Name: \qquad

1. Given a function $f: \mathbb{R} \rightarrow \mathbb{R}$ and $a \in \mathbb{R}$, what does it mean for f to be continuous at a ?
Answer: It means that $\lim _{x \rightarrow a} f(x)=f(a)$.
2. Let

$$
f(x)= \begin{cases}1 / x & \text { if } x<3 \\ 3 x & \text { if } x \geq 3\end{cases}
$$

At which points is f not continuous?
Answer: $\quad x=0$ and $x=3$.
3. Suppose f is continuous at a, and

$$
\lim _{x \rightarrow a^{+}} f(x)=c
$$

What is $f(a)$?
Answer: $f(a)=c$, because $f(a)=\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a^{+}} f(x)=c$.
4. Give the definition of the derivative of a function f at a point a, in two different ways.
Answer:

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \quad f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

5. Using the definition of the derivative and basic properties of limits, prove that if f and g are both differentiable at a, then

$$
(f+g)^{\prime}(a)=f^{\prime}(a)+g^{\prime}(a)
$$

Answer:

$$
\begin{aligned}
(f+g)^{\prime}(a) & =\lim _{x \rightarrow a} \frac{(f(x)+g(x))-(f(a)+g(a))}{x-a} \\
& =\lim _{x \rightarrow a}\left[\frac{f(x)-f(a)}{x-a}+\frac{g(x)-g(a)}{x-a}\right] \\
& =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}+\lim _{x \rightarrow a} \frac{g(x)-g(a)}{x-a} \\
& =f^{\prime}(a)+g^{\prime}(a) .
\end{aligned}
$$

6. Compute the derivative of $f(x)=\sqrt{x}$ directly from the definition of the derivative. Do not use the power rule.
Answer:

$$
\begin{aligned}
f^{\prime}(a) & =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \\
& =\lim _{x \rightarrow a} \frac{\sqrt{x}-\sqrt{a}}{x-a} \\
& =\lim _{x \rightarrow a} \frac{\sqrt{x}-\sqrt{a}}{x-a} \cdot \frac{\sqrt{x}+\sqrt{a}}{\sqrt{x}+\sqrt{a}} \\
& =\lim _{x \rightarrow a} \frac{x-a}{(x-a)(\sqrt{x}+\sqrt{a})} \\
& =\lim _{x \rightarrow a} \frac{1}{\sqrt{x}+\sqrt{a}} \\
& =\frac{1}{2 \sqrt{a}} .
\end{aligned}
$$

7. Complete the following to give the product rule for derivatives: If f and g are both functions which are differentiable everywhere, then $(f g)^{\prime}=$ \qquad _-.
Answer: $(f g)^{\prime}=g f^{\prime}+f g^{\prime}$.
8. Find the first and second derivatives of $f(x)=3 x^{3}+2 x^{2}+x$.

Answer: $f^{\prime}(x)=9 x^{2}+4 x+1, f^{\prime \prime}(x)=18 x+4$.
9. For $f(x)$ as in the previous problem, find the slope of the tangent line to the curve $y=f(x)$ at $(1,6)$.
Answer: The slope is $f^{\prime}(1)=14$.
10. What is the second derivative of $f(x)=\cos x$?

Answer: $f^{\prime}(x)=-\sin x$, so $f^{\prime \prime}(x)=-\cos x$.
11. What is the tenth derivative of $f(x)=\sin x$?

Answer: To solve this, note that the second derivative of $\sin x$ is $-\sin x$. Therefore, the fourth derivative of $\sin x$ is $\sin x$. Thus, the $(4 k+j)^{t h}$ derivative of $\sin x$ is equal to the $j^{\text {th }}$ derivative. Taking $k=j=2$, we find that the 10 th derivative of $\sin x$ is equal to the second derivative of $\sin x$. Thus the answer is $-\sin x$.
12. Complete the following to give the chain rule: If g is differentiable at a and f is differentiable at $g(a)$, then $(f \circ g)^{\prime}(a)=$
Answer: $(f \circ g)^{\prime}(a)=f^{\prime}(g(a)) g^{\prime}(a)$.
13. What are the first and second derivatives of $f(x)=\tan x$?

