(1) Find all value(s) of h for which the system

\begin{align*}
 x_1 + 3x_2 - x_3 &= 5 \\
 -x_1 + x_2 + x_3 &= 1 \\
 x_1 + 2x_2 - 3x_3 &= 0 \\
 -x_1 - x_2 - x_3 &= h
\end{align*}

is consistent.

(2) Solve the linear system

\begin{align*}
 2x_1 + 3x_2 - x_3 - 4x_5 &= 1 \\
 -x_1 + 2x_3 - x_4 + 2x_5 &= 0 \\
 x_1 + x_2 - x_3 - x_4 - x_5 &= 1
\end{align*}

by bringing the augmented matrix of the system to the reduced row-echelon form. Write the solution as $p + X_h$ where X_h is the solution of the corresponding homogeneous system.

(3) Which of the following is true/false?

(a) Every homogeneous linear system is consistent.
(b) If a set of vectors $\{u, v, w\}$ is linearly independent, then $\{u, v\}$ is linearly independent as well.
(c) Three vectors in \mathbb{R}^3 are linearly dependent if and only if they are contained on the same line.
(d) Any linear system has either none, one, two, or infinitely many solutions.
(e) If A is a 2×3 matrix and B a 3×2 matrix, then $(B \cdot A) \cdot (A \cdot B)$ is well-defined.
(f) The matrix equation $Ax = b$ has a solution if and only if b is in the span of the column vectors of A.
(g) Every set of 10 vectors in \mathbb{R}^{11} is linearly independent.
(h) Product of two invertible matrices of the same size is an invertible matrix.
(i) Let T_A and T_B be linear transformations on \mathbb{R}^n with standard matrices A and B, respectively. Then the standard matrix of $T = T_A \circ T_B$ is $B \cdot A$. (j) If $A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, then $AB = 0$ (zero matrix). (k) A set of 5 vectors in \mathbb{R}^5 that spans \mathbb{R}^5 must be also linearly independent.

(4) Find a matrix form of the linear transformation that reflects every vector in \mathbb{R}^3 through the xz-plane.

(5) The linear transformation $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ is given by the matrix

$$
\begin{bmatrix}
1 & 0 \\
2 & 1
\end{bmatrix}.
$$
Draw a triangle with vertices (1,1), (2,0) and (0,0) and determine where it is being mapped under the transformation T.

(6) Describe the image of the triangle in Problem 5 under the linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ which first rotates points through $\frac{\pi}{4}$ and then reflects through the x-axis. Write the standard matrix of T.

(7) Determine all vectors $\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$ that are inside

\[
\text{Span} \left\{ \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 4 \\ -1 \\ 4 \end{bmatrix} \right\}.
\]

(8) Is there a linear transformation \mathbb{R}^3 to \mathbb{R}^4 which is

(i) one-to-one?
(ii) onto?

Explain your reasoning in each case.

(9) Determine whether the vectors

\[
\begin{bmatrix} -1 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \\ -1 \end{bmatrix}
\]

are linearly independent.

(10) Find the inverse of

\[
\begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}
\]

(11) Let

$T(x, y, z) = (-x + y + z, 2x - 2z, y + 2z)$.

Find A, such that $T(x) = Ax$. Show that T is an invertible transformation. Finally, fill in the missing slots

$T^{-1}(x, y, z) = (\quad , \quad , \quad)$.

(Hint: The standard matrix of the inverse of T is precisely A^{-1})

(12) Give at least 5 different characterizations of invertible matrices.
(13) Find the standard matrix of \(T : \mathbb{R}^2 \to \mathbb{R}^2 \) if \(T \) rotates points by the angle \(\frac{2\pi}{3} \) counterclockwise.

(14) (a) Compute

\[
\begin{vmatrix}
 a & b & c & d \\
 3e & 3f & 3g & 3h \\
 i - 2a & j - 2b & k - 2c & l - 2d \\
 m & n & o & p
\end{vmatrix}
\]

if

\[
\begin{vmatrix}
 p & o & n & m \\
 e & k & j & i \\
 h & g & f & e \\
 d & c & b & a
\end{vmatrix} = 2.
\]

(b) Use row reduction method to compute the determinant

\[
\begin{vmatrix}
 2 & -2 & -6 & 4 \\
 2 & 2 & 4 & 4 \\
 -3 & 3 & 9 & 6 \\
 2 & 2 & -2 & 2
\end{vmatrix}
\]

(15) Consider a shear linear transformation \(T \) in \(\mathbb{R}^2 \) given by the matrix

\[
\begin{bmatrix}
 1 & 2 \\
 0 & 1
\end{bmatrix}
\]

Let \(\Delta \) be a triangle with vertices at \((-1, 0)\), \((1, 0)\) and \((0, 1)\). What is the area of the triangle obtained from \(\Delta \) if we apply the shear transformation six times in a row?

(Extra Credit) Let \(A \) be an \(n \times n \) matrix such that \(A^2 \). Show that \(I - A \) is invertible.

(Extra Credit) Describe all \(2 \times 2 \) matrices \(X \) for which

\[AX =XA, \]

for every \(2 \times 2 \) matrix \(A \).