
1. Introduction
All cloud droplets formed in the atmosphere start with tiny particles that act as cloud condensation nuclei (CCN). 
These aerosols can alter cloud properties and precipitation (Albrecht, 1989; Twomey, 1977) and thereby indirectly 
influence the Earth's radiation budget and climate change. The radiative forcing (RF) associated with aerosol–
cloud interactions (aci) remains the largest source of uncertainty in climate prediction. According to the Intergov-
ernmental Panel on Climate Change's Fifth Assessment Report (IPCC AR5, 2013), RFaci of anthropogenic aerosols 
was estimated to be −0.55 W·m −2 with “low” level of confidence. A number of post-IPCC AR5 global climate 
modeling studies still show large discrepancy in the values of RFaci, ranging from ∼ −0.35 W·m −2 (Nazarenko 
et al., 2017), to −0.7 W·m −2 (Rotstayn et al., 2014) to −1.08 W·m −2 (Bauer et al., 2020), to −1.28 W·m −2 (Tonttila 
et al., 2015), to −1.54 W·m −2 (Bauer et al., 2020), and to −2.19 W·m −2 (Zhang et al., 2016). In order to confi-
dently interpret past and accurately project future climate change, it is essential to reduce RFaci discrepancy 
among different models.

RFaci depends strongly on the response of number concentrations of particles that can act as CCN to anthropo-
genic emissions (Albrecht, 1989; Twomey, 1977). The increase in cloud drops with particle number concentration 
(PNC) has been confirmed by many aircraft measurements (e.g., Ramanathan et al., 2001). PNC exhibits signif-
icant spatial and temporal variability due to the non-linear dependence of new particle formation and growth 
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rates on atmospheric conditions and concentrations of gaseous precursors, both subject to changes resulting from 
climate changes and emission regulatory actions. The calculation of PNC in global climate models (GCMs), 
including the most recent CMIP6 models, is generally simplified which contributes to the uncertainty in RFaci. 
For example, among 10 CMIP6 models compared by Zanis et al. (2020), 7 models employ bulk mass-based aero-
sol schemes not supporting PNC simulation, while 3 models use modal aerosol schemes considering particle size 
distribution. Large uncertainties exist in the predicted PNC in these models as PNC not only depends on mass 
concentrations of particles but also on their size distributions which have significant spatiotemporal variations 
that can only be captured by the use of an aerosol microphysics parameterization. Bellouin et al. (2013) showed 
substantial differences in the aerosol forcings simulated by the bulk and modal schemes, pointing out that the 
bulk approach lacked the necessary sophistication to provide realistic aerosol input for aerosol-cloud-radiation 
calculations.

Critical toward more accurate modeling of aerosols' effect on clouds is to have a robust representation of aero-
sol processes key for quantifying PNC. These include non-linear processes of secondary particle formation 
and growth as well as interactions among particles of different sizes and compositions (e.g., Yu & Luo, 2009). 
The main challenge is the high computational expense of simulating size- and composition-resolved particle 
microphysics in climate models. Here we show that this dilemma of the need of more accurate aerosol proper-
ties important for RFaci and consideration of computing efficiency can be resolved by using machine learning. 
Machine learning is a branch of artificial intelligence, where systems trained on a large number of scenarios learn 
to build a statistical predictive model without explicitly programming. Over the last two decades, there has been 
rapid development and application of machine learning, with recent applications in the atmospheric sciences such 
as in atmospheric new particle formation (e.g., Zaidan et al., 2018), mixing-state (e.g., Hughes et al., 2018), air 
quality (e.g., Grange et al., 2018), remote-sensing (e.g., Mauceri et al., 2019), tropical cyclone intensity change 
forecast (Su et al., 2020), and other aspects (e.g., Jin et al., 2019; D. J. Miller et al., 2020). These studies demon-
strate the strong utility of machine learning in the development of predictive models considerate of the non-linear 
associations between atmospheric states and compositions. In a recent study, Nair et  al.  (2021) showed that 
machine learning can extract aerosol size information from aerosol composition and additionally from atmos-
pheric chemical and meteorological variables. In this study, we employ outputs from long-term (30-year) simu-
lations of a global size-resolved (sectional) aerosol microphysics model and a machine-learning tool to develop 
a Random Forest Regression Model (RFRM) for PNC. We have implemented the PNC RFRM in the version of 
GISS-ModelE2.1 with a mass-based One-Moment Aerosol (OMA) module, which is one of the models partici-
pating in CMIP6 (GISS-E2.1). We want to note, that the GISS model includes an aerosol microphysical model, 
MATRIX (Multiconfiguration Aerosol TRacker of mIXing state) (Bauer et al., 2008). However here we choose 
to use the mass-based aerosol scheme to demonstrate that the calculation of PNC in GCMs with bulk aerosol 
schemes can be improved with RFRM. To the best of our knowledge, this is the first application of machine learn-
ing to improve PNC simulations and tackle the persistent uncertainty in RFaci in climate models.

