Fiscal Risk in a Monetary Union

Betty C. Daniel
Department of Economics - University at Albany-SUNY
Albany, NY 12222
and Board of Governors of the Federal Reserve
Washington, DC 20551
b.daniel@albany.edu

Christos Shiamptanis
Department of Economics - Trent University
Peterborough, Ontario K9J 7B8
cshiamptanis@trentu.ca

April, 2009

Abstract

A country entering a monetary union gives up the right to determine its own monetary policy, thereby relinquishing monetary instruments to assure fiscal solvency. When debt is subject to an upper bound and policy faces stochastic shocks, a government can find itself in a position for which the expected present value of future surpluses under current policy is less than debt. This paper considers the risk of a fiscal financial crisis in a monetary union under alternative assumptions about how the fiscal authority would respond. We simulate the model to obtain estimates of fiscal risk in the European Monetary Union.

- *Key Words:* European Monetary Union, Fiscal Theory of the Price Level, Policy Switching, Default, Financial Crisis

* The authors would like to thank.......The views in this paper are solely the responsibility of the authors and should not be interpreted as reflecting the views of The Board of Governors of the Federal Reserve or of any other person associated with the Federal Reserve System.
1 Introduction

The world-wide financial crisis and recession, which began in 2007 and accelerated in 2008, has had profoundly negative consequences for government budget deficits and debt. Automatic stabilizers have reduced tax revenues and increased spending. Additionally, many countries have initiated discretionary stimulus measures. By the end of 2008, seven of the sixteen European Monetary Union (EMU) countries had debt in excess of the sixty percent limits set by the Stability and Growth Pact (SGP); in February 2009, the European Commission initiated excessive debt procedures for four countries in violation of the three percent limit on fiscal deficits.¹ EMU countries rejected US calls for additional fiscal stimulus at the G-20 meetings in April 2009. The European Central Bank (ECB) has expressed concerns over fiscal sustainability in its call to "maintain the integrity of the rules-based EU fiscal framework." (ECB Monthly Bulletin 2009) Concerns for fiscal sustainability were heightened when credit-rating agencies lowered long-term sovereign credit ratings for four countries in January and February 2009, and interest rates on these countries’ government bonds spiked relative to those on German government bonds.²

EMU’s concerns with fiscal sustainability reflect, at least in part, the constraints created with the transfer of power to control prices away from national governments to the single monetary authority. When a country joins a monetary union, it loses seigniorage (Sargent and Wallace 1981) and debt devaluation through unexpected inflation as

¹ These countries include France, Greece, Ireland, and Spain.
² The four countries are Greece, Ireland, Portugal, and Spain.
instruments for achieving intertemporal budget balance. The SGP and Maastricht rules were designed to assure that no country in the EMU would ever exert pressure on the ECB to restore these instruments. The rules focused on fiscal soundness, requiring that each country’s debt-GDP ratio remain well below the maximum any country could be expected to service, and that government budget deficits remain small. Violations of the rules were to be punished with fines. Governments with commitments to these rules are planning to balance their intertemporal budget for any initial outstanding value of real debt. That is, they are committing to follow a passive fiscal policy as defined in the “Fiscal Theory of the Price Level” (FTPL). Therefore, these rules and punishments can be viewed as a method of enforcing passive fiscal policy on member countries, leaving the ECB free to choose the price level with active monetary policy. In the absence of additional constraints, a government which adheres to a passive fiscal policy, will not face a fiscal financial crisis. No matter how much debt increases as a consequence of the crisis’s unexpected shocks, governments that adhere to the SGP and Maastricht rules, will adjust their primary surpluses to service and repay their debt.

However, every government faces limits on its ability to raise taxes, which implies an upper bound on the present value of the surplus and an upper bound on the value of debt which the surplus can service. Governments have violated the rules, and future fiscal shocks could send a government’s debt along a path expected to violate the upper bound on debt. The upper bounds, together with stochastic shocks to the surplus, imply

3 The government can allow real returns on nominal government debt to be state-contingent even though nominal returns, as measured by nominal interest rates, are not (Chari, Christiano, and Kehoe 1991). This is achieved by surprise changes in the price level, which affect the real value of government debt, and is the mechanism in the “Fiscal Theory of the Price Level” (FTPL) (Sims 1994, Woodford 1994).

fiscal risk. Specifically, stochastic shocks to the surplus could require very large values for future surpluses, values so large that they could be infeasible. If stochastic fiscal shocks place the system above the path leading to the maximum value for real debt, then there is no interest rate at which agents would agree to lend. A sudden stop of capital flows, which prevents the government from borrowing to continue its desired fiscal policy, defines a fiscal financial crisis.

Crisis resolution requires policy action to restore equilibrium, and crisis dynamics are partially determined by expectations of the policy response to a crisis. We consider two types of policy response. The first is a policy response in which the crisis country reduces the magnitude of debt through default to restore fiscal solvency and continues passive fiscal policy. In the second, the fiscal authority in the crisis country switches to active fiscal policy with the union monetary authority accommodating by switching to passive monetary policy with a target for expected inflation. We show that default without fiscal reform leaves markets turbulent such that they continue to expect and experience default on the crisis country’s debt. Markets are orderly after policy-switching with expected future inflation equal to its target value.

If the monetary union is willing to allow a member country to default, then fiscal policy has no consequences for the monetary authority’s ability to control the price level. Therefore, crisis analysis with a policy response of default is a positive analysis of the consequences of allowing a member country to default. If default is unacceptable, as suggested by constraints EMU member countries have chosen to impose on fiscal policy, then the analysis with a response of policy switching characterizes the threat of a fiscal financial crisis to price stability.
Using panel estimates of the parameters in the surplus rule and initial values for government debt and the primary surplus for the EMU countries, we simulate fiscal risk under alternative fiscal responses to a crisis. We find that countries with initial values bound by the Maastricht Treaty limits are safe, while countries like Greece and Italy, in which debt has strayed far above these limits might not be.

This paper is organized as follows. The next section describes the behavior of monetary and fiscal policy in a monetary union, in which each country’s primary surplus is subject to stochastic shocks, which the fiscal authority wants to smooth over time using debt. In the third section, we characterize an equilibrium, in which every country in the union initially follows a fiscal policy under which debt relative to output is expected to approach a long-run equilibrium value. Government debt has risk due to the upper bound on the primary surplus. The fourth section considers dynamics leading to a crisis under alternative responses to the fiscal crisis. The fifth section contains simulations of fiscal risk under alternative methods of response. The sixth section compares our fiscal risk measures with others in the literature, and the final section concludes.

2 Model

2.1 Overview

In this section, we set up a simple model of a monetary union which we can use to address fiscal risk. The model contains three key assumptions. First, international creditors lend to a government only when they expect to receive the market rate of return. Second, there is an upper bound on the present value of primary surpluses relative to output which a country can sustain. Third, fiscal policy implies risk on government debt, reflecting
concern by founders of the EMU, as well as the reality, that a government’s commitment
to raise taxes to finance expenditures cannot be totally unconditional.

We fill out the model with enough structure to obtain an equation for the evolution
of government debt relative to output. This requires specification of monetary and fiscal
policy as well as government budget constraints. We assume that the monetary authority
has a price level target and that the fiscal authority follows a rule relating the current
primary surplus to past debt. The rule is subject to stochastic shocks, giving fiscal policy
risk. The rule we choose is simple and does not require full specification of a general
equilibrium model. However, any rule with fiscal risk could be used to complete the
model. The government’s intertemporal budget constraint, combined with the upper
bound on the present value of primary surpluses, imply an upper bound on the value of
debt.

2.2 Goods and Asset Markets

We assume that the monetary union consists of \(N \) countries. The \(j = 1, 2, ..., N \) countries
are small enough that they cannot affect the world price level or world interest rate. There
is a single good in the world, implying that equilibrium in goods markets requires the law
of one price. Normalizing the world price level at unity and assuming no world inflation
implies that the equilibrium price level in the monetary union is the exchange rate.

The **first key assumption** is that international creditors are willing to buy and sell
country \(j \)'s government bonds as long as its interest rate, \(i_{jt} \), satisfies interest rate parity.
Interest rate parity can be derived as the Euler equation for a representative world agent
when the covariance of the country \(j \) interest rate with world-agent consumption is zero,
or when the world agent is risk neutral. Under the additional assumptions that the world interest rate \((i)\) is constant, interest rate parity can be expressed as

\[
\frac{1}{1 + i_{jt}} = \left(\frac{1}{1 + i} \right) E_t \left[\frac{P_t}{P_{t+1}} \delta_{jt+1} \right], \quad j = 1, 2, ...N
\]

(1)

where \(E_t\) denotes the expectation conditional on time \(t\) information, \(P_t\) denotes the price level in the monetary union, and \(\delta_{jt+1}\) is the fraction of the value of the \(j\) country’s bond that will be repaid in period \(t + 1\).

Interest rates in the monetary union countries can rise above the world interest rate when there is some possibility of a crisis which will be resolved with either default \((\delta_{jt+1} < 1)\) or inflation \((\frac{P_t}{P_{t+1}} < 1)\). If default is used to resolve fiscal crises, then a country with a positive probability of default in the next period, such that \(E_t \delta_{jt+1} < 1\), would have an interest rate which is higher than the rate in other member countries for which there is no probability of default. If default is ruled out as a policy response to a crisis, then \(\delta_{jt+1} \equiv 1 \forall j, t\), and all \(N\) member-country interest rates are equal. They can be higher than the world rate when there is some probability that debt devaluation through a price level surprise will be used to resolve a crisis.

2.3 Monetary Policy

We assume that with the creation of the monetary union, all \(N\) countries in the union agree to follow a strongly passive fiscal policy, which we define below, leaving the common monetary authority free to determine the price level with an active monetary policy. Monetary policy is assumed to have a fixed price level target, implying an inflation target of zero. When fiscal policy for every country in the union is strongly passive and there is no probability of default in the next period for any of the \(N\) countries, the price level
is fixed at its target and interest rate parity from equation (1) implies that the nominal interest rates for all countries are equal at $i_{jt} = i$.

