
AMAT/TMAT 118

The Precise Definition of a Limit

Stewart gives the precise definition of a limit in Section 2.4, using a tra-
ditional ε-δ formulation. This is a good way of giving the definition, and
has its advantages. In class, I gave an alternative (but equivalent) version
of the definition. My version requires a bit of an investment in language to
state. But I feel that once the language is established, this definition ex-
presses the geometric intuition behind limits more transparently. In these
notes, I present both definitions.

1 Preliminary Definitions

Images of Sets Under Functions Given f : S → T any function and
U ⊂ S, define f(U) ⊂ T by

f(U) = {t ∈ T | t = f(s) for some s ∈ U}.

Intuitively, f(U) is the subset of T consisting of all elements that are hit by
elements of U . Note that range f = f(S), so this definition generalizes the
definition of range to arbitrary subset of U .

Exercise 1. Let S = {A,B,C}, T = {X, Y, Z}, and f : S → T be given by
f(A) = X, f(B) = Y , f(C) = X. Let U = {A,B}. What is f(U)?

Answer: f(U) = {X, Y }.

Exercise 2. Let f : R → R be given by f(x) = x2. Let I be the interval
[−1, 1], J be the interval (−1, 1), and K be the interval (0,∞). Express each
of f(I), f(J), f(K), and f(R) in interval form.

Answer: f(I) = [0, 1], f(J) = [0, 1), f(K) = (0,∞), f(R) = (0,∞).

Balls and Punctured Balls For p ∈ R, a ball centered around a point p
is simply an interval of the form (p− ε, p+ ε) for some ε > 0.

For p ∈ R, a punctured ball centered around p is a set of the form

(p− ε, p+ ε) \ {p}
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for some ε > 0. Note that we can write this set in a few different ways:

(p− ε, p+ ε) \ {p}
= (p− ε, p) ∪ (p, p+ ε)

= {x ∈ R | 0 < |x− p| < ε}.

Exercise 3. Is (0, 1) a ball centered around any point? If so, what point?

Exercise 4. Is [0, 1] a ball centered around any point? If so, what point?

2 Practice with “for every . . . there exists . . . ”

Expressions

As we will see below, the precise definition of a limit uses language of the form
“for every . . . there exists . . . .” Coupled with the other new ideas appearing
in the definition, this kind of language might be confusing for some. So before
giving the precise definition of a limit, we’ll practice a bit with this language,
via some examples and exercises.

Note: We covered most but not all of these in class.

Example 2.1. Let N = {0, 1, 2, . . .}. For every a ∈ N, there exists b ∈ N
with b > a. For example, we can take b = a+ 1. Or we could take b = a+ 2;
for each a, are many choices for b.

Exercise 5. Is it true that for every a ∈ N, there exists b ∈ N with b < a?

Example 2.2. Is it true that for every a ∈ [0, 1], there exists b ∈ [0, 1] with
b > a? No, because for a = 1, there is no b ∈ [0, 1] with b > a.

Exercise 6. Is it true that for every a ∈ (0, 1), there exists b ∈ (0, 1) with
b > a?

Exercise 7. Is it true that for every y ∈ Z, there exists z ∈ Z with z = −y?

Exercise 8. Is it true that for every y ∈ Z, there exists z ∈ Z with z = 1
y
?

Example 2.3. Let f : R → R be given by f(x) = x2. Is it true that for
every y ∈ R, there exists x with f(x) > y? Yes. For example, if y < 1, we
can take x = 1. If y > 1, we can take x = y. (To give a more intuitive but
less precise explanation, the answer is yes because we can make x2 arbitrarily
large by taking x to be large.)
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Exercise 9. Let f : R→ R be given by f(x) = −x2. Is it true that for every
y ∈ R, there exists x with f(x) > y?

Exercise 10. Let f : R→ R be given by f(x) = x. Is it true that for every
set T ⊂ R, there exists a set S ⊂ R with T ⊂ f(S) and S 6= R?

Exercise 11. Let f : R→ R be given by f(x) = x2. Is it true that for every
set T ⊂ R, there exists a set S ⊂ R with T ⊂ f(S)?

3 Limits

Definition 1 (Limit). Suppose we are given:

• S ⊂ R,

• p, L ∈ R such that S contains a punctured ball centered at p,

• a function f : S → R.

We write
lim
x→p

f(x) = L

if for every ball C centered at L, there exists a punctured ball B ⊂ S centered
at p with f(B) ⊂ C.

Like many things in math, this definition is best understood with a pic-
ture, like the one I showed in class.

Remark 3.1. Note that in the above definition, we do not require p ∈ S.
But we do require that S contains a punctured neighborhood of p.

Remark 3.2. It can be proven that if there exists L ∈ R with limx→p f(x) =
L, then such L is unique.

Traditional definition of a limit The traditional ε − δ definition of a
limit is as follows:

Definition 2 (ε-δ definition of a limit). Suppose we are given:

• S ⊂ R,
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• p, L ∈ R such that S contains a punctured ball centered at p,

• a function f : S → R,

we write
lim
x→p

f(x) = L

if for every ε > 0, there exists δ > 0 such that

if 0 < |x− p| < δ then |f(x)− L| ≤ ε.

Remark 3.3. You should take some some time to think about why this
definition is equivalent to the one above. Hint: The statement

if 0 < |x− p| < δ then |f(x)− L| ≤ ε.

is equivalent to the statement

for B the punctured ball (p− δ, p+ δ) \ {p}
and C the ball (L− ε, L+ ε), we have f(B) ⊂ C.

Example 3.4. Consider f : R \ {0} → R, given by f(x) = x. We explain
why

lim
x→1

f(x) = 1,

using the precise definition of a limit. For every ball C centered at L = 1, C
is of the form C = (1− ε, 1 + ε) for some ε > 0. We take B = C \ {1}. This
is a punctured ball centered at p = 1. Given how we defined f , it is clear
that f(B) = B ⊂ C. This shows that that

lim
x→1

f(x) = 1.

Example 3.5. Consider f : R→ R, given by

f(x) =

{
x x ≤ 1

x+ 1 otherwise
.

We explain why
lim
x→1

f(x)
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does not exist, using the precise definition of a limit. For B any punctured
ball centered around 1, we can write B = (1−δ, 1)∪(1, 1+δ), for some δ > 0.
Then f(B) = (1−δ, 1)∪(2, 2+δ). For any L in R and C = (L−1/2, L+1/2),
we cannot have f(B) ⊂ C, since f(B) contains a pair of points more than
distance 1 apart. This shows that

lim
x→1

f(x) 6= L.

Since this is true for any L ∈ R, the limit in question does not exist, as
claimed.
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