2. Materials and Methods
2.1. GEOS-Chem-APM Model (GCAPM)

The GEOS-Chem model is a global 3-D model of atmospheric composition (e.g., Bey et al., 2001) and is contin-
uously being improved (e.g., Evans & Jacob, 2005; Holmes et al., 2019; Keller et al., 2014; Luo et al., 2020; 
Martin et al., 2003; Murray et al., 2012; Pye & Seinfeld, 2010; van Donkelaar et al., 2008). The present study 
uses GEOS-Chem version 10-01 with the incorporation of the size-resolved (sectional) Advanced Particle 
Microphysics (APM) package (Yu & Luo,  2009), henceforth referred to as GCAPM. The APM model has 
the following features of relevance toward accurate simulation of (PNCs) that are important for aerosol-cloud 
interactions: (a) 40 bins to represent secondary particles with 30 of these bins (and thus quite high resolution) 
for the size range (diameter 1.2–120 nm) important for the growth of nucleated particles to CCN sizes (Yu & 
Luo, 2009); (b) state-of-the-art Ternary Ion mediated Nucleation (TIMN) mechanism (Yu et al., 2018, 2020) and 
temperature-dependent organics-mediated nucleation (Yu et al., 2017); (c) explicit kinetic condensation of both 
H2SO4 and low volatile organic gases onto particles as well as consideration of contributions to particle growth 
of nitrate and ammonium via equilibrium uptake and semi-volatile organics through partitioning (Yu, 2011); and 
(d) explicit resolution of the coating of secondary species on primary particles (Yu & Luo, 2009). Particle size 
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distributions and PNC simulated by GCAPM have previously been evaluated against a number of measurements 
(Luo & Yu, 2010; Williamson et al., 2019; Yu, 2011; Yu et al., 2010, 2013, 2017; Yu & Luo, 2009).

In this study, detailed outputs of GCAPM long-term (1989–2018) global simulations (2° × 2.5° horizontal reso-
lution) at each time step (half-hour) for all model layers in the troposphere at 47 sites across the globe are used 
for training the machine-learning model. We assume that parts of the world during parts of time periods even at 
present-day emissions are clean enough to be representative for the preindustrial atmosphere, and the RFRM can 
capture non-linear dependence of PNC on key variables.

2.2. Machine-Learning Tool and Random Forest Regression Modeling (RFRM)

In a previous study, we use random decision forests to develop a Random Forest Regression Model (RFRM) 
to derive CCN concentration at 0.4% supersaturation [CCN0.4] from commonly available variables (Nair & 
Yu, 2020). A Random Forest (Breiman, 2001) is a supervised machine-learning algorithm; the “forest” is an 
ensemble of decision trees (Breiman et al., 1984) that aggregates (mean) all the component decision trees' regres-
sion of a variable against input predictor variables. Each decision tree splits the training data into homogenous 
subsets using recursive binary splitting by choosing the input variables (“predictors”) that minimize the variance 
of the outcome. Decision trees are not influenced by missing data or outliers and are non-parametric. Random 
Forest models are advantageous due to their component decision trees being able to resolve complex non-linear 
relationships between predictor variables, regardless of their inter-dependencies or cross-correlations, and the 
outcome to be predicted. Further, they are comparatively easier to visualize and interpret as opposed to black-box 
neural network or deep learning methods. RFRM is one of the most accurate predictive machine-learning models 
with the ability to be trained fast due to the parallelizability of building the decision tree. For these reasons, 
Random Forest is our chosen machine-learning tool in this study.

