Question 1. We are given that there are homotopies $F: X \times I \rightarrow Y$ from f_{1} to f_{2} and $G: Y \times I \rightarrow Z$ from g_{1} and g_{2}. This gives the composition

$$
\bar{H}: X \times(I \times I)=(X \times I) \times I \xrightarrow{F \times \mathrm{id}_{I}} Y \times I \xrightarrow{G} Z .
$$

Take any path $\alpha: I \rightarrow I \times I$ so that $\alpha(0)=(0,0)$ and $\alpha(1)=(1,1)$. Now the composition

$$
H: X \times I \xrightarrow{\mathrm{id}_{X} \times \alpha} X \times I \times I \xrightarrow{\bar{H}} \mathrm{Z}
$$

is exactly what we need:

$$
\begin{aligned}
& H|X \times\{0\}=\bar{H}| X \times\{(0,0)\}=G \circ F \mid X \times\{0\}=g_{1} \circ f_{1} \\
& H|X \times\{1\}=\bar{H}| X \times\{(1,1)\}=G \circ F \mid X \times\{1\}=g_{2} \circ f_{2}
\end{aligned}
$$

I have included this solution because it generalizes the correct solutions I saw when grading papers. Some of your solutions which included formulas like

$$
H(x, t)=G(F(x, t), t)
$$

correspond to choosing the diagonal path $\alpha(t)=(t, t)$ in I^{2}. Other solutions have formulas such as

$$
H(x, t)= \begin{cases}g_{1}(F(x, 2 t)), & \text { for } t \text { between } 0 \text { and } 1 / 2 \\ G\left(f_{2}(x), 2 t-1\right), & \text { for } t \text { between } 1 / 2 \text { and } 1\end{cases}
$$

This corresponds to the choice of α which is the composition of the paths

$$
H(x, t)= \begin{cases}(0, t), & \text { for } t \text { between } 0 \text { and } 1 / 2 \\ (2 t-1,1), & \text { for } t \text { between } 1 / 2 \text { and } 1\end{cases}
$$

in I^{2}.
Of course, restricting to any choice of α from $(0,0)$ to $(1,1)$ in I^{2} will give a desired homotopy.