2.4 Fiscal Policy

2.4.1 Government Flow Budget Constraint

We assume that each government issues bonds denominated in the common currency. The j^{th} country’s bonds are held by the public (B^p_{jt}) and by the monetary authority (B^M_{jt}),

$$ B_{jt} = B^p_{jt} + B^M_{jt}. $$

The supply of the common currency in the union (M_t) is given by the sum of each country’s government bonds held by the monetary authority,

$$ M_t = \sum_{j=1}^{N} B^M_{jt}. $$

Assuming that the monetary authority returns the interest on bonds to the governments issuing those bonds, and letting η_j be the fixed fraction of the union monetary base provided by country j, then seigniorage revenues for country j are given by $i_{jt} B^M_{jt} = i_{jt} \eta_j M_t$. Allowing for the possibility of default and simplifying notation by dropping the subscript j, the nominal flow budget constraint for country j is given by

$$ B^p_t + \eta M_t = \delta_t [(1 + i_{t-1}) B^p_{t-1} + \eta M_{t-1}] + G_t - \tau_t P_t Y_t, $$

where G_t is nominal government expenditures, P_t is the price level, Y_t is real output and τ_t is the tax rate on nominal output. Letting small letters denote values relative to output, the values of debt relative to output and the primary surplus relative to output can be

5 This policy could be implemented with a Taylor Ruler, whereby the monetary authority has a credible threat to raise the nominal interest rate substantially in the event that price rises.
expressed respectively as

\[b_t = \frac{1}{P_t Y_t} \left(B_t^p + \frac{1}{1 + i_t} \eta M_t \right), \]

\[s_t = \frac{1}{P_t Y_t} \left(\tau_t P_t Y_t - G_t + \left(\frac{i_t}{1 + i_t} \right) \eta M_t \right). \]

Allowing for inflation and default, either of which could be created by a fiscal financial crisis, the government’s flow budget constraint can be expressed in terms of debt and primary surplus relative to output as\(^6\)

\[b_t = \left(\frac{\delta_t}{1 + \pi_t} \right) \left(\frac{1 + i_t}{1 + g} \right) b_{t-1} - s_t, \tag{2} \]

where \(\pi_t = \frac{P_t}{P_{t-1}} - 1 \) is the inflation rate, and \(g = \frac{Y_t}{Y_{t-1}} - 1 \) is the output growth rate.\(^7\)

Imposing interest rate parity from equation (1), and defining \(\gamma_t \) as capital loss on the outstanding stock of debt, such that

\[\gamma_t = \left(1 - \frac{\delta_t}{1 + \pi_t} \right) \left(\frac{1 + i_{t-1}}{1 + g} \right) b_{t-1}, \]

the equation for the evolution of debt relative to output can be expressed as

\[b_t = (1 + r) b_{t-1} - s_t - (\gamma_t - E_{t-1} \gamma_t). \tag{3} \]

The growth-adjusted interest rate is denoted by \(r = \left(\frac{i_t - g}{1 + g} \right) \), and \((\gamma_t - E_{t-1} \gamma_t) \) is the unexpected capital loss on government debt. Capital loss on debt can occur due to either unexpected inflation or default. Debt accumulates in response to expectations of capital loss which are not realized. Expectations of capital loss raise the interest rate, and when the capital loss does not occur, debt accumulates in response to the higher interest rate.

\(^6\) This ignores the effect of capital gains or losses on seigniorage revenue \(\left(\frac{i_t - g}{1 + g} \right) \eta M_t \) under the assumption that the fiscal authority can adjust the surplus to offset these.

\(^7\) We assume growth is non-stochastic to simplify the analysis. We could analyze the implications of stochastic growth using a linearized model, but we reserve this for future work.
Optimization by the representative agent, together with the assumption that governments do not allow their debt to become negative in the limit,\(^8\) implies a government’s intertemporal budget constraint given by\(^9\)

\[
\lim_{T \to \infty} E_t b_{t+T} \left(\frac{1}{1 + r} \right)^T = (1 + r) b_{t-1} - (\gamma_t - E_{t-1}\gamma_t) - E_t \sum_{k=0}^{\infty} s_{t+k} \left(\frac{1}{1 + r} \right)^k = 0. \tag{4}
\]

Note that unexpected capital loss on debt, created either by default or by a price level jump and represented by \(\gamma_t - E_{t-1}\gamma_t > 0\), creates revenue.

2.4.2 Upper Bound

The **second key assumption** is that there is an upper bound on the present value of the primary surplus relative to output that a government can sustain. We motivate this with the realization that taxes are distortionary such that there will be an upper bound on the fraction of income that a government can collect in taxes. Using the government’s intertemporal budget constraint, equation (4), this implies an upper bound on the current value of debt relative to output given by

\[
b_t \leq \frac{\bar{\varphi}}{r}, \tag{5}
\]

where \(\bar{\varphi}\) is the value of the upper bound on the primary surplus relative to output.

The upper bound on debt relative to output rules out an equilibrium in which debt relative to output is explosive. This differs from original presentations of the FTPL, in which debt relative to output can increase forever in equilibrium, as long as its growth rate is less than the growth-adjusted rate of interest.\(^{10}\)

\(^8\) Sims (1997), Woodford (1997) and Daniel (2001) argue that no country, acting to maximize utility of its own agents, would allow the present-value of its debt to become negative in the limit.\(^9\) Woodford (1994) derives of the constraint as an equilibrium condition for a closed economy.\(^{10}\) Canzoneri, Cumby, and Diba (2001) base their empirical test determining whether monetary policy in
2.4.3 Fiscal Policy Rule

We assume that the fiscal authority is able to commit to a surplus rule\(^\text{11}\), in which the primary surplus responds to its own lag and a linear combination of the target value of the long-run primary surplus and debt service at the growth-adjusted interest rate. The surplus rule for a particular country is given by

\[
s_t = (1 - \alpha) s_{t-1} + \alpha [(1 - \lambda) \varphi + \lambda r b_{t-1}] + \nu_t, \tag{6}
\]

\[0 < \alpha < 1, \quad 0 \leq \lambda, \quad 0 < \varphi \leq \bar{\varphi},\]

where \(\varphi\) is the value of the target for the long-run primary surplus relative to output, \((1 - \alpha)\) measures persistence in the primary surplus, \(\lambda\) represents the responsiveness of the surplus to the value for debt service relative to its long-run target value, and \(\nu_t\) is a bounded, zero-mean, stochastic disturbance representing fiscal shocks. The parameters \(\alpha\) and \(\lambda\) are viewed as policy choices and in the simulations section we use estimated values. Stochastic shocks represent both truly unanticipated fiscal shocks, as with a war, natural disaster, or financial crisis, as well as fiscal policy responses to the state of the economy. The lagged value of the primary surplus relative to output reflects the desire to smooth the effect of shocks over time and is consistent with empirical evidence showing persistence in the primary surplus. Since the model is specified in terms of debt and the primary surplus relative to output, we refer to these variables simply as debt and the surplus when there is no confusion.

\(^{11}\)The rule gives the government credibility, limiting the effect of negative fiscal shocks on the expected present value of future surpluses.
Equations (3) and (6) imply dynamic equations for the surplus and debt:

\[s_t = (1 - \alpha) s_{t-1} + \alpha (1 - \lambda) \varphi + \alpha \lambda r b_{t-1} + \nu_t \]
\[b_t = (1 + r - \alpha \lambda r) b_{t-1} - (1 - \alpha) s_{t-1} - \alpha (1 - \lambda) \varphi - \nu_t - \gamma_t + E_{t-1} \gamma_t \]

The third key assumption is that fiscal policy entails risk. In our specification, risk is due to the upper bound and stochastic shocks. Governments understand this risk, and the parameters they choose reflect their risk tolerance, determined in part, by the cost of a crisis. For the simulation exercises later in the paper, we let the data reveal the parameter values the authorities chose in solving their optimization problem. Empirically, countries do choose rules with risk, and the Maastricht limits on debt and deficits reflect policy-maker concerns that at least some EMU countries might choose risky rules.

2.4.4 Stability and Dynamics

The time paths for each country’s surplus and debt can be determined by solving equations (7) and (8). Letting \(\theta \) represent eigenvalues, which are assumed to be real and distinct, the characteristic equation for each country is given by

\[(1 - \alpha) (1 + r) - \theta [2 + r (1 - \alpha \lambda) - \alpha] + \theta^2 = 0. \]

No Upper Bounds To understand the behavior of the model without crises, consider the dynamic stability of the model for different values of \(\lambda \) when there is no upper bound on the value of the surplus. Equilibrium in the absence of upper bounds is defined as

Definition 1 Given constant values for the world interest rate and world price level, a monetary-policy price-level target, and a surplus rule (equation 7) for each country, an equilibrium is a set of time series processes for each country’s primary surplus, debt, and capital loss on debt, \(\{b_t, s_t, \gamma_t\}_{t=0}^{\infty} \), such that each government’s flow and intertemporal budget constraints (equations 8 and 4) hold, expectations are rational, and world agents expect to receive the return on assets determined by interest rate parity, (equation 1).
For \(\lambda \geq 1 \) both eigenvalues are on or inside the unit circle, and the model is globally stable. Debt and the surplus are each expected to reach a long-run equilibrium values for any initial values of the variables, including \(\gamma_t \). Therefore, the expected present value of debt relative to output goes to zero in the limit, implying that equation (4) is satisfied for any stochastic process for \(\gamma_t \). A fiscal policy for which the present value of debt relative to output is zero in the limit for any initial value of the price level is defined as passive fiscal policy. When fiscal policy is passive, the monetary authority is free to follow an active policy and choose \(\gamma_t = 0 \) in equilibrium, consistent with its fixed price-level target.

Alternatively when \(0 \leq \lambda < 1 \), one eigenvalue of the characteristic equation is inside the unit circle and the other is outside, implying that the model is saddlepath stable. The system reaches a long-run equilibrium only if it begins on the saddlepath. Otherwise, debt can be on a path where it is expected to grow faster than output. For \(0 < \lambda < 1 \), debt relative to output is always expected to grow more slowly than the growth-adjusted interest rate. This implies that the expected present value of debt relative to output in the limit is zero, or equivalently, that equation (4) is satisfied for any stochastic process for \(\gamma_t \). Fiscal policy is passive, and in the absence of any upper bounds, \(\lambda > 0 \) is sufficient for the monetary authority to freely choose \(\gamma_t = 0 \), maintaining its fixed-price target.

For \(\lambda = 0 \), the expected present value of debt relative to output is no longer zero in the limit unless the system is on the saddlepath. Therefore, there is no equilibrium unless there is a jumping variable, offsetting shocks, to keep the system on the saddlepath. The only candidate is the real value of debt through \(\gamma_t \). Therefore, \(\gamma_t \) must be free to experience positive and negative jumps to keep the system on the saddlepath, as in the FTPL. This represents an active fiscal policy because the government’s intertemporal
budget is balanced only for the value of real debt along the saddlepath, not for all values. When some fiscal policies in the union are active, then the active fiscal policies together determine γ_t. Therefore, a fiscal rule with $\lambda = 0$ implies that the monetary authority does not have the freedom to determine the price level.