The approach for training, testing, validating, and optimizing the RFRM is the same as those detailed in Nair 
and Yu  (2020) except that this study focuses on PNC, instead of [CCN0.4]. Figure 1a illustrates the random 
forest machine-learning technique. 247.2 million rows (sets of 18 predictor inputs as listed in Figure 1a and 
PNC) of GCAPM output data are used to train the RFRM. Here PNC represents the number concentrations of 
all particles with diameter larger than 10 nm. We select 18 atmospheric state and composition predictor vari-
ables that are available in GISS-E2-1-OMA (see Section 2.3) as predictors, including mass concentrations of 
sulfate, nitrate, ammonium, secondary organic aerosol (SOA), black carbon (BC), primary organic carbon (POC), 
sea salt, and dust in particles smaller than 2.5 μm, concentrations of SO2, NH3, NOx, O3, OH, isoprene, and 
monoterpenes, temperature (T), relative humidity (RH), and pressure. No explicit spatiotemporal information is 
provided to the RFRM in its training so that the RFRM remains generalizable and agnostic to the host model. 
The speed-optimized RFRM with negligible change in performance is trained and tested (training data:testing 
data: 7:3) on a statistically representative 1% random subset of GCAPM simulations for 32 randomly selected 
sites (out of 47) and further validated with data for the remaining sites that the RFRM has not been exposed to. 
For the present case, we consider 30 trees with other hyperparameters being the defaults prescribed by Wright 
and Ziegler (2017).

2.3. GISS ModelE

NASA Goddard Institute for Space Studies (GISS) climate modeling has a long development history (Hansen 
et  al.,  1983,  1997,  2002) and contributed to CMIPs (Kelley et  al.,  2020; Schmidt et  al.,  2006,  2014). Three 
versions of GISS-E2.1 simulations have been submitted to CMIP6: (a) NINT (non-interactive), (b) OMA model 
(Bauer & Koch, 2005; Koch et al., 2006; R. L. Miller et al., 2006; Tsigaridis et al., 2013), and (c) MATRIX 
(Multiconfiguration Aerosol TRacker of mIXing state) model (Bauer et al., 2008). The two aerosol schemes differ 
by degree of complexity (Bauer et al., 2020), with OMA having more detailed chemistry regarding secondary 
organic aerosol formation while MATRIX having resolved aerosol microphysical processes, including mixing 
state. The mass-based OMA module is faster than MATRIX but both models are computationally efficient, which 
is critical for long-term climate simulations. The OMA transient monthly mean output is used as offline fields to 
drive GISS-E2-1 in all climatological (control), historical, and future NINT atmospheric composition simulations 
for CMIP6 (Bauer et al., 2020).
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In OMA, the PNCOMA that impacts clouds is obtained from the aerosol mass as described in Menon and Rotstayn 
(2006). GISS-E2.1 only includes the first indirect effect, as such aerosols only influence cloud optical depth, 
the Twomey effect. PNCOMA depends only on the mass concentrations of various aerosol components. Similar 
to other CMIP6 models with bulk mass-based aerosol schemes (Zanis et al., 2020), the mass-to-number conver-
sion coefficients are derived from prescribed particle size distributions (Menon and Rotstayn, 2006), which is 
undoubtedly a large source of uncertainty in aerosol radiative forcing calculations. One approach to address 
this issue is to resolve aerosol microphysics and particle sizes (e.g., Fanourgakis et al., 2019). However, this is 
generally associated with a large increase in the computing cost, especially for the sectional aerosol microphys-
ics  models. In addition, the inclusion of more complex particle microphysics can induce additional uncertainties 
if relevant processes and parameterizations are not well constrained. In this study, we employ outputs from 
GCAPM simulations and a machine-learning tool to develop a RFRM for PNC, solving the challenge of the 
need of more accurate aerosol properties important for RFaci, while maintaining the computing efficiency of 
GISS-E2.1-OMA (and, potentially, other mass-based CMIP6 models).

