Name: \qquad

1. Given a function $f: \mathbb{R} \rightarrow \mathbb{R}$ and $a \in \mathbb{R}$, what does it mean for f to be continuous at a ?
2. Let

$$
f(x)= \begin{cases}1 / x & \text { if } x<3 \\ 3 x & \text { if } x \geq 3\end{cases}
$$

At which points is f not continuous?
3. Suppose f is continuous at a, and

$$
\lim _{x \rightarrow a^{+}} f(x)=c
$$

What is $f(a)$?
4. Give the definition of the derivative of a function f at a point a, in two different ways.
5. Using the definition of the derivative and basic properties of limits, prove that if f and g are both differentiable at a, then

$$
(f+g)^{\prime}(a)=f^{\prime}(a)+g^{\prime}(a)
$$

6. Compute the derivative of $f(x)=\sqrt{x}$ directly from the definition of the derivative. Do not use the power rule.
7. Complete the following to give the product rule for derivatives: If f and g are both functions which are differentiable everywhere, then $(f g)^{\prime}=$ \qquad
8. Find the first and second derivatives of $f(x)=3 x^{3}+2 x^{2}+x$.
9. For $f(x)$ as in the previous problem, find the slope of the tangent line to the curve $y=f(x)$ at $(1,6)$.
10. What is the second derivative of $f(x)=\cos x$?
11. What is the tenth derivative of $f(x)=\sin x$?
12. Complete the following to give the chain rule: If g is differentiable at a and f is differentiable at $g(a)$, then $(f \circ g)^{\prime}(a)=$ \qquad
13. What are the first and second derivatives of $f(x)=\tan x$?
14. What is the derivative of $f(x)=e^{\sin 3 x}$?
15. What is the derivative of $f(x)=(\ln x)^{3}$?
16. What is the derivative of $f(x)=\log _{3} x$?
17. What is the derivative of $2^{\left(x^{5}\right)}$?
18. Find the derivative of a function $y=f(x)$ defined implicitly by $x^{2}+4 y^{2}=4$.
19. What is the derivative of $x^{\sin 3 x}$? HINT: Use logarithmic differentiation.
20. What is the derivative of $(\sin x)^{\cos x}$?
21. Suppose the distance in miles traveled by a car after t hours is given by $r(t)=3 t+\sqrt{t}$. Find expressions for the velocity $v(t)$ and acceleration $a(t)$ of the car at time t.
22. Suppose I drop a ball from the top of a 200 m tower. What is the velocity of the ball just before it hits the ground? What is the acceleration? You may assume that the distance $r(t)$ in meters that the ball has dropped after t seconds is given by $r(t)=4.9 t^{2}$.