Upper Bounds The upper bound on debt has different implications for the constraints on monetary policy when λ takes on values between zero and unity. For $0 < \lambda < 1$, debt relative to output is always expected to grow more slowly than the growth-adjusted interest rate, but debt can grow faster than output. Paths along which debt grows faster than output violate the upper bound and cannot be equilibrium paths. Since such paths are inconsistent with equilibrium, there must be a jumping variable to move the system away from these paths onto the saddlepath. In equilibrium, the value of γ_t jumps to keep the system on the saddlepath, implying that the monetary authority loses its ability to control the price level.

Effectively, with an upper bound given by (5), monetary freedom to control the price level in equilibrium requires that each fiscal authority follow a rule with $\lambda \geq 1$. We refer to such policy as "strongly passive" because it rules out explosive debt relative to output. The standard definition of passive fiscal policy without an upper bound restricts debt relative to output to grow more slowly than the growth-adjusted interest rate in the limit, requiring only $\lambda > 0$. However, this definition does not rule out growth of debt relative to output, which would eventually violate any upper bound.

In summary, consideration of upper bounds implies that a necessary condition for the monetary authority to be able to choose the price level, that is to choose γ_t, is that the
surplus rule restrict $\lambda \geq 1$. This restriction assures that the long-run values for debt and the surplus are not expected to violate their upper bounds. However, upper bounds can imply crises even under a surplus rule with $\lambda \geq 1$. This can occur when the adjustment path toward long-run equilibrium values requires a value for debt which exceeds its upper bound. We turn to this below.

3 Dynamics under Strongly Passive Fiscal Policy

Consider the dynamic behavior of debt and the surplus in a newly-formed monetary union in which each country is committed to strongly passive fiscal policy. Equations (7) and (8) with $\lambda \geq 1$ can be solved to express the time paths for the surplus and debt relative to output in each country yielding

$$s_t = \varphi + \frac{(\theta_2 - 1 + \alpha) \theta_1^t}{(1 - \alpha)(\theta_1 - \theta_2)} \left\{ (\alpha - 1) (s_0 - \varphi) + (\theta_1 - 1 + \alpha) \left(b_0 - \frac{\varphi}{r}\right) + \sum_{k=1}^{t} \theta_1^{-k} [-\theta_1 \nu_k - (\theta_1 - 1 + \alpha) (\gamma_k - E_{k-1} \gamma_k)] \right\} + \frac{(\theta_1 - 1 + \alpha) \theta_2^t}{(1 - \alpha)(\theta_1 - \theta_2)} \left\{ (1 - \alpha) (s_0 - \varphi) - (\theta_2 - 1 + \alpha) \left(b_0 - \frac{\varphi}{r}\right) + \sum_{k=1}^{t} \theta_2^{-k} [\theta_2 \nu_k + (\theta_2 - 1 + \alpha) (\gamma_k - E_{k-1} \gamma_k)] \right\}$$

$$b_t = \frac{\varphi}{r} + \frac{\theta_1^t}{\theta_1 - \theta_2} \left\{ (\alpha - 1) (s_0 - \varphi) + (\theta_1 - 1 + \alpha) \left(b_0 - \frac{\varphi}{r}\right) + \sum_{k=1}^{t} \theta_1^{-k} [-\theta_1 \nu_k - (\theta_1 - 1 + \alpha) (\gamma_k - E_{k-1} \gamma_k)] \right\} + \frac{\theta_2^t}{\theta_1 - \theta_2} \left\{ (1 - \alpha) (s_0 - \varphi) - (\theta_2 - 1 + \alpha) \left(b_0 - \frac{\varphi}{r}\right) + \sum_{k=1}^{t} \theta_2^{-k} [\theta_2 \nu_k + (\theta_2 - 1 + \alpha) (\gamma_k - E_{k-1} \gamma_k)] \right\}$$
where $\theta_1 \leq 1$ and $\theta_2 < 1$ are the eigenvalues of the characteristic equation (9). The time paths depend on initial values, fiscal shocks, capital losses and their expectations. When the country is far from a crisis, $\gamma_t = E_{t-1}\gamma_t = 0$. The values for γ_t and its expectations in the neighborhood of a crisis are endogenized below.

3.1 No Upper Bound

When there is no upper bound on debt and $\lambda \geq 1$, equation (11) can be used to show that the government’s intertemporal budget constraint is satisfied for any stochastic process for γ_t. With institutions strong enough to prevent default the fiscal authority can borrow freely and the monetary authority is free to set $\gamma_t = E_{t-1}\gamma_t = 0$, achieving its price level target. In equilibrium, with no possibility of either default or inflation, agents are always willing to lend at the world interest rate (equation 1).

To facilitate understanding, it is useful to represent the dynamics of the debt-surplus system using country phase diagrams. We can construct the phase diagram for each country by subtracting lagged values of the surplus from equation (7) and lagged values of debt from equation (8) to yield:

\[
\Delta s_t = s_t - s_{t-1} = -\alpha s_{t-1} + \alpha (1 - \lambda) \nu_t + \alpha \lambda rb_{t-1} + \nu_t, \tag{12}
\]

\[
\Delta b_t = b_t - b_{t-1} = (1 - \alpha \lambda) rb_{t-1} - (1 - \alpha) s_{t-1} - \alpha (1 - \lambda) \varphi - \nu_t - \gamma_t + E_{t-1}\gamma_t. \tag{13}
\]

The phase diagram under passive fiscal policy with $\lambda > 1$ and with $\nu_t = \gamma_t - E_{t-1}\gamma_t = 0$ is given in Figure 1. Debt service (rb) is on the vertical axis and the surplus is on the horizontal axis. The $\Delta s = 0$ and $\Delta b = 0$ schedules intersect at point P with $s_t = \varphi = rb_t$, representing a long-run equilibrium. The system is globally stable around its long-run
equilibrium target values. If initial debt and the surplus are at point A, then the system is expected to travel along AP, eventually reaching the long-run equilibrium point P. Equations (12) and (13) can be used to show that with \(\nu_t = \gamma_t - E_{t-1}\gamma_t = 0 \), the relationship between debt and surplus along any passive adjustment path is given by

\[
\frac{r (E_{t-1}b_t - b_{t-1})}{E_{t-1}s_t - s_{t-1}} = r \left[\frac{rb_{t-1} - s_{t-1}}{\alpha (\lambda rb_{t-1} - s_{t-1} + (1 - \lambda) \varphi)} - 1 \right].
\]

Over time, fiscal shocks \((\nu_t) \) could move the system away from its initial passive adjustment path, labelled AP, possibly to an adjustment path like HP. Along HP, the debt and the surplus are expected to overshoot their long-run equilibrium values. However, in the absence of upper bounds, the government’s intertemporal budget constraint is satisfied along any adjustment path. Since the monetary authority’s choice of price affects the initial position and any initial position is consistent with equilibrium, global stability allows the monetary authority to adhere to its fixed price level target, setting \(\gamma_t = E_{t-1}\gamma_t = 0 \).

3.2 Upper Bounds

Consider the implications of an upper bound for the viability of passive fiscal policy, using Figure 1. Assume that the initial adjustment path is AP. A fiscal shock moves the system in either a northwest or southeast direction from the initial path. Consider a sequence of shocks which eventually moves the system above the adjustment path AP, to point H. In the absence of an upper bound, the adjustment path HP is an equilibrium path. However, when debt has an upper bound given by equation (5), adjustment along the HP path requires values for debt greater than its upper bound. This path violates the government’s intertemporal budget constraint because it requires that debt be expected to pass through a point where it exceeds the maximum present value of future surpluses.
Since the fiscal authority could never service or repay such a large debt, agents could not expect to receive the market rate of return on debt along the path HP, implying that HP cannot be an equilibrium path.

As a country nears a crisis, which could require $\gamma_t > 0$, agents begin to anticipate the capital loss. The expectation affects the evolution of debt and surpluses. Once shocks together with expectations send the system onto a path like HP, agents refuse to lend. This sudden stop of capital flows requires a fiscal response since the government cannot continue its policy of smoothing fiscal shocks using government debt. The timing of the sudden stop itself and the actual dynamics depend on how the fiscal authority is expected to react to the crisis. We consider two possible policy responses to the crisis, default to reduce the magnitude of the debt, and policy reform with fiscal policy switching to active and monetary policy switching to passive.\footnote{Cooper, Kempf, and Peled (2008) show how alternative policy responses can represent multiple equilibria based on agents’ beliefs about the policy response.}

4 Fiscal Financial Crises

Consider the equilibrium dynamics leading to a fiscal financial crisis under alternative assumptions about the government’s response to the financial crisis. We assume that agents know the fiscal response to the crisis. Crises are most likely to occur in the region in which the surplus is rising. Below, we restrict attention to this region. Equilibrium in the presence of upper bounds is defined below.

\textbf{Definition 2} Given constant values for the world interest rate and world price level, a monetary price-level target, a surplus rule (equation 7) and an upper bound on debt (equation 5) for each of the j countries, and a policy-response in the event of a fiscal crisis, an equilibrium is a set of time series processes for each country’s primary surplus, debt, and capital loss on debt, \(\{b_t, s_t, \gamma_t\}_{t=0}^{\infty}\), such that each government’s flow and intertemporal
budget constraints (equations 8 and 4) hold, expectations are rational, the debt for each country does not exceed its upper bound, and world agents expect to receive the return on assets determined by interest rate parity (equation 1).

4.1 Default

Consider the case in which the country responds to a sudden stop of capital by reducing the magnitude of debt through default. With this crisis response, the fiscal authority remains committed to the strongly passive fiscal policy rule, given by equation (12). When the monetary union is willing to allow a member country to default, the possibility of a fiscal financial crisis poses no threat to the monetary authority’s ability to control the price level. As agents anticipate default in country h, $E_t \delta_{ht+1} < 1$, and the monetary authority upholds its price level target by keeping $i_{jt} = i$ for all $j \neq h$, allowing i_{ht} to rise to satisfy equation (1) for the crisis country. Although a default policy response poses no threat to price stability, its economic consequences could be judged so detrimental that the union could choose to rule out default. Therefore, crisis analysis with a policy response of default should be viewed as a positive analysis of the characteristics of such a crisis.

