The total number of points is 15 .

Part 1. Here you need to give complete proofs.
Question 1 (5 points). Prove that $f: X \rightarrow Y$ is continuous if and only if for all $A \subset Y$

$$
\overline{f^{-1}(A)} \subset f^{-1}(\bar{A}) .
$$

Question 2 (6 points). Let A be a subset of X given the subspace topology.
(a) If X is Hausdorff, does A have to be Hausdorff? Prove you are correct.
(b) If X is not Hausdorff, can A be Hausdorff? Prove you are correct.

Part 2 (4 points, each question is worth half point). True-False. The questions in this section can be answered either "true" or "false". You do not need to give reasons for your answers, though a wrong answer with a largely correct explanation will receive partial credit.

1. Let $X=\{0,1\}$ with the topology in which the open sets are $\varnothing,\{0\}$, and X.

- Is X Hausdorff?
- Is X metrizable?

2. Let $X=\mathbb{R}^{2} /\{y$-axis $\}$, i.e., the plane with the y-axis collapsed to a point, with the quotient topology.

- Is X Hausdorff?
- Is X metrizable?

3. Let X be the "line with two origins". As a set, this is the real line, except there are two points 0^{\prime} and $0^{\prime \prime}$ in place of single "zero". There is a set map π to the usual real line mapping all nonzero numbers to themselves, and both 0^{\prime} and $0^{\prime \prime}$ to 0 . The topology on X is the coarsest topology which makes π continuous.

- Is X Hausdorff?
- Is X metrizable?

4. Let $X=\prod_{n=1}^{\infty}[0, n]$, an infinite product of the indicated closed intervals with the product topology.

- Is X Hausdorff?
- Is X metrizable?

