Neoclassical One-Sector Growth Model

Consider the Solow neoclassical one-sector growth model with Cobb-Douglas production function

\[Y = F(K, L) = K^{\frac{1}{3}} L^{\frac{2}{3}}. \]

Gross saving is \(sY \), with \(s = .12 \). The rate of population growth \(n = .03 \). Initially the capital/labor ratio \(k = K/L = 4 \).
Intensive Production Function

Because returns to scale are constant, output per capita is

\[\frac{F(K, L)}{L} = F\left(\frac{K}{L}, \frac{L}{L}\right) = F(k, 1) = f(k). \]

Applying this relationship to the production function here,

\[f(k) = F(k, 1) = k^{\frac{1}{3}} \cdot 1^{\frac{2}{3}} = k^{\frac{1}{3}}. \]
Change in the Capital/Labor Ratio

Expressed *per capita*, capital deepening $\frac{dk}{dt}$ equals saving $sf(k)$ less capital widening nk:

$$\frac{dk}{dt} = sf(k) - nk.$$
The capital widening dk/dt is the increase in capital per capita.

Since national income equals national product, income per capita equals output per capita $f(k)$. Saving per capita $sf(k)$ is income per capita times the fraction of income saved.

Part of the saving is used to equip new workers with capital. The population growth rate n is the number of new workers per capita. Each worker requires k units of capital, so saving per capita for capital widening is nk.

The remainder of the saving is available for capital deepening, increasing the capital per capita. This residual saving per capita is $sf(k) - nk$, so capital per capita goes up by this amount.
For the model here,

\[
\frac{dk}{dt} = sf(k) - nk = .12k^{\frac{1}{3}} - .03k,
\]

and the Solow diagram shows the relationship.
Macroeconomics

Solow Growth Model—Example

\[0.03k \]

\[0.12k^{1/3} \]
Short-Run Behavior

For the initial value $k = 4$, the figure shows that saving exceeds capital widening, so capital deepening occurs. The capital/labor ratio rises:

$$\frac{dk}{dt} = .12k^{\frac{1}{3}} - .03k$$

$$= .12(4)^{\frac{1}{3}} - .03 \times 4$$

$$\approx .07.$$
Long-Run Behavior

In the long run, the economy converges to steady-state growth. The capital/labor ratio is constant:

\[0 = \frac{dk}{dt} = sf(k) - nk = .12k^{\frac{1}{3}} - .03k, \]

with solution \(k = 8 \).

Per capita values are constant. The growth rate of output, capital, consumption, and investment are all constant at the rate of population growth, \(n = .03 \).
Higher Saving Rate

Alternatively, suppose that the saving fraction is $s = .27$. In the Solow diagram, saving per capita rises.
Macroeconomics

Solow Growth Model—Example

![Graph showing Capital/Labor vs Output/Labor with various lines representing different growth models.](image)
Short-Run Behavior

In the short run, saving is higher. The capital/labor ratio increases more rapidly, and higher saving and investment cause faster output growth.

For the initial value \(k = 4 \),

\[
\frac{dk}{dt} = .27k^{\frac{1}{3}} - .03k
\]

\[
= .27(4)^{\frac{1}{3}} - .03 \times 4
\]

\[
\approx .31.
\]
Long-Run Behavior

In the long run, the economy again converges to steady-state growth, but the capital/labor ratio is higher. In steady-state growth,

\[0 = \frac{dk}{dt} = sf(k) - nk = .27k^{\frac{1}{3}} - .03k, \]

with solution \(k = 27 \).

Per capita values are constant, but output *per capita* is higher with higher saving. Again the population growth \(n = .03 \) determines the growth rate of output, capital, consumption, and investment.