Name: \qquad

1. Evaluate each expression:
(a) -4^{3} Answer: -64
(b) 4^{-3} Answer: $\frac{1}{64}$
(c) $8^{-4 / 3}$ Answer: $\frac{1}{16}$
2. Simplify the expression $\left(\frac{x^{3 / 2} y^{3}}{x^{-1 / 2} y^{-1}}\right)^{-2}$. Answer: $\frac{1}{x^{4} y^{8}}$
3. Factor the polynomial $x^{4}-5 x^{3}+6 x^{2}$. Answer: $x^{2}(x-3)(x-2)$
4. Simplify the expression $\frac{\frac{x}{y}-\frac{y}{x}}{\frac{1}{y}-\frac{1}{x}}$. Answer: $x+y$
5. Solve the following equations:
(a) $3|x-4|=-9$, Answer: No solution exists: The product of two non-negative numbers is never negative. A common incorrect solution was $x=1,7$. This is what you get if you apply the usual solution method, but forget an important step.
(b) $-2 x(4-x)^{-1 / 2}+3 \sqrt{4-x}=0$. Answer: $\frac{5}{12}$
6. Solve the inequality $\frac{2 x-3}{x+1} \leq 1$. Write your answer using interval notation.

Answer: $(-1,4]$. Many students put $(-\infty, 4]$, which is wrong. The key to this problem is to remember that if you multiply both sides of an inequality by a negative number, then the direction of the inequality sign flips. So you need to break up the solution process into two cases. First, assume that $x+1$ is positive, i.e. $x>-1$, and solve. Then assume $x+1$ is negative, i.e. $x<1$, and solve.
7. State whether each equation is true for all possible vales of x and y. (Write true or false).
(a) $(x+y)^{2}=x^{2}+y^{2} \quad$ Answer: False.
(b) $(x y)^{1 / 3}=x^{1 / 3} y^{1 / 3} \quad$ Answer: True. It's true for any $x, y, a>0$ that $(x y)^{a}=x^{a} y^{a}$
(c) $\sqrt{x^{2}+y^{2}}=|x|+|y|$ Answer: False
(d) $\frac{1+x y}{y}=\frac{1}{y}+x$. (Assume $y \neq 0$.) Answer: True
(e) $\frac{1}{x-y}=\frac{1}{x}-\frac{1}{y}$. (Assume $x \neq 0, y \neq 0$, and $x-y \neq 0$.) Answer: False.
8. Find the equation for the line that:
(a) passes through the points $(1,2)$ and $(0,1)$, Answer: $y=x+1$
(b) passes through $(1,2)$ and is vertical, Answer: $x=1$
(c) passes through $(1,2)$ and is parallel to the line $y=x$. Answer: $y=x+1$
9. Find the equation for the circle which has the line segment from $(1,1)$ to $(-1,-1)$ as a diameter. Answer: $x^{2}+y^{2}=2$. The center of the circle is the midpoint of the line segment, which is $(0,0)$. By the pathagorian theorem the radius of the circle is $\sqrt{2}$. The result now follows from the standard formula for the equation of a circle.
10. Sketch the region in the xy-plane defined by the inequalities $x^{2} \leq y \leq 1$.