This work is based on GISS-E2-1 downloaded from the GISS website (https://www.giss.nasa.gov/tools/modelE/). 
We run the updated GISS-E2-1 at 2°  ×  2.5° horizontal resolution from surface to 0.1  hPa with 40 vertical 
layers. Model configurations were following the settings recommended by R. L. Miller et al. (2021) and Kelley 
et al. (2020) for CMIP6 simulations. Anthropogenic emissions of gases and aerosols were from the Community 
Emissions Data System (CEDS; Hoesly et al., 2018). Dust emission was simulated following the approach of R. 
L. Miller et al. (2006), while sea salt emission was simulated as per Tsigaridis et al. (2013). Sea surface temper-
atures and sea ice covers were prescribed by the Met Office Hadley Center's sea ice and sea surface temperature 

Figure 1. (a) Schematic of the random forest machine learning technique. (b) Binned scatterplot of Random Forest Regression Model (RFRM)-derived versus 
GEOS-Chem-APM Model (GCAPM) simulated values for particle number concentration (PNC). Color bar shows the number of points in each bin; total number of 
points = 7,363,160. Bins with low counts (<1% of maximum count: ∼2.36% of the data) are shaded gray. The lines indicate MFB of 0 (black: perfect agreement), 
+1 (dark red), −1 (dark blue), +0.6 (light red), and −0.6 (light blue). (c) Summary statistics quantifying RFRM agreement with GCAPM. Listed are Kendall's rank 
correlation coefficient (τ), MFB: median ± median absolute deviation of the fractional bias, and %-Agree: the percentage of RFRM-derived PNC in good agreement 
(−0.6 < fractional bias <0.6).
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data set (Rayner et  al.,  2003). We run the model nudged with NCEP reanalysis horizontal winds, which are 
available from 1948 to present.

3. Results
The Random Forest Regression Model (RFRM) as described in Section 2.1 is used to predict PNC from atmos-
pheric state and composition variables as illustrated in Figure 1a. Figure 1b shows the binned scatterplot compar-
ison of RFRM-derived versus GCAPM-simulated PNC values. RFRM PNC is highly correlated (τ ≈ 0.77) and 
in good agreement (summary statistics in Figure 1c) with GCAPM values. Overall, the RFRM is robust in its 
derivation of PNC for various locations around the globe, at various altitudes, and across a varied range of PNC 
magnitudes.

