The total number of points is 15.

Part 1. Here you need to give complete proofs.

Question 1 (4 points). Let $f : X \to Y$ be a closed, continuous surjection. Assume that *X* is normal. Prove that *Y* is normal.

Question 2 (5 points). Let *X* be a compact metric space with metric *d* and the property that for all t < 1, there are pairs of points x_t , y_t so that $d(x_t, y_t) = t$. Prove there are points *x* and *y* so that d(x, y) = 1.

Part 2 (6 points, each question is worth one point). **True-False.** The questions in this section can be answered either "yes" or "no". You do not need to give reasons for your answers.

1-2. Let $X = \{0, 1\}$ with the topology in which the open sets are \emptyset , $\{0\}$, and X.

- Is X path-connected?
- Is X compact?

3-4. Let $X = \prod_{n=1}^{\infty} [0, n]$, an infinite product of the indicated closed intervals with the product topology.

- Is X connected?
- Is X compact?

5. Suppose *X* is a compact Hausdorff space. Is it true that *X* is metrizable if and only if *X* has a countable basis?

6. Is Urysohn lemma a "deep" theorem?