Question 1. This was a homework problem.
Question 2. Let $\left\{a_{n}\right\}$ be an increasing sequence pof numbers converging to 1 , say $1 / 2,2 / 3,3 / 4, \ldots, n /(n+1), \ldots$ For each a_{n} choose a pair of points x_{n} and y_{n} in X such that $d\left(x_{n}, y_{n}\right)=a_{n}$. Since X is a compact space, the sequence $\left\{x_{n}\right\}$ has finitely many cluster points. Select any one of them, say x. Let x_{i} be a subsequence converging to x. Similarly, $\left\{y_{n}\right\}$ has finitely many cluster points, choose one y and a subsequence y_{i} converging to y. Given $\epsilon>0$ thete is $N>0$ so that $d\left(x, x_{i}\right)<\epsilon, d\left(y, y_{i}\right)<\epsilon$ foa ll $i>N$. Since $d\left(x_{i}, y_{i}\right)=a_{i}$, we have two triangle inequalities: $d(x, y) \leq a_{i}+2 \epsilon$ and $a_{i} \leq d(x, y)+2 \epsilon$ OR $a_{i}-2 \epsilon \leq d(x, y) \leq a_{i}+2 \epsilon$. Taking $\epsilon>0$ increasingly small, get $d(x, y)=\lim a_{N}=1$.

Part 2. (1) Yes: connect 0 to 1 by the path that sends $[0,1$) to 0 and 1 to 1 . (2) Yes: all finite spaces are compact. (3) Yes: products of connected spaces are conected. (4) Yes, by Tychonoff's theorem. (5) Yes, by Urysohn's lemma. (6) Yes, see the beginning of section 33.