Assume that, when faced with a crisis in which it cannot borrow the desired amount, the government reduces the magnitude of debt through a default to assure that debt is not expected to travel above $\frac{\hat{z}}{r} \leq \frac{\hat{z}}{r}$. Note that we are allowing the government to choose a default magnitude larger than necessary to restore solvency, but we are assuming that agents know this choice. This requires that the government reduce the magnitude of current debt to the value of debt along the path that is expected to reach a maximum at $\frac{\hat{z}}{r}$, denoted by b_t. Therefore, if unable to borrow, the government
is expected to use default to set the distance between \hat{b}_t and b_t equal to zero. This assures that debt is not expected to travel above the government’s desired maximum value given by $\frac{\hat{s}}{r}$.

To determine the probability of a crisis next period and expectations of one-period-ahead capital loss on government debt, it is useful to compare the current value of debt, whose evolution is given by equation (8), with the value of debt along the adjustment path to $\frac{\hat{s}}{r}$, denoted by \hat{b}_t. We cannot obtain a closed-form expression for \hat{b}_t as a function of s_t. However, we can take a piecewise linear approximation of this path about s_t and \hat{b}_t, using equation (14) to yield

$$\hat{b}_t = \hat{b}_{t-1} + (\beta_{t-1} - 1) (s_t - s_{t-1}),$$

(15)

where

$$\beta_{t-1} = \frac{r\hat{b}_{t-1} - s_{t-1}}{\alpha \left(\lambda r \hat{b}_{t-1} - s_{t-1} + (1 - \lambda) \varphi \right)},$$

(16)

and $s_t - s_{t-1}$ is given by equation (12). Equations (8), (12), (15), and (16) can be used to show that the distance between \hat{b}_t and b_t is given by

$$\Omega_t = \hat{b}_t - b_t = x_t = \mu_{t-1} x_{t-1} + \beta_{t-1} \nu_t + \gamma_t - E_{t-1} \gamma_t,$$

(17)

where

$$\mu_{t-1} = 1 + \frac{\alpha r (1 - \lambda) (\varphi - s_{t-1})}{\alpha \left(\lambda r \hat{b}_{t-1} - s_{t-1} + (1 - \lambda) \varphi \right)},$$

and x_{t-1} is the state variable determining Ω_t and is given by

$$x_{t-1} = \hat{b}_{t-1} - b_{t-1}.$$

Note that in the default case, the state variable determining the current distance is equal to the lagged distance.\(^{13}\)
Definition 3 Conditional on the expectation that a lending crisis will be resolved with default to keep expected values for future debt from rising above \(\frac{\hat{\varphi}}{r} \leq \frac{\hat{\varphi}}{r} \), a boundary locus for debt service \((rb)\) is defined as the piecewise continuous path, given by the expected path for debt service passing through the maximum value for \(rb \), given by \(\hat{\varphi} \) for \(s \leq s^* \), and by \(rb = \hat{\varphi} \) for \(s \geq s^* \), where \(s^* = \frac{\hat{\varphi}(1-\alpha\lambda)-\alpha(1-\lambda)\varphi}{1-\alpha} \) is the value of \(s \) along the expected adjustment path at the point with \(rb = \hat{\varphi} \).

Figure 1 shows the boundary locus for debt as BLM. Note that the boundary locus is defined with respect to the government’s desired maximum value of debt, not by its upper bound. Equation (17) shows that for \(\nu_t = \gamma_t = E_{t-1}\gamma_t = 0 \), a positive value for \(x_{t-1} \) implies that \(b_t \) is below the boundary locus. However, fiscal shocks \((\nu_t)\), expectations of default \((E_{t-1}\gamma_t)\), and default \((\gamma_t)\) can all affect the position of \(b_t \) relative to the boundary locus.

We define a shadow value of default, analogous to the shadow value of the exchange rate in generation one currency crisis models (Flood and Garber 1984). Conditional on a crisis in which agents refuse to lend, the shadow value of default represents the reduction in the value of debt needed for the economy to reach the boundary locus. The shadow value can be positive or negative.

Definition 4 The shadow value of capital loss on debt due to default at time \(t \), \(\tilde{\gamma}_t \), is defined as the value of \(\gamma_t \) for which \(\Omega_t = 0 \).

Setting \(\Omega_t \) to zero in equation (17) implies

\[
\tilde{\gamma}_t = E_{t-1}\gamma_t - \mu_{t-1}x_{t-1} - \beta_{t-1}\nu_t.
\]

Equations (17) and (18) imply that the distance between \(\hat{b}_t \) and \(b_t \) can also be expressed as

\[
\Omega_t = \gamma_t - \tilde{\gamma}_t.
\]

The state variable will differ from the lagged difference in the switching case, providing the need for the extra notation.
Assume that agents believe that the fiscal borrowing constraint will bind, creating default, iff $\gamma_t > 0$. We prove that this assumption is consistent with a rational expectations equilibrium below in Proposition 2. Under this assumption, the actual value of the capital loss due to default is given by

$$
\gamma_t = \max \{ \gamma_t, 0 \}. \tag{20}
$$

To determine the probability of a crisis and expectations of default, define ν^*_t as a critical value for ν_t such that $\gamma_t > 0$ for $\nu_t < \nu^*_t$, and $\gamma_t = 0$ for $\nu_t \geq \nu^*_t$. Letting $f(\nu_t)$ be a bounded, symmetric, mean-zero distribution for ν_t, with bounds given by $\pm \nu$, the expectation for γ_t can be expressed as

$$
E_{t-1}\gamma_t = \int_{-\nu}^{\nu^*_t} \gamma_t f(\nu_t) d\nu_t = \int_{-\nu}^{\nu^*_t} \left[E_{t-1}\gamma_t - \mu_{t-1}x_{t-1} - \beta_{t-1}\nu_t \right] f(\nu_t) d\nu_t.
$$

Defining $F(\nu^*_t)$ as the cumulative at ν^*_t and collecting terms on the expectation yields

$$
[1 - F(\nu^*_t)] E_{t-1}\gamma_t = -\mu_{t-1}x_{t-1}F(\nu^*_t) - \beta_{t-1} \int_{-\nu}^{\nu^*_t} \nu_t f(\nu_t) d\nu_t. \tag{21}
$$

Substituting into equation (20) yields an implicit expression for γ_t as

$$
[1 - F(\nu^*_t)] \gamma_t = \max \left\{ 0, -\left[\mu_{t-1}x_{t-1} + \beta_{t-1} \int_{-\nu}^{\nu^*_t} \nu_t f(\nu_t) d\nu_t + \beta_{t-1} [1 - F(\nu^*_t)] \nu_t \right] \right\}, \tag{22}
$$

where $F(\nu^*_t)$ has the interpretation as the probability of default. Define $\chi_t = \int_{-\nu}^{\nu^*_t} \nu_t f(\nu_t) d\nu_t + [1 - F(\nu^*_t)] \nu^*_t$. A solution for ν^*_t exists iff there exists a value for ν^*_t, satisfying $-\nu \leq \nu^*_t \leq \nu$, which sets $\mu_{t-1}x_{t-1} + \beta_{t-1}\chi_t = 0$ such that $\gamma_t = 0$ in equation (22).

Lemma 1 There is no equilibrium solution for ν^*_t when $x_{t-1} < 0$, that is, when debt is above the boundary locus at time $t - 1$.

21
Proof. Given that $\beta_{t-1} > 0$ and $\mu_{t-1} > 0$, the proof must show that $\chi_t \leq 0$. To prove that $\chi_t \leq 0$, let ν_t^* take on its smallest possible value of $-\bar{\nu}$. Then $\chi_t = -\bar{\nu} < 0$. The derivative of χ_t with respect to ν_t^* is given by $1 - F(\nu_t^*)$. For $\nu_t^* < \bar{\nu}$, the derivative is positive. Therefore, as ν_t^* rises, χ_t rises monotonically. Once ν_t^* takes on its largest possible value, given by $\bar{\nu}$, $1 - F(\bar{\nu}) = 0$, and χ_t takes on its maximum value of zero. Therefore, $\chi_t \leq 0$ for all feasible values of ν_t^*. This implies that when $x_{t-1} < 0$, there is no feasible value for ν_t^* which sets $\mu_{t-1} x_{t-1} + \beta_{t-1} \chi_t = 0$ such that $\gamma_t = 0$ in equation (22). ■

Lemma 2 When $x_{t-1} > 0$, the probability of a crisis in period t is less than one, and when $x_{t-1} = 0$, the probability of a crisis in period t is one.

Proof. When $x_{t-1} > 0$, Lemma 1 implies that $\chi_t < 0$, requiring $\nu_t^* < \bar{\nu}$. Therefore, the probability of a crisis, given by $F(\nu_t^*)$, is less than one. When $x_{t-1} = 0$, ν_t^* must set $\chi_t = 0$, implying that $\nu_t^* = \bar{\nu}$. Therefore, the probability of a crisis, given by $F(\bar{\nu})$, is one. ■

Intuitively, when debt is below the boundary locus at time $t - 1$, the probability that a monetary union country following a strongly passive fiscal policy will encounter a fiscal crisis in the next period is less than one. Even though expectations of default raise the interest rate and raise debt, sending it toward the boundary locus, it is possible to receive a large positive fiscal shock and still be safe. However, once the debt reaches the boundary locus, a fiscal crisis and default occur almost surely with any fiscal shock. The only time that default does not occur is when the government receives the largest positive fiscal shock, and the probability of receiving the largest positive shock is zero.

Lemma 3 A solution for $E_{t-1} \gamma_t$ exists if and only if $x_{t-1} \geq 0$.

22
Proof. When \(x_{t-1} > 0 \), Lemma 2 implies that the probability for default is positive. Expectations of default are given by the solution to equation (21).

When \(x_{t-1} = 0 \), Lemma 2 implies \(\nu_t^* = \bar{\nu} \). With the critical value equal to its upper bound, any value of the fiscal shock \(\nu_t \) requires \(\gamma_t \geq 0 \). Together \(x_{t-1} = 0 \) and equation (18) imply that \(\gamma_t = \tilde{\gamma}_t = E_{t-1} \gamma_t - \beta_{t-1} \nu_t \geq 0 \) for any realization of \(\nu_t \), including its upper bound, \(\bar{\nu} \). Therefore, expectations of capital loss on debt due to default must satisfy

\[
E_{t-1} \gamma_t \geq \beta_{t-1} \bar{\nu}.
\]

When \(b_{t-1} \) is along the boundary locus, expectations of default are subject to a lower bound and can be arbitrarily large.

