Financial Economics

Term Structure

Term Structure

Term Structure

Consider a simplification of the model of Vasicek [1] of the term structure of interest rates.

The short-term, risk-free interest rate r follows a random walk,

$$\mathrm{d}r = \rho \,\mathrm{d}z.$$

Let $P(\tau, r)$ denote the price of a risk-free pure discount bond worth one dollar at its maturity in τ years. Of course P(0,r) = 1. We wish to solve for the equilibrium price.

Financial Economics

Term Structure

Expectations Theory of the Term Structure

1

The standard model of the term structure is the expectations theory, which argues that the long-term interest rate is the average of the current and expected future short-term interest rates.

Here the expected future short-term rate is just the current short-term rate, so

$$R(\tau, r) = r$$

according to the expectations theory. Hence

$$P(\tau,r)=\mathrm{e}^{-r\tau}.$$

3

Financial Economics

Term Structure

Market Equilibrium

For market equilibrium, assume that all bonds must have expected rate of return *r*:

$$r dt = \mathbf{E}_t \left(\frac{dP}{P} \right) = \frac{1}{P} \left(-\frac{\partial P}{\partial \tau} + \frac{1}{2} \rho^2 \frac{\partial^2 P}{\partial r^2} \right) dt.$$

so

Yield to Maturity

Let $R(\tau, r)$ denote the yield to maturity on the τ -year bond. By definition,

 $P(\tau,r) = \mathrm{e}^{-\tau R(\tau,r)},$

 $R(\tau,r) = -\frac{1}{\tau} \ln P(\tau,r).$

2

Financial Economics

Term Structure

Return

The price of a bond at time *t* maturing at time *T* is P(T-t,r). The return on the bond is the price change dP/P.

By Itô's formula,

$$dP = -\frac{\partial P}{\partial \tau} dt + \frac{\partial P}{\partial r} dr + \frac{1}{2} \frac{\partial^2 P}{\partial r^2} (dr)^2 \ (\tau \text{ falls as } t \text{ rises})$$
$$= -\frac{\partial P}{\partial \tau} dt + \frac{\partial P}{\partial r} \rho \ dz + \frac{1}{2} \frac{\partial^2 P}{\partial r^2} (\rho \ dz)^2$$
$$= \left(-\frac{\partial P}{\partial \tau} + \frac{1}{2} \rho^2 \frac{\partial^2 P}{\partial r^2} \right) dt + \rho \frac{\partial P}{\partial r} dz.$$

4

Financial Economics

Term Structure

Term-Structure Equation

We wish to solve the term-structure equation

$$rP = -\frac{\partial P}{\partial \tau} + \frac{1}{2}\rho^2 \frac{\partial^2 P}{\partial r^2},\tag{1}$$

subject to the boundary condition P(0,r) = 1.

