Limits Quiz

Name:

1 [2 points]. For $f: S \to T$ a function and $U \subset S$, give the definition of f(U) (that is, give the definition of the image of U under f). Answer:

$$f(U) = \{t \in T \mid t = f(s) \text{ for some } s \in U.\}$$

2 [3 points]. Let $S = \{A, B, C\}$, and let $f : S \to S$ be given by f(A) = B, f(B) = C, and f(C) = A. For each of the following choices of U, what is f(U)? (a) U = S, **Answer**: S.¹

(a) $U = \{B, C\}$, Answer: $\{B, C\}$. (b) $U = \{A, B\}$, Answer: $\{B, C\}$. (c) $U = \{B\}$, Answer: $\{C\}$.

3 [4 points]. Let $f : \mathbb{R} \to \mathbb{R}$ be given by f(x) = x + 1. For each of the following choices of U, what is f(U)?

(a) $U = \{0\}$, **Answer**: $\{1\}$ (b) U is the interval (0, 1), **Answer**: (1, 2)(c) U is the interval $(0, \infty)$, **Answer**: $(1, \infty)$ (d) $U = \mathbb{R}$ **Answer**: \mathbb{R} .

4 [1 point]. True or False: For every even integer z, there exists an odd integer y such that y = 2z. HINT: To get an idea of the answer, it may help to look at a few examples of even integers. **Answer**: False. For example take z = 2. 2z = 4 is even, so there is no such y.

5 [1 point]. Define a punctured ball centered at $p \in \mathbb{R}$, as I defined it in the notes and in class. **Answer**: A punctured ball centered at p is a set of the form

$$(p-\epsilon,p)\cup(p,p+\epsilon)$$

for some $\epsilon > 0$.

6 [1 point]. Is the singleton set $\{0\} \subset \mathbb{R}$ a punctured ball centered at 0? **Answer**: No.

7 [3 points]. Complete the following to give the intuitive definition of a limit:

Let f be a function defined near $p \in \mathbb{R}$, but not necessarily at p. We write

$$\lim_{x \to p} f(x) = L$$

if ____.

¹There was a typo in this question. It originally said $U = \{S\}$ instead of U = S. (For $U = \{S\}$, f(U) is not defined, which wasn't what I intended.) Given the typo, I awarded everyone full credit for this subproblem.

8. [3 points] Fill in the three blanks in the following precise definition of a limit. (Write the answers below the question). **Answer**: See the beginning of Section 2.2 in the textbook.

Suppose we are given:

• $S \subset \mathbb{R}$,

- $p, L \in \mathbb{R}$ such that S contains a punctured ball centered at p,
- a function $f: S \to \mathbb{R}$.

We write

$$\lim_{x \to p} f(x) = L$$

if for every $\dots(a)_{\dots}$, there exists $\dots(b)_{\dots}$ such that $\dots(c)_{\dots}$. **Answer**: There are two correct answers: Answer 1: (a) ball C centered at L(b) a punctured ball B centered at p(c) $f(B) \subset C$.

Answer 2: (a) $\epsilon > 0$ (b) $\delta > 0$ (c) if $0 < |x - p| < \delta$, then $|f(x) - L| < \epsilon$.