When \(x_{t-1} < 0 \), the shadow value of default is positive for any value for \(\nu_t \), implying an unitary probability of default. Taking expectations of equation (20), using equation (18) when the probability of default is unity yields

\[
E_{t-1} \gamma_t = E_{t-1} \gamma_t - \mu_{t-1} x_{t-1}.
\]

This equation has a solution for the expectation only if \(x_{t-1} = 0 \). When \(x_{t-1} < 0 \), there can be no value for default such that it equals its expectation minus a negative gap.

Intuitively, if the debt will be above its boundary locus at time \(t \) with probability one, then there will be a crisis at time \(t - 1 \). Creditors stop lending at time \(t - 1 \) because there is no interest rate which can compensate them for expectations of default at time \(t \). Only when \(x_{t-1} \geq 0 \), can creditors be compensated for expectations of default, keeping borrowing constraints from binding.

Proposition 1 For positions of \(b_{t-1} \) on or below the boundary locus \((x_{t-1} \geq 0)\), the equilibrium interest rate in period \(t - 1 \) increases to adjust for rational expectations of default.
(\(E_{t-1}\gamma_t > 0\)), allowing the government to borrow at its desired level in period \(t - 1\). However, for positions of \(b_{t-1}\) above the boundary locus \((x_{t-1} < 0)\), there is no interest rate which can compensate agents for expectations of default, implying that such positions cannot represent an equilibrium.

Proof. For positions for debt on or below the boundary locus, Lemma 2 shows that the probability of a crisis is one or less than one, respectively. Equations (21) and (1) can be used to solve for the values of expected default and the interest rate. Lemma (3) shows that for positions above the boundary locus, there is no solution for the expected value of default. Therefore, there is no value of the interest rate which can compensate agents for lending, implying that these positions cannot satisfy the definition of equilibrium.

It is now necessary to prove that whenever \(\tilde{\gamma}_t > 0\), agents refuse to lend, thereby eliciting a financial crisis with \(\gamma_t = \tilde{\gamma}_t > 0\). Assume that \(b_{t-1}\) is in a position below the boundary locus BLM, such that \(x_{t-1} > 0\). Additionally, assume that the position is near enough to the boundary locus that \(E_{t-1}\gamma_t > 0\). From this initial position, the economy receives a fiscal shock, given by \(\nu_t\).

Proposition 2 There is no equilibrium without default in period \(t\) if \(\tilde{\gamma}_t > 0\). Default, given by \(\gamma_t = \tilde{\gamma}_t\) restores equilibrium.

Proof. Equilibrium in period \(t\) requires \(x_t \geq 0\). This is because Lemma 3 shows that there can be no equilibrium rational expectations value for \(E_t\gamma_{t+1}\) when \(x_t < 0\). Therefore, if \(x_t < 0\), then there is no equilibrium unless the country defaults. Using equation (17) and (19), yields

\[
x_t = \mu_{t-1}x_{t-1} + \beta_{t-1}\nu_t - E_{t-1}\gamma_t + \gamma_t = \gamma_t - \tilde{\gamma}_t.
\]

Therefore, when \(x_t < 0\), \(\tilde{\gamma}_t > 0\). A positive shadow rate triggers default. Default, with \(\gamma_t = \tilde{\gamma}_t\), sets \(x_t = 0\), restoring equilibrium by Lemma 1.
Therefore, Proposition 2 validates agents’ assumption that the government will default whenever $\gamma_t > 0$. Intuitively, in the event of a sudden stop, the country promises default in magnitude sufficient to restore fiscal solvency. The sudden stop occurs when $\gamma_t > 0$, and the government responds as promised.

Corollary 1 A government which wants to sustain current fiscal policy as long as possible chooses $\varphi = \bar{\varphi}$.

Proof. The position of the boundary locus is determined by φ, and the boundary locus is higher the larger is φ. This is because, by Propositions 1 and 2, the state variable determining a crisis $(\hat{b}_{t-1} - b_{t-1})$ is independent of the upper bound. \[\blacklozenge\]

We can use the phase diagram in Figure 1 to illustrate crisis dynamics. When the system is far from its boundary locus BLM, such that no fiscal shock could send it over, expectations of default are zero, and the system is governed by the arrows of motion sending it to its long-run equilibrium target values. Once the system reaches the neighborhood of the boundary locus, agents begin to expect default, and the associated default-risk premium on debt causes debt to increase more quickly than shown along illustrated adjustment paths. Once a shock, combined with equilibrium expectations of default, sends the system above the boundary locus, default is necessary to bring the system back to the boundary locus.

Proposition 3 In the absence of fiscal reform, equilibrium after default requires additional default each period until debt falls below the boundary locus on its approach to the long-run equilibrium value.

Proof. A default in period t, which brings the system to the boundary locus, implies that $x_t = 0$. By Lemma 2, the probability of a crisis in period $t + 1$ is unity and by Lemma 3, $E_t \gamma_{t+1} \geq \beta_t \bar{\varphi}$. Given a realization for ν_{t+1}, default occurs in the magnitude to set
$x_{t+1} = 0$. The pattern persists until the dynamics imply that debt travels along a path like the solid path LP, which is below the boundary locus BLM.

Post-crisis equilibrium is characterized by repeated default which can be arbitrarily large in magnitude. Expectations of default must be large enough that default occurs for any fiscal shock. This is because of the one-sided nature of default, whereby default always reduces the value of debt. Expectations of default must be correct on average, implying that expectations of default must be the average value of default. Therefore, following the crisis, markets remain turbulent for some time. Agents expect additional default, interest rates are high, and additional default is necessary. This pattern does eventually end once the dynamics move the economy toward the long-run equilibrium below the boundary locus.

To summarize, a crisis country can reduce the magnitude of debt through default to restore fiscal solvency and continue a strongly passive fiscal policy. This has the benefit of not threatening the monetary authority’s ability to control the price level. But it has the cost of implying a sequence of future defaults before the country reaches its long run equilibrium.

4.2 Monetary and Fiscal Policy Switching

The second possibility we consider is that a government facing a sudden stop reneges on its commitment to strongly passive fiscal policy. With this fiscal response, existence of an equilibrium requires the cooperation of the monetary authority. The monetary authority could prefer to cooperate over allowing default with its post-crisis turbulence. Under policy switching, expectations of post-crisis capital loss on debt are zero, in contrast to
high expectations of additional capital loss after default. We consider a switch in fiscal policy from strongly passive to active, accompanied by a monetary policy switch from active to passive. With this response, the monetary authority looses control of the price level, reflecting concern by the EMU founders regarding fiscal restraint.

When a crisis is anticipated, the monetary authority increases the interest rate, to accommodate $E_t \frac{P_t}{P_{t+1}} < 1$, while keeping the current price level fixed. After the switch to passive monetary policy, the monetary authority replaces its price level target with an inflation target with $E_t \frac{P_t}{P_{t+1}} = 1$. Therefore, after the switch, the monetary authority retains control of expected inflation, but not of actual inflation.

Before analyzing the switching model, it is useful to understand equilibrium in a monetary union with one active fiscal policy country, $N-1$ strongly passive fiscal policy countries, and a passive monetary authority.

4.2.1 Active Fiscal Policy in the N’th Country and Strongly Passive in the Others

Consider a monetary union in which fiscal policy is active in the Nth country and strongly passive in all others. Active fiscal policy is modeled as $\lambda = 0$. The active-fiscal-policy system we solve analytically is comprised of equations (7) and (8) with $\lambda = 0$, in which the eigenvalues of the characteristic equation (9) are $1+r$ and $1-\alpha$. We assume that with fiscal reform, the government can choose a different value for φ, given by $\hat{\varphi}$ and subject to $\hat{\varphi} \leq \bar{\varphi}$, assuring that debt is not expected to travel above $\hat{\varphi} \leq \bar{\varphi}$, as in the default case. Under active fiscal policy, the intertemporal budget constraint holds only for a unique initial real value of debt and hence for a unique initial price level. With default ruled out, monetary policy must be passive allowing the value for γ_t to set the coefficient on the
explosive root to zero. This is the policy combination analyzed in the FTPL.

The time paths for the surplus and debt in the active-fiscal-policy country with \(\phi = \hat{\phi} \) are given by\(^{14}\)

\[
\begin{align*}
 s_t &= \hat{\phi} + (1 - \alpha)^t \left[s_0 - \hat{\phi} + \sum_{k=1}^{t} (1 - \alpha)^{-k} v_k \right], \\
 b_t &= \frac{\hat{\phi}}{r} + (1 - \alpha)^t \left(\frac{1 - \alpha}{r + \alpha} \right) \left[s_0 - \hat{\phi} + \sum_{k=1}^{t} (1 - \alpha)^{-k} v_k \right].
\end{align*}
\]

These equations can be used to express the saddlepath relationship between debt and the surplus as

\[
b_{t}^{sp} = \left(\frac{1 - \alpha}{\alpha + r} \right) s_t + \frac{\hat{\phi} \alpha (1 + r)}{r (\alpha + r)}. \tag{25}
\]

When there are stochastic shocks to the surplus, the real value of debt must jump to keep the system on the saddlepath, as in the FTPL. Since all other fiscal policies are strongly passive, there is only one unstable root in the system of \(N \) countries.

We construct the phase diagram for an active-fiscal-policy country with \(\lambda = 0 \) and \(\phi = \hat{\phi} \), by subtracting lagged values of surplus from equation (7) and lagged values of debt from equation (8) to yield:

\[
\begin{align*}
 \Delta s_t &= s_t - s_{t-1} = -\alpha s_{t-1} + \alpha \hat{\phi} + \nu_t, \\
 \Delta b_t &= b_t - b_{t-1} = rb_{t-1} - (1 - \alpha) s_{t-1} - \alpha \hat{\phi} - \gamma_t + E_{t-1} \gamma_t - \nu_t.
\end{align*}
\]

The phase diagram under active fiscal policy and with \(\nu_t = \gamma_t - E_{t-1} \gamma_t = 0 \) is given in Figure 2. The saddlepath has a slight positive slope and is labeled SP. The upper bound poses no constraints other than the fact that it sets an upper bound on the value for the \(\hat{\phi} \).\(^{15}\) The larger the value for \(\hat{\phi} \), the higher the saddlepath.