5

6

Financial Economics	Term Structure	Financial Economics	Term Structure
Constant Intere	st Rate		
The special case $\rho = 0$ implies a constant interest rate. The			
term-structure equation is then		General Solution	
$rP = -\frac{\partial P}{\partial \tau},$		The general solution is	
with solution $P(\tau, r) = e^{-r\tau}.$		$P(\tau, r) = e^{-r\tau + \frac{1}{6}\rho^2\tau^3},$ which one verifies by substituting into the term-structure	
$R(\tau,r)=r,$			
in agreement with the expectations the	eory.		
7		8	
Financial Economics	Term Structure	Financial Economics	Term Structure
Financial Economics	Term Structure	Financial Economics	Term Structure
Return			
The return is			
$\frac{\mathrm{d}P}{P} = \left(-\frac{1}{P}\frac{\partial P}{\partial \tau} + \frac{1}{2}\rho^2\frac{1}{P}\frac{\partial^2 P}{\partial r^2}\right)\mathrm{d}t + \rho\frac{1}{P}\frac{\partial P}{\partial r}\mathrm{d}z$ $= \left[\left(r - \frac{1}{2}\rho^2\tau^2\right) + \frac{1}{2}\rho^2\tau^2\right]\mathrm{d}t - \rho\tau\mathrm{d}z$ $= r\mathrm{d}t - \tau\mathrm{d}r.$		Yield to Maturity	
		The yield to maturity is	
		$R(\tau, r) = -\frac{1}{\tau} \ln P(\tau, r) = r - \frac{1}{6} \rho^2 \tau^2.$	
An increase in <i>r</i> reduces <i>P</i> , and the star return is proportional to the term to m			
9		10	
Financial Economics	Term Structure	Financial Economics	Term Structure
The yield to maturity at time t on a bond maturing at time T			
is $R(T-t,r)$, which follows the stochastic differential equation		Risk Premium	
		Alternatively, one might allow the possibility of a risk	
$\mathrm{d}R = -\frac{\partial R}{\partial \tau}\mathrm{d}t + \frac{\partial R}{\partial r}\mathrm{d}r + \frac{1}{2}\frac{\partial^2 R}{\partial r^2}\left(\mathrm{d}r\right)^2$		premium. The stochastic different	tial for the price takes the
$= -\left[-\frac{1}{3}\rho^{2}(T-t)\right]dt + 1 dr + \frac{1}{2}0(dr)^{2}$		form $dP = m(\tau, r) dt$	$+ \alpha (\boldsymbol{\tau}, \boldsymbol{v}) d \boldsymbol{\tau}$
		$\frac{\mathrm{d}P}{P} = m\left(\tau, r\right) \mathrm{d}t + s\left(\tau, r\right) \mathrm{d}z.$	
$=\frac{1}{3}\rho^2 \left(T-t\right) \mathrm{d}t + \mathrm{d}r.$		The returns for the different bonds are perfectly correlated, since each involves the same instantaneous error d_z .	
5		since each involves the same insta	untaneous error uz.

Financial Economics

Term Structure

No Arbitrage

Consequently there will be an arbitrage opportunity unless the risk premium is proportional to the standard deviation:

$$m(\tau,r)-r \propto s(\tau,r).$$

Let q denote the proportionality factor.

13

Financial Economics

Term Structure

Constant Risk Premium

For constant q, the bond price is

$$P(\tau, r) = e^{-r\tau - \frac{1}{2}q\rho\tau^2 + \frac{1}{6}\rho^2\tau^3}.$$

The yield to maturity is

$$R(\tau, r) = -\frac{1}{\tau} \ln P(\tau, r) = r + q\rho \tau - \frac{1}{6} \rho^2 \tau^2.$$

15

Financial Economics

Term Structure

References

 Oldrich Vasicek. An equilibrium characterization of the term structure. *Journal of Financial Economics*, 5(2):177–188, November 1977. HB1J69X. Financial Economics

Term Structure

Term-Structure Equation

The term structure equation is

$$m(\tau,r)-r=qs(\tau,r),$$

which takes the form

$$\left(-\frac{1}{P}\frac{\partial P}{\partial \tau} + \frac{1}{2}\rho^2 \frac{1}{P}\frac{\partial^2 P}{\partial r^2}\right) - r = q\left(-\rho \frac{1}{P}\frac{\partial P}{\partial r}\right).$$

Hence the term-structure equation (1) changes to

$$rP = -\frac{\partial P}{\partial \tau} + q\rho \frac{\partial P}{\partial r} + \frac{1}{2}\rho^2 \frac{\partial^2 P}{\partial r^2}.$$

To express q as a function of r would be a natural model.

14

Financial Economics

Term Structure

Return

The return is

$$\begin{aligned} \frac{\mathrm{d}P}{P} &= \left(-\frac{1}{P} \frac{\partial P}{\partial \tau} + \frac{1}{2} \rho^2 \frac{1}{P} \frac{\partial^2 P}{\partial r^2} \right) \mathrm{d}t + \rho \frac{1}{P} \frac{\partial P}{\partial r} \mathrm{d}z \\ &= \left[\left(r + q\rho \tau - \frac{1}{2} \rho^2 \tau^2 \right) + \frac{1}{2} \rho^2 \tau^2 \right] \mathrm{d}t - \rho \tau \mathrm{d}z \\ &= (r + q\rho \tau) \mathrm{d}t - \tau \mathrm{d}r. \end{aligned}$$

16