Name: \qquad

1. Evaluate each expression:
(a) -4^{3}
(b) 4^{-3}
(c) $8^{-4 / 3}$
2. Simplify the expression $\left(\frac{x^{3 / 2} y^{3}}{x^{-1 / 2} y^{-1}}\right)^{-2}$.
3. Factor the polynomial $x^{4}-5 x^{3}+6 x^{2}$.
4. Simplify the expression $\frac{\frac{x}{y}-\frac{y}{x}}{\frac{1}{y}-\frac{1}{x}}$.
5. Solve the following equations:
(a) $3|x-4|=-9$,
(b) $-2 x(4-x)^{-1 / 2}+3 \sqrt{4-x}=0$.
6. Solve the inequality $\frac{2 x-3}{x+1} \leq 1$. Write your answer using interval notation.
7. State whether each equation is true for all possible vales of x and y. (Write true or false).
(a) $(x+y)^{2}=x^{2}+y^{2}$
(b) $(x y)^{1 / 3}=x^{1 / 3} y^{1 / 3}$
(c) $\sqrt{x^{2}+y^{2}}=|x|+|y|$
(d) $\frac{1+x y}{y}=\frac{1}{y}+x . \quad$ (Assume $y \neq 0$.)
(e) $\frac{1}{x-y}=\frac{1}{x}-\frac{1}{y}$. (Assume $x \neq 0, y \neq 0$, and $x-y \neq 0$.)
8. Find the equation for the line that:
(a) passes through the points $(1,2)$ and $(0,1)$,
(b) passes through $(1,2)$ and is vertical,
(c) passes through $(1,2)$ and is parallel to the line $y=x$.
9. Find the equation for the circle which has the line segment from $(1,1)$ to $(-1,-1)$ as a diameter.
10. Sketch the region in the xy-plane defined by the inequalities $x^{2} \leq y \leq 1$.