\(^{14}\)The requirement that the coefficient on the explosive root be zero implies: \(b_0 - \left(\frac{1 - \alpha}{\alpha + r} \right) s_0 + \sum_{k=1}^{t} (1 + r)^{-k} \left[E_{k-1} \gamma_k - \gamma_k - \frac{1 + r}{\alpha + r} v_k \right] = 0. \)

\(^{15}\)
Since the system does not reach an equilibrium for arbitrary starting values, this is an active fiscal rule. Fiscal shocks, ν_t, move the system away from the saddlepath. To assure that debt does not violate its upper bound, there must be one jumping variable to assure that the system is on the saddlepath. Price level jumps create jumps in γ_t. From equation (8), b_t jumps with each jump in γ_t, allowing the system to remain on the saddlepath. For an equilibrium to exist, monetary policy must be passive, as assumed, allowing γ_t to jump. Capital gains and losses on government debt are symmetric, implying that expectations of gains and losses are zero in the active-fiscal-policy, passive-monetary-policy regime.

4.2.2 Active Fiscal Policy in Two Countries

Consider a monetary union with active fiscal policy in 2 countries and strongly passive fiscal policy in $N - 2$. Although there are N values for γ_t, there is only a single independent one. The value for γ_t is determined such that the present-value of total monetary union debt equals the present-value of total monetary union surpluses. Debt in each strongly-passive-fiscal-policy country must equal the expected present-value of surpluses. Therefore, the value for γ_t must equate the sum of the expected present-value of surpluses for the two active-fiscal-policy countries with the sum of their initial debt.

When there are two countries with active fiscal policy, the equilibrium jump in γ_t, which places the sum of the two countries’ debt on a saddlepath, would land one country’s debt above its saddlepath and the other country’s debt below its saddlepath. Therefore, one country would expect rising debt and the other falling debt. The country with falling debt would be transferring resources to the other over time. This suggests that an equi-

There are no constraints in the region in which debt and the surplus are both rising. The upper bound on debt does imply that positions on the saddlepath beyond $b_t = \frac{2}{r}$ are not feasible.
librium in which two fiscal policies are active is unlikely to persist. The country with falling debt would optimally choose to switch back to strongly passive fiscal policy and reduce its taxes in accordance with its lower debt to avoid a resource transfer away from its citizens, leaving a single country with active fiscal policy.

4.2.3 Fiscal Crisis Resolved with Fiscal Policy Switching

Consider crisis dynamics under the assumption that the monetary union has agreed to respond to a fiscal financial crisis in one country by allowing the crisis country to switch to active fiscal policy with accommodation by the monetary authority. We assume that all countries initially follow a strongly passive fiscal rule and maintain this policy for as long as possible. Figure 3 superimposes the saddlepath for an active policy system on the passive policy system for a particular country.

Assume that, when faced with a crisis in which it cannot borrow the desired amount, the fiscal authority institutes fiscal reform. It switches to an active fiscal policy with \(\lambda = 0 \), and raises the target surplus from \(\varphi \) to \(\hat{\varphi} \leq \varphi \). Under policy-switching, the system must begin on SP, implying that the distance between the saddlepath value of debt and the current value of debt must be zero. Using equations (7), (8) and (25), the distance between \(b_t^{sp} \) and \(b_t \) can be expressed as

\[
\Omega_t = b_t^{sp} - b_t = \frac{\alpha (1 + r)}{\alpha + r} \left(x_{t-1} + \frac{\nu_t}{\alpha} \right) + \gamma_t - E_{t-1} \gamma_t. \tag{28}
\]

where \(x_{t-1} \) is the state variable determining the distance and is given by

\[
x_{t-1} = \frac{(1 - \alpha)}{\alpha} s_{t-1} - \frac{(r + \alpha - \alpha \lambda r)}{\alpha} b_{t-1} + \frac{\hat{\varphi}}{r} + (1 - \lambda) \varphi. \tag{29}
\]

Note that, as in the default case, the state variable determining the time \(t \) distance receives a \(t - 1 \) subscript since its value is known at time \(t - 1 \). Using equations (7) and (8), the
state variable evolves as

\[x_t = \frac{(r + \alpha)}{\alpha} (\gamma_t - E_{t-1}\gamma_t) + (1 + r) \left(x_{t-1} + \frac{\nu_t}{\alpha} \right) - (\hat{\varphi} - \varphi) - \lambda (\varphi - rb_t). \quad (30) \]

Definition 5 Conditional on the expectation that a lending crisis will be resolved with policy switching, accompanied by a new target surplus of \(\hat{\varphi} \leq \varphi \), a boundary locus for debt service \((rb)\) is defined as the piecewise continuous path, given by the saddlepath leading to \(\hat{\varphi} \) for \(s \leq \hat{\varphi} \) and by \(rb = \varphi \) for \(s \geq \hat{\varphi} \).

Figure 3 shows the boundary locus for debt as CKM. Note that the boundary locus is defined with respect to the government’s desired maximum debt, not by its upper bound. Equation (28) shows that for \(\nu_t = \gamma_t = E_{t-1}\gamma_t = 0 \), a positive value for \(x_{t-1} \) implies that \(b_t \) is below the boundary locus. However, fiscal shocks \((\nu_t)\), expectations of inflation \((E_{t-1}\gamma_t)\), and inflation \((\gamma_t)\) can all affect the position of \(b_t \) relative to the boundary locus.

We define a shadow value of capital loss on government debt due to inflation. The shadow value of capital loss represents the reduction in the value of debt needed for the economy to reach the boundary locus. The shadow value can be positive or negative.

Definition 6 The shadow value of capital loss on debt due to inflation at time \(t \), \(\tilde{\gamma}_t \), is defined as the value of \(\gamma_t \) which sets \(\Omega_t = 0 \).

Setting \(\Omega_t = 0 \) and solving yields

\[\tilde{\gamma}_t = E_{t-1}\gamma_t - \frac{\alpha (1 + r)}{\alpha + r} \left(x_{t-1} + \frac{\nu_t}{\alpha} \right). \quad (31) \]

We assume that in the event of a crisis the fiscal authority never raises the value of debt to reach the saddlepath. In the event of a lending crisis with debt below the boundary locus, the fiscal authority reduces the long-run target value of the surplus such that the current value of debt without inflation is on the saddlepath to lower long-run values for the surplus and debt. However, if a fiscal shock sends the system above the boundary
locus, then inflation is necessary because post-reform equilibrium requires $\Omega_t = 0$. Using equations (28) and (31), the distance between the saddlepath value of debt and the current value of debt can be expressed as $\Omega_t = \gamma_t - \tilde{\gamma}_t$.

Assume that agents believe that the fiscal borrowing constraint will bind, creating policy switching with $\gamma_t = \tilde{\gamma}_t$ if $\tilde{\gamma}_t > 0$. We prove that this assumption is consistent with a rational expectations equilibrium below.\(^\dagger\) This implies that the value for inflation in the crisis period is given by equation (20), where we redefine $\tilde{\gamma}_t$ using equation (31). If we redefine $\mu_{t-1} = \mu = \frac{\alpha(1+r)}{\alpha+r}$ and $\beta_{t-1} = \beta = \frac{(1+r)}{\alpha+r}$, then Lemmas 1, 2, and 3, and Proposition 1 apply directly to the switching case.

Consider how a crisis arises, when it will be resolved with policy-switching. Assume that b_{t-1} is in a position below the boundary locus SP, such that $x_{t-1} > 0$. Additionally, assume that the position is near enough to the boundary locus that $E_t x_{t+1} > 0$.

From this initial position, the economy receives a fiscal shock, given by ν_t.

Proposition 4 Given initial policy and expectations about policy-switching, a crisis occurs in period t if $x_t < 0$. Policy switching restores equilibrium.

Proof. Lemma 3 shows that there is no equilibrium rational expectations value for $E_t \gamma_{t+1}$ when $x_t < 0$. There is no interest rate at which agents would lend under the original strongly passive fiscal policy, triggering a crisis and policy switching. Therefore, if $x_t < 0$ with $\gamma_t = 0$, then there is no equilibrium in the absence of policy switching.

Policy switching restores equilibrium by setting $\Omega_t = 0$. There are two ways in which this can happen, depending on the value for $\tilde{\gamma}_t$. When $\tilde{\gamma}_t > 0$ and $\Omega_t < 0$, a price level jump setting $\gamma_t = \tilde{\gamma}_t$, assures $\Omega_t = 0$, placing the system on the saddlepath.

\(^\dagger\) In contrast to the default case, under switching, a crisis could occur with $\tilde{\gamma}_t < 0$, as we show below. Therefore, the statement is expressed as an if statement, not as an iff statement.
However, it is possible for $x_t < 0$, when $\dot{\gamma} \leq 0$ and $\Omega_t \geq 0$ This is because equations (30) and (31) can be used to show that the state variable evolves as

$$x_t = \frac{r + \alpha}{\alpha} (\gamma_t - \dot{\gamma}_t) - (\dot{\varphi} - \varphi) - \lambda (\varphi - rb_t).$$

In this event, we assume that there is no deflation. Instead, policy switching entails choosing a target surplus lower than $\hat{\varphi}$, in order to place the system on a lower saddlepath without a price level change. The lower target surplus reduces the distance between debt along the new lower saddlepath and its current value to zero, reducing Ω_t to 0.

Consider the intuition behind this proposition. A crisis occurs when the government can no longer borrow to continue with the strongly passive fiscal rule. Assume that debt at time $t - 1$, is at point H along path HP in Figure 3. Along the path HP, the distance between the debt along the boundary locus CKM and the current value of debt becomes negative. Since this is inconsistent with equilibrium, HP cannot be an equilibrium path. However, the expectation of a regime switch in the future makes point H feasible because the expectation raises the expected present-value surplus to equal the value of outstanding debt.

In the neighborhood of the boundary locus CKM, the market begins to anticipate inflation. This anticipation forces the interest rate to increase to incorporate the increase in expected inflation. The monetary authority accommodates to allow an equilibrium with regime switching. Once agents anticipate inflation, the system approaches the boundary locus SP at a faster rate than implied by the adjustment path HP, as shown in Figure 3 by the arrow from point H.

A crisis occurs when agents refuse to lend, and there are two ways in which this can
happen. As the passive-fiscal system approaches the saddlepath, a negative fiscal shock could send it over such that \(x_t < 0 \) and \(\tilde{\gamma}_t > 0 \). The government’s response is to promise fiscal reform. This implies a regime switch with a price level jump to bring the system to the saddlepath. After the policy switch, the system travels along the saddlepath \(\text{SP} \).

Alternatively, the dynamics of the surplus and debt under passive policy could imply that debt next period, in the absence of regime switch, would travel above the saddlepath such that \(x_t < 0 \), but \(\tilde{\gamma}_t < 0 \).\(^{18}\) Agents would not lend into this position since no rationally-expected value for future inflation could place the system on the saddlepath. Regime-switch with no change in the price level allows debt and the surplus to move along a saddlepath below \(\text{SP} \), implying a long-run surplus below \(\hat{\varphi} \).