We have implemented the PNC RFRM in GISS ModelE2.1-OMA. It increases the computing cost by ∼5%, 
non-trivial but acceptable even for centennial-long simulations. Figure 2 compares PNC estimated in OMA with 
prescribed mass-to-number coefficients (PNCOMA) based on Menon and Rotstayn (2006) and those based on the 
machine-learning RFRM (PNCML). The measured annual mean PNC values at 35 sites across the globe and daily 
mean time series at Pinnacle State Park (PSP), New York, are also shown. The sources of PNC data are those 
described in Yu (2011) plus some additional sites from EBAS database (http://ebas.nilu.no/) and the PSP data is 
from the Atmospheric Science Research Center's Air Quality Monitoring Products (http://atmoschem.asrc.cestm.
albany.edu/∼aqm). In the surface layer, the spatial distributions (or patterns) of PNCOMA (Figure 2a) and PNCML 
(Figure 2b) are similar as particles associated with anthropogenic emissions dominate the number concentra-
tions. Both PNCOMA and PNCML capture the observed spatial variations of annual mean PNC at the 35 sites, with 
correlation coefficients of 0.82 and 0.88 (Figure 2c), respectively. Nevertheless, PNCOMA is generally higher than 
PNCML in the surface layer, but is lower over Australia, polar regions, and areas with high topography. The global 
average PNCOMA in the model surface layer is 1866 #⋅cm −3, which is about 70% higher than that of PNCML. In 
addition to the spatial variation, temporal variation is also critical for aerosol–cloud interactions. To explore this, 
we examine the monthly mean values at the Hyytiala, Finland site (Figure 2d) and the daily mean values at the 
PSP site (Figure 2e) where PNC measurements are available and the annual mean PNCOMA and PNCML are almost 
identical (Sites “F” and “O,” Figure 2c). For the Hyytiala site, the seasonal variation of PNCML is in much better 
agreement with observations than that of PNCOMA (r = 0.51 vs. 0.16). Large differences can be seen between 
daily mean time series of PNCOMA and PNCML at the PSP site, with PNCOMA peaking in the summer and winter 
seasons while PNCML shows higher values in the spring. PNCML agrees much better with observed daily mean 
values (r = 0.52) than that for PNCOMA (r = 0.07). Our comparisons show that RFRM-derived PNC is in much 
better agreement with relevant observations at PSP and Hyytiala, Finland. The improvement is associated with 
more complex dependence of PNC not only on particle mass but also on atmospheric weather (T, RH, pressure) 
and atmospheric composition (SO2, NH3, NOx, O3, OH, isoprene, monoterpenes).

In GISS ModelE2.1-OMA, cloud droplet number concentration (CDNC) is related to the PNC via empirical 
parameterizations described in Menon and Rotstayn (2006). Figure  3 shows cloud-cover weighted 10-year 
(2005–2014) mean CDNC for warm large-scale clouds based on PNCOMA and PNCML under the pre-industrial 
(PI) and present-day (PD) emission scenarios. While both CDNCOMA and CDNCML show generally higher values 
over main continents where PNC is larger, substantial differences in their spatial distributions can be clearly seen. 
For example, compared to PD CDNCOMA, PD CDNCML is lower in the southern part of Eurasia, Australia, and 
the polar regions. More importantly, compared to CDNCOMA, global mean CDNCML is larger (by 18%) under 
PI emission but is smaller (by 6%) under PD emission. The difference is caused by the change in particle size 
distributions from PI to PD scenarios, which is not considered in PNCOMA but is taken into account in PNCML. 
As a result, the relative change of global mean CDNC from PI to PD decreases from 61% for CDNCOMA to 28% 
for CDNCML.

Same as in Bauer et al. (2020), and following the method described in Ghan (2013), we calculate RFaci using GISS 
ModelE based on both PNCOMA and PNCML. Figure 4 shows that the application of machine-learning RFRM in 
predicting total aerosol numbers used for CDNC calculations in OMA reduces the RFaci from −1.46 W·m −2 to 
−1.11 W·m −2. The reduction is due to a decrease in relative change of CDNC (Figure 3) associated with anthro-
pogenic emissions (from pre-industrial (PI, 1850) to present-day (PD, 2010) emissions). RFaci of −1.11 W·m −2 is 
closer to that based on GISS-E2-1-MATRIX (Bauer et al., 2020) and is closer to the median value given in IPCC 
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report (IPCC AR5, 2013). It should be noted that RFaci based on PNCML is generally weaker over continents but is 
stronger over North Pacific and North Atlantic. The large difference highlights the need to account for the particle 
size changes from PI to PD in PNC and CDNC calculations.

