Question 4. Connectedness is clear in all parts. For (1), we know from class that S^2 – point is homeomorphic to \mathbb{R}^2 . (2) can use part (1) because S^2 – point – point is homeomorphic to \mathbb{R}^2 – point, and that deformation retracts to S^1 . So the answer is \mathbb{Z} . In (3) S^3 – point is homeomorphic to \mathbb{R}^3 just as in part (1), so S^3 – point – point is homeomorphic to \mathbb{R}^3 – point, which deformation retracts onto the unit sphere S^2 , so the answer is the trivial group. For (4), as in (1) we can deformation retract S^2 – point to the disk D^2 . So S^2 – point × 3 deformation retracts to D^2 – point × 2. This in tern clearly dformation retracts to the "figure 8" that can be traced around the two punctures. So the answer is the free group on two generators, or $\mathbb{Z} * \mathbb{Z}$. We need Baby Van Kampen again in (5), applied to the homeomorphic space \mathbb{R}^3 – point × 2. This is the union of two \mathbb{R}^3 – point which is simply connected. Now we can do induction until we get to 1001 punctures.