Proposition 5 Equilibrium after policy switching is characterized by the FTPL. The price level jumps following fiscal shocks to keep the system on the saddlepath. On average the jumps are zero, implying that expected inflation and \(E_{t-1}\tilde{\gamma}_t \) are both zero.

Proof. Expected inflation is determined by the monetary authority’s price level target, implying an inflation target of zero. Since the mean of fiscal shocks is zero, the mean of price level shocks is zero. ■

Equilibrium after policy switching entails both positive and negative shocks to the price level, offsetting fiscal shocks, but expected inflation remains at the monetary authority’s target of zero.

4.3 Summary of Crisis Characteristics

It is useful to summarize the characteristics of a fiscal financial crisis. First, a crisis generally occurs when debt is below its upper bound. There are two reasons for this.

\(^{17}\)Since the probability of devaluation is less than one, when a shock occurs requiring devaluation, its magnitude is greater than expected allowing \(b \) to jump downwards.

\(^{18}\)This could occur since the passive fiscal policy adjustment path can be steeper than the saddlepath \(\text{SP} \).
One is the upward sloping boundary locus, which implies that the upper bound on debt is lower for values of the surplus below the long-run equilibrium value. Second, a government might not be willing to let debt travel as high as its absolute maximum, effectively lowering the boundary locus and the value of debt which elicits a crisis.

A crisis is defined by a sudden stop of capital flows in which international creditors refuse to lend to the government. A government cannot borrow again until it has responded to the crisis in a way to entice creditors back into the market. Therefore, the government cannot postpone its response and continue its current fiscal policy which requires more borrowing. This implies that lending is not restored until the crisis-resolving policy of default or policy-switching, perhaps with devaluation, occurs.\(^{19}\)

Crises are imperfectly predictable. Once a crisis becomes possible, the interest rate rises, reflecting the expected capital loss on debt. The increase in the interest rate causes debt to accumulate more quickly, increasing the probability of a crisis. The more rapid growth in debt, due to the higher interest rate, implies that a crisis can occur even when the economy receives a favorable shock. This is possible when the favorable shock is small relative to the expected capital loss. However, if a country receives large enough favorable shocks, then it can escape the crisis.

Crises develop suddenly. For a country whose debt is substantially below the boundary locus, the probability of ever having a crisis is very low. However, once its debt is close enough to the boundary locus to elicit expectations of one-period-ahead capital loss, then rising interest rates increase the rate of growth of debt. This implies that to avoid a

\(^{19}\)This is in contrast to Uribe (2006), in which a government in an unstable equilibrium with hyperinflation can choose when to end the hyperinflation with a government debt devaluation. In our model, debt devaluation is the resolution of fiscal insolvency, not of hyperinflation.
crisis, the country must on average receive favorable fiscal shocks. Therefore, as soon as interest rates begin to rise, the probability of a crisis sometime in the future jumps from something very low to something greater than fifty percent.

Finally, it is also useful to compare the two policy responses to a crisis, debt reduction through default and policy switching, possibly with debt reduction through inflation. The relative probability of a crisis under alternative policy responses depends on the relative slopes of the boundary loci. We address this issue in simulations later and find that crisis probabilities are similar under the two responses. The effects of the alternative policy responses are most different in their post-crisis equilibria. Since default is one-sided, the post-crisis equilibrium after default is characterized by high expectations of additional defaults and by additional future defaults until debt has traveled along its adjustment path below the boundary locus BLM. In contrast, the post-crisis equilibrium after policy-switching is characterized by both positive and negative price level shocks, which offset fiscal shocks, but whose expected value is zero. However, with policy-switching the monetary authority looses control of the price level, whereas default has no consequences for the monetary authority’s ability to control the price level.

4.4 Other Possible Policy Responses

Reduction of the magnitude of debt through default and policy switching are not the only possible policy responses to a crisis. Other possible responses are briefly considered here, but full analysis of them is left to future research.

Once a crisis becomes anticipated with some positive probability, the government could implement fiscal reform with the objective of reducing the probability of a crisis. However,
given that the probability of a crisis becomes positive following negative fiscal shocks, the promise of larger near-term surpluses, in the presence of economic circumstances that reduce surpluses, is unlikely to be credible. And, even after fiscal reform, fiscal policy still has risk unless the government can eliminate the source of stochastic shocks.

Another possible response would be a promise of fiscal transfers from member countries to the crisis country. This was proposed in early 2009 in response to the perception of increased fiscal risk in Italy and Greece. However, such transfers would explicitly violate the EMU agreement whereby countries are not liable for debts of member countries. And accepting liability in the event of a crisis has an obvious moral hazard problem. The fact that Italian and Greek interest rates rose relative to German rates implies that market participants do not completely believe that member countries will pay the debts of others. And, even if countries do promise to use fiscal transfers, then fiscal risk applies to aggregate member debt instead of to individual country debt. Once the aggregated fiscal authority faces a crisis, there must be some alternative response since there can be no fiscal transfers in the aggregate.

Alternatively, the union’s monetary authority could resort to an increase in traditional seigniorage to provide additional revenue to the crisis country, effectively increasing the upper bound on debt. However, acceptable magnitudes are likely to be small. And implementing this policy without fiscal transfers requires increasing seigniorage for all member countries, not just for the crisis country. Additionally, the increase in seigniorage is likely to require an increase in both crisis and average post-crisis inflation, as in Sargent and Wallace (1981). This sustained increase in inflation after the crisis is likely to be more objectionable than stochastic inflation around its target, as implied by a response
of policy-switching.

Finally, a country could withdraw from the monetary union and reissue its own currency, as suggested by Sims (1999). If the country also institutes policy reform, switching fiscal policy to active and its own new monetary policy to passive, then the analysis would be much as in the switching model presented here. Alternatively, the new monetary authority could be pressured to provide additional seigniorage, as in Sargent and Wallace (1981), yielding larger seigniorage revenues and a larger value for the upper bound on debt.

Note that one policy response which does not work is to postpone debt repayments. When debt exceeds the upper bound of the present-value of expected future surpluses, the country encounters a sudden stop of capital flows in which international creditors refuse to lend to the country. The country is insolvent and promises to repay in the future, without either concessions or fiscal change, are not credible because debt exceeds the present value of future surpluses.

5 Simulations of Crisis Risk

In this section, we use simulations to consider the fiscal risk faced by different countries in a monetary union under the two possible fiscal responses to a crisis, default (D) and policy switching (SW). Given parameter values for the N fiscal rules, the distribution of ν_t, and the method of crisis resolution, the system can be solved numerically and simulated to generate the risk of one country in the N-country monetary union encountering a crisis over a given period of time.

For the simulations, we use estimates for the parameters of the fiscal rule from Daniel
and Shiamptanis (2008). This paper provides group mean estimates of parameters for the surplus rule in real terms using cointegration and error-correction models for a panel of ten EMU countries with annual data over the 1970-2006 period. The baseline parameters we use for the simulations are reported in Table 1.

Table 1: Baseline Parameters

<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>α</th>
<th>λ</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>parameters</td>
<td>0.0422</td>
<td>0.4987</td>
<td>1.3003</td>
<td>0.0262</td>
</tr>
<tr>
<td>standard errors</td>
<td>0.0061</td>
<td>0.0717</td>
<td>0.0901</td>
<td>0.0027</td>
</tr>
</tbody>
</table>

We adjust these estimates by the group mean panel estimate of the long-run value of output growth g to provide estimates for the parameters expressed as a fraction of output. These parameters imply a growth-adjusted real interest rate given by

$$r = \frac{i - g}{1 + g} = 0.0156.$$

For the target value of the long-run primary surplus, φ, we use the value of 0.93% of GDP which implies a target value for the long-run debt/GDP of 60%. Under the assumption that fiscal shocks have a normal distribution with mean zero, the panel estimate of their standard error is 1.42% of GDP. We let the upper bound on the fiscal shocks, ν, be 2.84% of GDP, which corresponds to two standard deviations. We set the desired maximum value of the surplus, $\hat{\varphi}$, at 2.2% of GDP which implies a debt/GDP ratio of 141%, larger than any of these countries has experienced within the sample.

We consider risk faced by an individual country. We use 1,000 replications of a ten-year simulation, under the two fiscal responses to a crisis, to estimate the probability

20The variables in the paper of Daniel and Shiamptanis (2008) are in levels, whereas the variables in this paper are expressed as percentages of output. This implies that the α in this paper is $\alpha = \frac{0.5118}{1 + 0.4987} = 0.4987$.

21Since the Daniel and Shiamptanis paper estimates the long-run target value for the surplus as a linear function of output, where the constant is not zero, it provides only bounds for the long-run target value of the surplus relative to output. These bounds contain the Maastricht Treaty limit.
of a fiscal crisis. In each simulation, initial values of debt/GDP, b_{t-1}, and the primary surplus/GDP, s_{t-1}, are used to set the initial value for the state variable determining the distance, x_{t-1}. For the default case, we use a numerical approximation of the boundary locus to obtain a value for \hat{b}_{t-1}. The dynamic system then receives a fiscal shock, ν_t, from the truncated normal distribution. Based on x_{t-1} and ν_t, the critical value for the shock, ν_t^*, the expectation for capital loss, $E_{t-1}\gamma_t$, and the value for capital loss, γ_t, are calculated. If $\gamma_t = 0$, then next period’s surplus and debt are updated using equations (7) and (8), which are then used to update x_t. The process is repeated for ten years. If during the ten-year simulation we have a value of $\gamma_t > 0$ or $x_t < 0$ then there is a crisis and the simulation ends. We repeat the ten-year simulation 1000 times. The probability of a crisis over ten-years is the number of crises divided by 1000, the number of replications.

To determine the safety of a country which adheres to the Maastricht rules, we simulated the model with values for initial debt and the primary surplus equal to the upper bound of the Maastricht limits. We set debt at 60% of GDP and primary surplus at -2.06% which implies an actual surplus of -3% of GDP. Under the baseline parameter values, fiscal policy is very safe with no crises over ten years in the 1,000 replications. We considered several sensitivity analysis scenarios to raise the risk. These include changing parameter values one at a time by two standard deviations in the risky direction.22 A country at the Maastricht limits is perfectly safe over the ten year horizon under all sensitivity analyses designed to increase risk except for the simulation with an increase in the real interest rate. A two-standard-deviation increase in the real interest rate, i,
to 5.44% raises the real growth-adjusted interest rate, r, to 2.75%, which in turn raises the probability of a crisis under default and switching to 0.7% and 0.8%, respectively. However, these risks are small and the actual long-run value of the real interest rate must be at least two standard deviations higher than estimated to deliver any risks. Therefore, these results suggests that countries with debt and primary surplus at the Maastricht limits are safe.

