Math 4242 Sec 40
Name: \qquad

Question 1. Let $B=\left\{\binom{1}{1},\binom{1}{-1}\right\}$. Note that B is an (ordered) basis for \mathbb{R}^{2}. Find $\left[\binom{2}{4}\right]_{B}$, the coordinate representation of $\binom{2}{4}$ with respect to B.

Answer: $\left[\binom{2}{4}\right]_{B}=\binom{a}{b}$, where

$$
a\binom{1}{1}+b\binom{1}{-1}=\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right)\binom{a}{b}=\binom{2}{4} .
$$

Solving the system via the usual method we find $\binom{a}{b}=\binom{3}{-1}$.
Question 2. Let $M^{2 \times 2}$ denote the usual vector space of 2×2 matrices with coefficients in R. Let

$$
\mathcal{S}=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right),\right\}
$$

denote the standard (ordered) basis for $M^{2 \times 2}$. Let

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

For $T: M^{2 \times 2} \rightarrow M^{2 \times 2}$ the linear map given by $T(X)=A X$, find $[T]_{\mathcal{S}}$, the coordinate representation of T with respect to \mathcal{S}.

Answer: Denote the elements of \mathcal{S} as $b_{1}, b_{2}, b_{3}, b_{4}$, respectively. Then

$$
\begin{gathered}
{[T]_{\mathcal{S}}=\left(\left[T\left(b_{1}\right)\right]_{\mathcal{S}}\left|\left[T\left(b_{2}\right)\right]_{\mathcal{S}}\right|\left[T\left(b_{3}\right)\right]_{\mathcal{S}} \mid\left[T\left(b_{4}\right)\right]_{\mathcal{S}}\right)} \\
T\left(b_{1}\right)=b_{1}, \quad T\left(b_{2}\right)=b_{2}, \quad T\left(b_{3}\right)=b_{1}+b_{3}, \quad T\left(b_{4}\right)=b_{2}+b_{4}
\end{gathered}
$$

Thus

$$
[T]_{\mathcal{S}}=\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