Answer:

$$
f^{\prime}(x)=\sec ^{2}(x)=\frac{1}{\cos ^{2} x}=\cos ^{-2}(x)
$$

Applying the chain rule and the power rule, we have that

$$
f^{\prime \prime}(x)=(-2)\left(\cos ^{-3} x\right)(-\sin x)=\frac{2 \sin x}{\cos ^{3} x}=2 \tan x \sec ^{2} x
$$

14. What is the derivative of $f(x)=e^{\sin 3 x}$?

Answer: First compute: $\frac{d}{d x}[\sin 3 x]=3 \cos 3 x$, by the chain rule. Then by the chain rule again,

$$
f^{\prime}(x)=e^{\sin 3 x} \frac{d}{d x}[\sin 3 x]=3 e^{\sin 3 x} \cos 3 x
$$

15. What is the derivative of $f(x)=(\ln x)^{3}$?

Answer: Use the chain rule: $f^{\prime}(x)=3(\ln x)^{2} / x$.
16. What is the derivative of $f(x)=\log _{3} x$?

Answer: For this question, I just want you to know the formula and use it: $f^{\prime}(x)=\frac{1}{x \ln 3}$.
17. What is the derivative of $f(x)=2^{\left(x^{5}\right)}$?

Answer: use the chain rule and formula for derivatives of logarithmic functions. $f^{\prime}(x)=5 \ln 2 \cdot 2^{\left(x^{5}\right)} x^{4}$.
18. Find the derivative of a function $y=f(x)$ defined implicitly by $x^{2}+4 y^{2}=4$.

Answer:

$$
\begin{aligned}
\frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}\left(4 y^{2}\right) & =0 \\
2 x+8 y \frac{d y}{d x} & =0 \\
\frac{d y}{d x} & =\frac{-x}{4 y} .
\end{aligned}
$$

19. What is the derivative of $x^{\sin 3 x}$? HINT: Use logarithmic differentiation. Answer:

$$
\begin{aligned}
y & =x^{\sin 3 x} \\
\ln y & =\sin 3 x \ln x \\
\frac{1}{y} \frac{d y}{d x} & =3 \ln x \cos 3 x+\frac{\sin 3 x}{x}
\end{aligned}
$$

Multiplying both sides by y and plugging in $y=x^{\sin 3 x}$, we find that

$$
\frac{d y}{d x}=x^{\sin 3 x}\left(3 \ln x \cos 3 x+\frac{\sin 3 x}{x}\right) .
$$

20. What is the derivative of $(\sin x)^{\cos x}$?

Answer: The solution strategy is similar to the last problem:

$$
\begin{aligned}
y & =(\sin x)^{\cos x} \\
\ln y & =\cos x \ln (\sin x) \\
\frac{1}{y} \frac{d y}{d x} & =-\sin x \ln (\sin x)+\cos x \frac{\cos x}{\sin x} \\
& =\cos x \cot x-\sin x \ln (\sin x)
\end{aligned}
$$

Multiplying both sides by y and plugging in $(\sin x)^{\cos x}$, we find that

$$
\frac{d y}{d x}=(\sin x)^{\cos x}(\cos x \cot x-\sin x \ln (\sin x))
$$

21. Suppose the distance in miles traveled by a car after t hours is given by $r(t)=3 t+\sqrt{t}$. Find expressions for the velocity $v(t)$ and acceleration $a(t)$ of the car at time t.

Answer:

$v(t)=r^{\prime}(t)=3+\frac{1}{2 \sqrt{t}}$.
$a(t)=r^{\prime \prime}(t)=v^{\prime}(t)=-\frac{1}{4 t \sqrt{t}}$.
22. Suppose I drop a ball from the top of a 200 m tower. What is the velocity of the ball just before it hits the ground? What is the acceleration? You may assume that the distance $r(t)$ in meters that the ball has dropped after t seconds is given by $r(t)=4.9 t^{2}$.
Answer: The time t_{f} at which the ball hits the ground is the positive solution to $200=4.9 t^{2}$. So $t_{f}=\frac{10 \sqrt{2}}{\sqrt{4.9}}$.
$v(t)=9.8 t \mathrm{~m} / \mathrm{s}$, so $a(t)=9.8 \mathrm{~m} / \mathrm{s}^{2}$.
Thus $v\left(t_{f}\right)=20 \sqrt{9.8} \mathrm{~m} / \mathrm{s}$ and $a\left(t_{f}\right)=9.8 \mathrm{~m} / \mathrm{s}^{2}$.