Figure 2. Decadal mean (2005–2014) surface layer particle number concentration (PNC) (a) estimated in One-Moment Aerosol (OMA) with prescribed mass to 
number coefficients (PNCOMA), and (b) calculated based on the Random Forest Regression Model given in Figure 1 (PNCML). (c) Comparisons with observed annual 
mean PNC (PNCobs) at 35 sites across the globe (marked on (a and b)) of PNCOMA and PNCML. (d) Multiple-year monthly mean time series of PNCobs, PNCOMA, and 
PNCML at Hyytiala, Finland (site “F”). (e) Daily mean time series of PNCobs, PNCOMA, and PNCML at Pinnacle State Park, New York (site “O”) in the year 2015.
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Figure 3. Cloud-cover weighted decadal mean (2005–2014) cloud droplet number concentration based on GISS ModelE2.1—One-Moment Aerosol with particle 
number concentration calculated with prescribed mass to number coefficients (a and c), and with the Random Forest Regression Model module (b and d) under the 
pre-industrial (a and b) and present-day (c and d) emission scenarios.

Figure 4. Decadal mean (2005–2014) RFaci based on GISS ModelE2.1—One-Moment Aerosol with particle number concentration calculated with prescribed mass to 
number coefficients (a), and with the Random Forest Regression Model module (b).
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4. Summary and Discussion
PNC is one of the key parameters determining RFaci but its calculation in climate models is generally simplified 
because of the lack of simulating size- and composition-resolved particle microphysics due to the associated 
high computing cost. In this study, we propose and demonstrate the ability for a more accurate representation 
of PNC important for RFaci, while maintaining computing efficiency, by the development of a RFRM using 
a machine-learning approach trained with long-term simulations of a global size-resolved (sectional) aerosol 
microphysics model. The RFRM takes into account the complex dependence of PNC not only on mass concen-
trations of various aerosol components but also on other key variables representing meteorological and chemical 
conditions. We have implemented the PNC RFRM in GISS-E2-1-OMA. The PNC RFRM significantly improves 
the agreement of PNC predicted by GISS-E2-1-OMA with measurements across the globe (in terms of both 
spatial distributions and temporal variations), reduces the relative changes of cloud droplet number concentration 
associated with changes of emissions from pre-industrial to present-day, and decreases the RFaci from −1.46 
to −1.11 W·m −2. In addition, the simulations based on PNC RFRM also show different spatial distributions of 
CDNC and RFaci.

This study highlights the sensitivity of RFaci in GCMs to PNC calculation and the necessity to improve it. Our 
exploratory work shows that the RFRM, trained on outputs from a global model with full size-resolved particle 
microphysics, can be used to reduce uncertainties of climate models in predicting PNC and RFaci without compro-
mising their computing efficiency. Compared to the fully size-resolved microphysics model, which generally 
increases the computing cost by a factor of two or more, the RFRM only increases the computing cost by ∼5%. 
A number of factors affect the speed and accuracy of the RFRM, including the percentage of GCAPM outputs 
used for training, the number and specifics of selected predictor variables, the number of trees in the forest, the 
minimum number of variables to consider for each split, and the minimum node size (Nair & Yu, 2020). Further 
improvement of GCAPM and optimization may improve the accuracy yet reduce the computing cost of the 
RFRM. The number and specifics of selected predictor variables can be varied based on what is available in most 
models and observations (for validation). It should be noted that similar RFRMs for CCN, CDNC, and aerosol 
optical properties, which are all important for aerosol radiative forcing and depend on particle size distributions 
and compositions, can also be derived. These machine-learning algorithms will enable GCMs used for climate 
change studies to calculate parameters key for aerosol radiative forcing more robustly using commonly available 
and widely observed variables (and thus can be well-constrained), and thus can help reduce the diversity or uncer-
tainties in climate change projections.

Data Availability Statement
The GISS-ModelE2.1 is available to the public at https://www.giss.nasa.gov/tools/modelE/. The GEOS-Chem 
model is available to the public at https://geos-chem.seas.harvard.edu/. The observation data used in this study 
(Figure 2), which was averaged using the raw data from the EBAS database and University at Albany Atmos-
pheric Science Research Center's Air Quality Monitoring Products, is archived at https://doi.org/10.5281/
zenodo.6960013.
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