Question 3, part (ii). If n is odd, $\operatorname{det}(I)=1$ and $\operatorname{det}(-I)=-1$, so any path connecting I to $-I$ would map to a path connecting 1 to -1 when composed with det. By the Intermediate Value Theorem, 0 would be in the image of that continuous composition. This contradicts the fact that $\operatorname{det}(M) \neq 0$ for all M in $G L_{n}$.

If n is even, we need to construct a path from I to $-I$ in $G L_{n}$. First, let's look at the case $n=2$. The path will be a concatenation of two paths. The first is from the matrix

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \text { to }\left(\begin{array}{cc}
-1 & -2 \\
2 & -1
\end{array}\right)
$$

given by

$$
A(t)=\left(\begin{array}{cc}
1-2 t & -2 t \\
2 t & 1-2 t
\end{array}\right)
$$

for all $t \in[0,1]$. Notice that det $A(t)=(1-2 t)^{2}+4 t^{2}>0$ for all t. The second is from

$$
\left(\begin{array}{cc}
-1 & -2 \\
2 & -1
\end{array}\right) \text { to }\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)
$$

given by

$$
B(t)=\left(\begin{array}{cc}
-1 & -2+2 t \\
2-2 t & -1
\end{array}\right)
$$

for all $t \in[0,1]$. Notice that $\operatorname{det} B(t)=1+(2-2 t)^{2}>0$ for all t. In the general case, I and $-I$ have $n / 2$ instances of the 2-dimensional blocks on the diagonal. Use the deformations above within each block. Since the determinant is the product of the determinants of these blocks, it stays positive throughout the path.

