1. Evaluate each expression:

(a)
$$-4^3$$

(b) 4^{-3}
(c) $8^{-4/3}$

Name: ____

2. Simplify the expression $\left(\frac{x^{3/2}y^3}{x^{-1/2}y^{-1}}\right)^{-2}$.

- 3. Factor the polynomial $x^4 5x^3 + 6x^2$.
- 4. Simplify the expression $\frac{\frac{x}{y} \frac{y}{x}}{\frac{1}{y} \frac{1}{x}}$.
- 5. Solve the following equations:
 - (a) 3|x-4| = -9, (b) $-2x(4-x)^{-1/2} + 3\sqrt{4-x} = 0$.

6. Solve the inequality $\frac{2x-3}{x+1} \leq 1$. Write your answer using interval notation.

7. State whether each equation is true for all possible vales of x and y. (Write true or false).

(a)
$$(x+y)^2 = x^2 + y^2$$

(b) $(xy)^{1/3} = x^{1/3}y^{1/3}$
(c) $\sqrt{x^2 + y^2} = |x| + |y|$
(d) $\frac{1+xy}{y} = \frac{1}{y} + x$. (Assume $y \neq 0$.)
(e) $\frac{1}{x-y} = \frac{1}{x} - \frac{1}{y}$. (Assume $x \neq 0, y \neq 0$, and $x - y \neq 0$.)

8. Find the equation for the line that:

- (a) passes through the points (1, 2) and (0, 1),
- (b) passes through (1,2) and is vertical,
- (c) passes through (1,2) and is parallel to the line y = x.

9. Find the equation for the circle which has the line segment from (1,1) to (-1,-1) as a diameter.

10. Sketch the region in the xy-plane defined by the inequalities $x^2 \le y \le 1$.