of the proof uses the same idea and constructions as in [17, §9] the

latter becoming more formal in view of the formal requirements isolated in 3.3.
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Orderly Coverings. We assume that the boundary YgH of a stratum XgH(ρ)
guaranteed by Assumption 3.4 satisfies all of Requirements 3.3. So there is a

category of rigid coverings OrdYgH and open subsets V(Uψ(y)) ⊂ X̂gH(ρ) for

each y ∈ YgH and ψ ∈ OrdYgH as in 3.3(2). Notice that by the definition of

topology in X̂, for any U ∈ Cov X̂, there is ψ ∈ OrdYgH such that the influx

sets C
(

V(Uψ(y))
)

refine the coveringU(y) for y ∈ YgH . We will denote them

by C(Uψ(y)). Consider

ExcOrdψ(y) = Y ∩C(Uψ(y)) \
⋃

g′∈G

Yg′H ,

where G is the set of all g′ with YgH ⊈ C(Uψ(y)), and define

Ordψ(y) = ExcOrdψ(y)∪ V(Uψ(y)).

If y ∈ IG, let U be an open neighborhood of y in X̂ and define

OrdU(y) = Y ∩U \
⋃

g′∈G

Yg′H ,

where G is the set of all g′ with YgH ⊈ U . These sets are open neighborhoods

of y .

By compactness of X̂, for any U ∈ Cov X̂ there are finite collections BG ⊂ G
and BI ⊂ IG with some choices of ψg in X̂gH(ρ) for g ∈ BG and Uy for y ∈ BI
so that {Ordψg(z), OrdU(y) | z ∈ YgH , g ∈ BG, y ∈ BI} is a finite covering of

X̂ which refines the covering by open sets from U. We will also want to allow

the sets ExcOrdψg(z) ⊂ Ordψg(z) to be included in this covering; this certainly

does not affect the cofinality property mentioned above.

5.2. Definition. The category PreOrdY consists of rigid open coverings β such

that

1. imβ is an open covering of Y constructed as above,

2. y ∈ YgH for some g ∈ BG ⇐⇒ β(y) = Ordψg(z) for some z ∈ YgH .

Define OrdY to be the full subcategory of CovY closed under rigid intersections

of covering sets generated by PreOrdY .

It is easy to see that OrdY is not cofinal in CovY but satisfies the hypotheses

on the category C in [17, §2.4]. The conclusion of that section was that the map

∗ : ȟ(Y ;KR) -→ holim
←−−−−

OrdY

(N ∧KR)

induced by the inclusion  : OrdY ֓ CovY is a weak homotopy equivalence.

According to Requirement 3.3(3), each YgH , g ∈ G, has an assignment sat

associated to each ψ ∈ OrdY .

5.3. Definition. Given a covering ω ∈ OrdY , let sat(ω) be the covering by

boundedly saturated oversets obtained from ω by applying sat in each YgH .

Now we let {A} consist of all finite rigid coverings obtained from OrdY by

applying saturation.
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Completion of the Proof. Inclusions of nerves N(ω)֓ Nsat(ω) induce natural

weak equivalences N(ω)∧ KR ≃ Nsat(ω)∧ KR by Quillen’s Theorem A. This

follows from the fact that factoring out a contractible subcomplex generated

by a subset of vertices factors through the inclusion into the complex where the

same subset generates a simplex. This is precisely what happens with finitely

many disjoint subcomplexes associated to sets covering YgH , g ∈ BG, using

property (2) from Definition 5.2. We can conclude thatα∗ is a weak equivalence

by the homotopy invariance of homotopy inverse limits.

5.4. Example (Pinched Hyperbolic Manifolds). This example was the motiva-

tion for introducing relatively hyperbolic spaces and groups. The constructions

in Definition 2.2 are classical for these manifolds. The manifold with boundary

X(ρ) is homotopy equivalent to its interior which is contractible. It is known

that the cusp subgroups in a complete non-compact finite-volume Riemannian

manifold with pinched negative sectional curvatures are torsion-free, finitely

generated, and nilpotent. Example 3.5 applies verbatim. Thus Assumptions 2.3

and 3.4 hold for these spaces and the Main Theorem applies to the fundamental

groups.

5.5. Example (Relative Strict Hyperbolization). Strict hyperbolization is a pro-

cedure for converting an arbitrary polyhedron into another polyhedron with

curvature bounded above by some negative number. A version of such process

is provided by [10]. The first step in the process is asphericalization which

results in a polyhedron with a piecewise Euclidean metric of non-positive cur-

vature. It is naturally a cubical cell complex with each cell isometric to a stan-

dard Euclidean cube. This step has been described first in [18] and given careful

treatment by Davis–Januszkiewicz [11, 20] and F. Paulin. There existed a hope

that a perturbation of this new metric would make the curvature strictly nega-

tive. This turned out to be false, but the work of Charney–Davis [10] describes

the second step necessary to make the hyperbolization strict . They replace

each cube-face with a real rank one arithmetic quotient (of negative curvature).

The resulting space has curvature bounded above by −1. The trade-off is the

loss of control over the topology of the space. In particular, we do not un-

derstand which hyperbolic groups appear as the fundamental groups of the

resulting hyperbolic space and how they are related to the fundamental group

of the original polyhedron.

Now we wish to describe a procedure which might be called relative strict

hyperbolization and is suggested by [20, p. 472-473]. There are various con-

ditions that are reasonable to impose on a construction if it is to bear such a

name—see [10, p. 335]. Here our only concern is production of relatively hy-

perbolic groups satisfying Assumptions 2.3 and 3.4, and this procedure will

suffice.

Let L be a finite simplicial complex which is a classifying space for the funda-

mental groupH such that the universal cover EH satisfies Assumption 3.4. This

means that the method for proving the Novikov conjecture for H described in

§3 can be applied to L. SoH might be a torsion-free finitely generated nilpotent

group or a relatively hyperbolic group for which the Main Theorem is known

to be true. Embed L in an arbitrary finite simplicial complex K. Consider the

cone of the inclusion L ֓ K and perform the strict hyperbolization of the
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resulting complex. Call the result V . The normal link of the cone point is PL-

homeomorphic to L. Excising the regular neighborhood of the cone point, one

gets a compact complex which is a classifying space by Vietoris–Begle. Let G
be the fundamental group of this space. Now the universal cover X of V and

the group G satisfy the requirements of Definition 2.2 making G hyperbolic

relative to H. Assumptions 2.3 and 3.4 are satisfied by default, so the Main

Theorem applies to G.
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