Next we consider whether countries like Belgium, France and Germany, with small deviations from the Maastricht limits, are moving into a risky region. We repeated the simulations for these countries, using their 2008 values of debt/GDP and primary surplus/GDP.23 Under the baseline parameters Belgium, France and Germany are perfectly safe over the ten-year horizon. Additionally, these countries are perfectly safe under all two-standard-deviation parameter changes except when there is an increase in the real interest rate to 5.44% or a reduction in output growth rate to 2.08%. The increase in the real interest rate raises the probability of a crisis for Belgium to 100% under both policy responses, for France to 23.7% and 30.1%, and for Germany to 0.9% and 1.7% under default and switching, respectively. A reduction in output growth raises the probability of a crisis only for Belgium to 1.5% and 2.3%, under default and switching respectively. Since the probability of a crisis rises so dramatically for Belgium with a two-standard-deviation increase in the real interest rate, we calculated how large r would have to be for Belgium to begin experiencing risk. In Figure 4, we show that for Belgium to experience positive risk, the real growth-adjusted interest rate must be at least 2.0%, 44 basis points higher.

23The 2008 values for debt/GDP and primary surplus/GDP for Belgium were 92.16% and 2.96%, for France were 72.48% and -0.36%, and for Germany were 64.83% and 1.59%. Source: OECD.
than the baseline estimate.

Next we consider whether high-debt countries like Italy and Greece, which have violated the Maastricht rules, face any risk over the next ten years. For Italy, the 2008 value of debt/GDP was 112.98%, and the primary surplus/GDP was 1.97%. For Greece, the 2008 value of debt/GDP was 100.84% and the primary surplus/GDP was 1.31%. Under the baseline parameter values both Italy and Greece are perfectly safe over the next ten years. However, very small changes in either the growth rate or the real interest rate, which have the effect of increasing the real growth-adjusted interest rate, do indicate risk for both countries. These implications for risk are consistent with recent increases in the interest rates on both Greek and Italian government bonds relative to German bonds in late 2008 and early 2009. In Figure 4, we show that if the actual real growth-adjusted interest rate is 1.67%, only 11 basis points higher than our baseline estimate, Italy has crisis risk; if the interest rate is 1.84%, 28 basis points higher than baseline, Greece has crisis risk. Since standard errors on the real interest rate are 61 basis points and on output growth rate are 27 basis points, this variation is well within a single standard error. As we increase the real growth-adjusted interest rate from the point at which risk becomes positive, possibly due to a higher real interest rate and/or a lower growth rate, crisis probability rises at an increasing rate. Since debt/GDP is higher for Italy than for Greece, the crisis probability becomes positive at a lower value for the real growth-adjusted interest rate for Italy.

We also considered how crisis probability changes as debt increases from its 2008 value with parameters set at their baseline values. Under baseline parameter values and

\footnote{Source: OECD Economic Outlook April 2009.}
a primary surplus of 0%, crisis probability becomes positive once debt exceeds 120% of GDP. The OECD forecasts Italy’s 2010 debt at 127.2%\(^{25}\), indicating that if fiscal policy takes the deterministic path the OECD expects (not the random path in our model), the risk of a fiscal crisis in Italy from 2010 to 2020 is between 3.0% and 3.9% under the baseline parameters. Additionally, once the probability becomes positive, crisis probability increases at an increasing rate in debt, as shown in Figure 5.

We next consider how the crisis probability changes as the policy parameters α and λ change by two standard deviations in the less-risky direction. When λ increases to 1.4805, which implies that primary surplus responds more strongly to debt, the risk of a fiscal crisis in Italy from 2010 to 2020 falls to between 1.1% and 2.3%. When α increases to 0.6451, which implies less persistence in the primary surplus, the risk of a fiscal crisis in Italy from 2010 to 2020 falls to between 0.2% and 0.4%. In Figure 5, we show that if $\lambda = 1.4805$, and the primary surplus is zero, the crisis probability becomes positive once debt exceeds 121% of GDP, and if $\alpha = 0.6451$, the crisis probability become positive once debt exceeds 126%. The results show fiscal risk is also sensitive to changes in α and λ. However, even if countries choose less-risky policy parameters, they cannot completely eliminate risk. The risk is due to the upper bound and the stochastic shocks to the surplus.

Crisis probability rises at an increasing rate, either as parameter values change in the risky direction or as debt increases, because expectations of debt devaluation rise as the economy approaches the boundary locus. Higher expected debt devaluation increases the interest rate and increases the rate at which debt accumulates. As a country approaches

\(^{25}\)April 2009
the boundary locus, a slight change in parameters or in debt can create a dramatic change in crisis probability. This illustrates forcefully that a country receiving favorable shocks can substantially reduce and/or eliminate the probability of crisis without fiscal reform. It also illustrates the reverse. A country can substantially increase its crisis probability with small changes in debt which push it critically toward the boundary locus.

These simulations of fiscal risk are conditional on fiscal policy following the rule estimated for the panel over the period 1970-2006. They ignore any policy differences among countries. We are also ignoring the likely correlation of fiscal shocks across countries combined with the fact that a fiscal crisis in one country can affect the interest premium in another under policy-switching. This implies that risk is actually higher, and future research is needed to address this.

6 Comparison to Other Measures of Fiscal Risk

This paper develops a theory-based measure of fiscal risk, whose implementation relies on estimates of policy parameters. Fiscal risk is defined as the probability that a country will experience a crisis, defined as a sudden stop in lending to the government. Since the sudden stop is caused by fiscal insolvency, conditional on current policy, the measure of risk is also a measure of the probability that current policy is sustainable.

Other measures of fiscal sustainability can be conveniently divided into theoretical model-based measures and VAR-based measures. The theoretical measures are based on Bohn’s (2007) work which shows that the government’s intertemporal budget constraint is satisfied as long as the primary surplus responds positively to lagged debt. Under this definition of sustainability, debt relative to GDP can rise at an increasing rate as long as
that rate is less than the growth-adjusted interest rate. Therefore, it allows unbounded debt/GDP, in contrast to our analysis. Daniel and Shiamptanis (2008) impose an upper bound on debt relative to GDP and show that the primary surplus must respond strongly enough to debt to keep debt/GDP bounded in the long-run. However, this response is sufficient to assure that debt/GDP remains bounded in the long-run, but not to assure that all paths toward the long-run are bounded. Additionally, these measures do not quantify risk; policy is either judged sustainable or not.

VAR measures of policy sustainability are predicated on an upper bound on debt, as is our measure. They involve estimates of an atheoretical equation-system containing government debt and variables important to its evolution. The estimates of coefficients and covariance matrices are used to simulate the probability that debt reaches an upper bound over a particular horizon (Garcia and Rigobon 2004) or to calculate the probability that debt/GDP rises in a given time frame (Tanner and Samake 2008). These methods quantify risk, but they are subject to well-known problems in VAR estimation of choosing which variables to include and identifying shocks. Additionally, they miss the non-linearities in a theoretical model, whereby debt and interest increase more rapidly in the neighborhood of a crisis, increasing its probability. Garcia and Rigobon (2004) require that the fixed upper bound be the boundary locus, not the upward sloping path to the value of debt which elicits a crisis. The risk of government debt relative to GDP increasing, as in Tanner and Samake (2008), is not equivalent to the probability that fiscal policy is not sustainable. Debt/GDP can rise along many sustainable fiscal paths. The VAR models do have a more complex structure for the residuals than we have in our simulations.
7 Conclusions

Countries in the EMU violated the rules set out in the SGP and Maastricht Treaty. Some economists argue that there is no need for any coordinated fiscal restraint. Yet, others are concerned that unrestrained fiscal policy could pose problems for the monetary authority’s ability to control inflation. The ECB has been particularly forceful recently in its call for the return to SGP rules following the fiscal damage created by the world-wide financial crisis.

This paper develops a model to assess the risk of a fiscal financial crisis in a monetary union. We analyze how a country following a strongly passive fiscal policy, subject to stochastic shocks and an upper bound on the present value of surpluses, could experience a fiscal financial crisis in which agents refuse to lend. When faced with a sudden stop in capital flows, such that a government is unable to continue with its desired fiscal policy, some fiscal response is needed. We consider two responses; maintenance of the strongly passive fiscal policy combined with default to reduce the magnitude of outstanding debt, and policy switching. If the monetary authority is willing to allow a member country to experience default and the associated post-crisis market turbulence, then a fiscal financial crisis in one country need not impair the monetary authority’s ability to control inflation. However, if the monetary authority prefers policy switching to allowing member default, then a fiscal financial crisis in one country can impair the monetary authority’s ability to control inflation.

The paper makes two primary contributions. The first is theoretical. We use insights from the Fiscal Theory of the Price Level to determine equilibrium conditions under which
an agent would refuse to lend to the government. This allows us to model the dynamics of a fiscal financial crisis, demonstrating how an upper bound on the value of debt relative to output, combined with stochastic shocks to fiscal policy, could give government debt risk, even when policy is governed by a strongly passive fiscal rule. It also shows how a small change in debt can create a large change in crisis probability when debt is sufficiently close to the boundary locus.

Second, it provides simulations using estimated parameter values and initial conditions from EMU countries to determine the probability of a fiscal financial crisis in the next ten years, under alternative assumptions about the fiscal response to a crisis. We find that a country operating at the upper bound of the Maastricht Treaty is perfectly safe under the baseline parameter values over a horizon of ten years. Additionally, countries like Belgium, France and Germany with small violations, are also perfectly safe under the baseline parameter values. However, countries like Italy and Greece with high debt, are safe under the baseline parameter values, but for either a small increase in the real growth-adjusted interest rate or a higher level of debt relative to GDP as the OECD forecasts for Italy, risk becomes positive.
Figure 1: Passive Fiscal Policy

Note: $s^* = \frac{\hat{\phi}(1-\alpha\lambda)-\alpha(1-\lambda)\varphi}{1-\alpha}$ is the value of s along the adjustment path BP at the point L with $rb = \hat{\varphi}$.
Figure 2: Active Fiscal Policy
Figure 3: Switching
Figure 4: Italy, Greece and Belgium
Figure 5. The probability of crisis when debt increases.
References

