Question 4. Connectedness is clear in all parts. For (1), we know from class that S^{2} - point is homeomorphic to \mathbb{R}^{2}. (2) can use part (1) because S^{2} - point - point is homeomorphic to \mathbb{R}^{2} - point, and that deformation retracts to S^{1}. So the answer is \mathbb{Z}. In (3) S^{3} - point is homeomorphic to \mathbb{R}^{3} just as in part (1), so S^{3} - point - point is homeomorphic to \mathbb{R}^{3} - point, which deformation retracts onto the unit sphere S^{2}, so the answer is the trivial group. For (4), as in (1) we can deformation retract S^{2} - point to the disk D^{2}. So $S^{2}-$ point $\times 3$ deformation retracts to $D^{2}-$ point $\times 2$. This in tern clearly dformation retracts to the "figure 8 " that can be traced around the two punctures. So the answer is the free group on two generators, or $\mathbb{Z} * \mathbb{Z}$. We need Baby Van Kampen again in (5), applied to the homeomorphic space \mathbb{R}^{3} - point $\times 2$. This is the union of two \mathbb{R}^{3} - point which is simply connected. Now we can do induction until we get to 1001 punctures.

