Name: \qquad

1. [3 points] Let $S=\{1,2,3\}$ and $T=\{2,3,4,5\}$.
(a) What is $S \cap T$? Answer: $\{2,3\}$
(b) What is $S \cup T$? $\{1,2,3,4,5\}$
(c) What are all the subsets of S ? HINT: There are eight of them.

Answer: $\{1,2,3\},\{1,2\},\{1,3\},\{2,3\},\{1\},\{2\},\{3\},\{ \}$.
2. [6 points] Let S and T be as in the previous question, and let $f: S \rightarrow T$ be given by

$$
\begin{aligned}
& f(1)=3, \\
& f(2)=4, \\
& f(3)=5 .
\end{aligned}
$$

(a) What is the domain of f ? Answer: S.
(b) What is range f? Answer: $\{3,4,5\}$
(c) Is f 1-1? Answer: yes. f sends no two distinct elements in S to the same element of T.
(d) Is f onto? Answer: no: $2 \in T$, but $2 \notin$ range T.
(e) Does f have an inverse? If so, what is it? Answer: no it doesn't. A function has an inverse if and only if it is a bijection, and f is not a bijection.
(f) Fill in the blank so that the function $g: S \rightarrow T$ defined by the following is not 1-1:

$$
\begin{aligned}
& g(1)=3, \\
& g(2)=4, \\
& g(3)=--.
\end{aligned}
$$

Answer: There two possible answers: 3 and 4 . Either one is correct.
3. [5 points] Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x)=x^{2}$.
(a) Draw the graph of f.
(b) What is range f? Answer: $[0, \infty)$
(c) Is f onto? Answer: No, because $[0, \infty) \neq \mathbb{R}$.
(d) Is f 1-1? Answer: No, because for $x>0, f(x)=f(-x)$.
(e) Does f have an inverse? Answer: No. It is not a bijection.
4. [2 points] Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x)=-2 x$. Find the inverse of f. [Hint: Write $y=-2 x$, and solve for x in terms of y. You do not have to explain why the function you get is indeed the inverse.]. Answer: we solve $y=-2 x$ for x to get $x=-y / 2$. Thus, the inverse is given by $g(y)=-y / 2$.
5. [2 points] Is the function

$$
f(x)=1+\sin x
$$

1-1? Explain. Answer: No. For example $f(0)=0=f(\pi)$. (To understand this in terms of the graph of f, note that we can draw a horizontal line that intersects the graph of f in more than one place. This means f is not 1-1.)
6. [11 points] Give each of the following limits. Note that some limits may exist but be ∞ or $-\infty$. If the limit does not exist (even as ∞ or $-\infty$), write DNE.
(i) $\lim _{x \rightarrow 2} 3=3$
(ii) $\lim _{x \rightarrow 2} x^{2}+3 x+1=11$
(iii) $\lim _{x \rightarrow 1} \frac{1}{x^{3}}+4 x=5$
(iv) $\lim _{x \rightarrow 0} \frac{3}{x^{2}}=\infty$.
(v) $\lim _{x \rightarrow 0} \frac{2}{x}=\mathrm{DNE}$
(vi) $\lim _{x \rightarrow 1} \frac{x^{2}+1}{x+2}=2 / 3$
(vii) $\lim _{x \rightarrow 1} \frac{1}{x^{1 / 3}}=1$
(viii) $\lim _{x \rightarrow 1} \frac{1}{x^{1 / 3}}-\frac{1}{x^{3}}=0$
(ix) $\lim _{x \rightarrow 1} \frac{x-2 x+1}{x-1}=\lim _{x \rightarrow 1} x-1=0$
(x) $\lim _{x \rightarrow 4^{-}} 3 x+1=13$
7. [3 points] Let

$$
f(x)= \begin{cases}x & \text { if } x<1 \\ x^{2}+1 & \text { if } x \geq 1\end{cases}
$$

Give each of the following limits. If the limit does not exist, write DNE.
(i) $\lim _{x \rightarrow 1^{-}} f(x)=1$
(ii) $\lim _{x \rightarrow 1^{+}} f(x)=2$
(iii) $\lim _{x \rightarrow 1} f(x)=\mathrm{DNE}$
8. [3 points] Let

$$
g(x)= \begin{cases}-x & \text { if } x \leq 0 \\ \sqrt{x} & \text { if } x>0\end{cases}
$$

Give each of the following limits. If the limit does not exist, write DNE.
(i) $\lim _{x \rightarrow 0^{-}} f(x)=0$
(ii) $\lim _{x \rightarrow 0^{+}} f(x)=0$
(iii) $\lim _{x \rightarrow 0} f(x)=0$
9. [1 point] Suppose

$$
\lim _{x \rightarrow 5} f(x)=3, \quad \lim _{x \rightarrow 5} g(x)=7
$$

What is $\lim _{x \rightarrow 5^{-}} \frac{f(x)}{g(x)}$? Answer: $\frac{3}{7}$
10. [1 point] What is the domain of the function $f(x)=\sqrt{1-x^{2}}$? Express the answer using interval notation. Answer: $[-1,1]$
11. [1 point] Let $f(x)=3 x+1$ and $g(x)=3 x-1$. What is $g \circ f(1)$? Answer:

$$
g \circ f=3(3 x+1)-1=9 x+2 .
$$

So $g \circ f(1)=11$.

