Name: \qquad

1. [3 points] Let $S=\{1,2,3\}$ and $T=\{2,3,4,5\}$.
(a) What is $S \cap T$?
(b) What is $S \cup T$?
(c) What are all the subsets of S ? HINT: There are eight of them.
2. [6 points] Let S and T be as in the previous question, and let $f: S \rightarrow T$ be given by

$$
\begin{aligned}
& f(1)=3, \\
& f(2)=4, \\
& f(3)=5 .
\end{aligned}
$$

(a) What is the domain of f ?
(b) What is range f ?
(c) Is f 1-1?
(d) Is f onto?
(e) Does f have an inverse? If so, what is it?
(f) Fill in the blank so that the function $g: S \rightarrow T$ defined by the following is not 1-1:

$$
\begin{aligned}
& g(1)=3, \\
& g(2)=4, \\
& g(3)=---.
\end{aligned}
$$

3. [5 points] Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x)=x^{2}$.
(a) Draw the graph of f.
(b) What is range f ?
(c) Is f onto?
(d) Is f 1-1?
(e) Does f have an inverse?
4. [2 points] $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x)=-2 x$. Find the inverse of f. [Hint:

Write $y=-2 x$, and solve for x in terms of y. You do not have to explain why the function you get is indeed the inverse.]
5. [2 points] Is the function

$$
f(x)=1+\sin x
$$

1-1? Explain.
6. [11 points] Give each of the following limits. Note that some limits may exist but be ∞ or $-\infty$. If the limit does not exist (even as ∞ or $-\infty$), write DNE.
(i) $\lim _{x \rightarrow 2} 3=$
(ii) $\lim _{x \rightarrow 2} x^{2}+3 x+1=$
(iii) $\lim _{x \rightarrow 1} \frac{1}{x^{3}}+4 x$
(iv) $\lim _{x \rightarrow 0} \frac{3}{x^{2}}=$
(v) $\lim _{x \rightarrow 0} \frac{2}{x}=$
(vi) $\lim _{x \rightarrow 1} \frac{x^{2}+1}{x+2}=$
(vii) $\lim _{x \rightarrow 1} \frac{1}{x^{1 / 3}}=$
(viii) $\lim _{x \rightarrow 1} \frac{1}{x^{1 / 3}}-\frac{1}{x^{3}}=$
(ix) $\lim _{x \rightarrow 1} \frac{x-2 x+1}{x-1}=$
(x) $\lim _{x \rightarrow 4^{-}} 3 x+1=$
7. [3 points] Let

$$
f(x)= \begin{cases}x & \text { if } x<1 \\ x^{2}+1 & \text { if } x \geq 1\end{cases}
$$

Give each of the following limits. If the limit does not exist, write DNE.

$$
\begin{array}{r}
\text { (i) } \lim _{x \rightarrow 1^{-}} f(x)= \\
\text { (ii) } \lim _{x \rightarrow 1^{+}} f(x)= \\
\text { (iii) } \lim _{x \rightarrow 1} f(x)=
\end{array}
$$

8. [3 points] Let

$$
g(x)= \begin{cases}-x & \text { if } x \leq 0 \\ \sqrt{x} & \text { if } x>0\end{cases}
$$

Give each of the following limits. If the limit does not exist, write DNE.
(i) $\lim _{x \rightarrow 0^{-}} f(x)=$
(ii) $\lim _{x \rightarrow 0^{+}} f(x)=$
(iii) $\lim _{x \rightarrow 0} f(x)=$
9. [1 point] Suppose

$$
\lim _{x \rightarrow 5} f(x)=3, \quad \lim _{x \rightarrow 5} g(x)=7
$$

What is $\lim _{x \rightarrow 5^{-}} \frac{f(x)}{g(x)} ?$
10. [1 point] What is the domain of the function $f(x)=\sqrt{1-x^{2}}$? Express the answer using interval notation.
11. [1 point] Let $f(x)=3 x+1$ and $g(x)=3 x-1$. What is $g \circ f(1)$?

