Question 1. We need to show that the quotient space $c X=S^{1} \times I / S^{1} \times 1$ is homeomorphic to D^{2}. Here $S^{1}=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\}$ and $D^{2}=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq\right.$ $1\}$. Notice that S^{1} is the boundary ∂D^{2} of D^{2}. It is also the base $S^{1} \times 0$ of the cone $c S^{1}$. I will prove something stronger than what's required. Instead of identifying $S^{1} \times 0$ with ∂D^{2} via the identity map, I will choose any homeomorphism

$$
h: S^{1} \times 0 \longrightarrow \partial D^{2}
$$

and show that there is a homeomorphism

$$
H: c S^{1} \longrightarrow D^{2}
$$

which extends h, that is a homeomorphism H which is precisely h when restricted to $S^{1} \times 0$. Such constructions are called relative.

Proof. Define H by $H\left(S^{1} \times 1\right)=(0,0)$ and mapping each element $x \times[0,1]$ linearly onto the radial segment from $(0,0)$ to $h(x)$. This means that $H(x, t)=(1-t) h(x)$, which is a vector equation in \mathbb{R}^{n}.

If U is an open subset of D^{2} disjoint from $(0,0)$ then $H^{-1}(U) \subset S^{1} \times[0,1)$ where H is injective, and so $H^{-1}(U)$ is clearly open in $c S^{1}$. If U is a neighborhood of $(0,0)$ then there is a number ε such that the metric ball

$$
B((0,0), \varepsilon)=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq \varepsilon\right\}
$$

is contained in U. This shows that $S^{1} \times(1-\varepsilon, 1]$, which is the collar of thickness ε on the top lid of $S^{1} \times I$, is contained entirely in $H^{-1}(U)$. So $H^{-1}(U)$ is a neighborhood of the cone point $S^{1} \times 1 / S^{1} \times 1$ in $c S^{1}$. This shows that H is continuous. The same kind of argument shows that its inverse is continuous.

Question 2. Given $C S^{1}$ and D^{2} as before, define $H\left(S^{1} \times 1 \cup x_{0} \times[0,1]\right)=(0,1)$. Then for any homeomorphism $h: S^{1} \times 0 \rightarrow \partial D^{2}$ which sends $x_{0} \times 0$ to (0,1), define H by mapping each $x \times[0,1]$ linearly onto the straight segment from $h(x)$ to $(0,1)$. This means

$$
H(x, t)=(1-t)(0,1)+\operatorname{th}(x) .
$$

This is a homeomorphism extending h.
Question 3. Let

$$
H: S^{1} \times[-1,1] / S^{1} \times\{-1\} / S^{1} \times\{1\} \longrightarrow S^{2}
$$

be the radial projection perpendicular to the z-axis. So

$$
H([\bar{x}, t])=\left(\sqrt{1-t^{2}} \bar{x}, t\right)
$$

Of course, when $t= \pm 1, H$ sends the lids onto the poles $(0,0,1)$ and $(0,0,-1)$, as it should.

