Midterm

The total number of points is 15.

Part 1. Here you need to give complete proofs.

Question 1 (5 points). Prove that $f: X \to Y$ is continuous if and only if for all $A \subset Y$

$$\overline{f^{-1}(A)} \subset f^{-1}(\overline{A}).$$

Question 2 (6 points). Let *A* be a subset of *X* given the subspace topology.

(a) If *X* is Hausdorff, does *A* have to be Hausdorff? Prove you are correct.

(b) If *X* is not Hausdorff, can *A* be Hausdorff? Prove you are correct.

Part 2 (4 points, each question is worth half point). **True-False.** The questions in this section can be answered either "true" or "false". You do not need to give reasons for your answers, though a wrong answer with a largely correct explanation will receive partial credit.

- 1. Let $X = \{0, 1\}$ with the topology in which the open sets are \emptyset , $\{0\}$, and X.
- Is X Hausdorff?
- Is X metrizable?

2. Let $X = \mathbb{R}^2 / \{y - axis\}$, i.e., the plane with the *y*-axis collapsed to a point, with the quotient topology.

- Is X Hausdorff?
- Is *X* metrizable?

3. Let *X* be the "line with two origins". As a set, this is the real line, except there are two points 0′ and 0″ in place of single "zero". There is a set map π to the usual real line mapping all nonzero numbers to themselves, and both 0′ and 0″ to 0. The topology on *X* is the coarsest topology which makes π continuous.

- Is X Hausdorff?
- Is X metrizable?

4. Let $X = \prod_{n=1}^{\infty} [0, n]$, an infinite product of the indicated closed intervals with the product topology.

- Is X Hausdorff?
- Is X metrizable?