Name: \qquad

1. (3 points) For $A=\left(\begin{array}{rrrr}1 & 1 & 1 & 3 \\ 2 & 0 & -2 & 6 \\ -2 & 2 & 2 & -10 \\ 0 & -2 & 0 & 4\end{array}\right)$, is the set of columns of A linearly independent? Show that your answer is correct.

Answer: No: We reduce A to row echelon form to obtain the matrix

$$
\left(\begin{array}{rrrr}
1 & 1 & 1 & 3 \\
0 & -2 & -4 & 0 \\
0 & 0 & -4 & -4 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

This matrix has a non-basic column, so $N(A) \neq\{\overrightarrow{0}\}$. Hence, the set of columns of A is linearly dependent.
2. (3 points) For A as in problem 1 , give two different bases B_{1}, B_{2} for $\mathcal{R}(A)$, the range of A. Explain why these are in fact bases.

Hint: you may find it helpful to use fact that performing row operations on a matrix preserves any linear dependencies amongst the columns; this was shown in Meyer Chapter 3 (top of page 136), and discussed in class a while ago.

Answer: Usually, a vector space has many bases, and $\mathcal{R}(A)$ is no exception. So there are many correct answers to this problem. Here's one answer:

As explained in Meyer, the basic columns of A form a basis for $\mathcal{R}(A)$. Hence, by problem 1), $S=\left\{A_{* 1}, A_{* 2}, A_{* 3}\right\}$ is a basis for $\mathcal{R}(A)$.

Another basis for $\mathcal{R}(A)$ is given, for example, by $S^{\prime}=\left\{2 A_{* 1}, A_{* 2}, A_{* 3}\right\}$.

$$
\operatorname{spn}\left(S^{\prime}\right)=\operatorname{Span}(\mathrm{S})=\mathcal{R}(\mathrm{A})
$$

because $S^{\prime} \subset \operatorname{Span}(\mathrm{S})$ and $S \subset \operatorname{Span}\left(\mathrm{~S}^{\prime}\right)$. Furthermore S^{\prime} is linearly independent because if

$$
r_{1}\left(2 A_{* 1}\right)+r_{2} A_{* 2}+r_{3} A_{* 3}=\left(2 r_{1}\right) A_{* 1}+r_{2} A_{* 2}+r_{3} A_{* 3}=\overrightarrow{0}
$$

then by the linear independence of $S, r_{1}=r_{2}=r_{3}=0$.
For a slightly more interesting answer, yet another basis is given by $S^{\prime \prime}=$ $\left\{A_{* 1}, A_{* 2}, A_{* 4}\right\}$. By considering the reduced echelon form of A, and appealing to the hint, we can see that $S^{\prime \prime}$ is linearly independent and that $\operatorname{Span}\left(S^{\prime \prime}\right)=\operatorname{Span}\left(S^{\prime}\right)$, so $S^{\prime \prime}$ is in fact a basis.

IMPORTANT NOTE: It is usually not true that for B a row echelon form of A, the basic columns of B themselves form a basis for $\mathcal{R}(A)$: Usually $\mathcal{R}(\mathcal{A})$ and $\mathcal{R}(\mathcal{B})$ will be different. (Can you find a simple example which demonstrates this?)
3. (2 points) For $S=\left\{\binom{1}{0},\binom{0}{1},\binom{3}{0},\binom{1}{-1}\right\}$, write down all subsets of S which are bases for \mathbb{R}^{2}.

Answer:

$\operatorname{dim} \mathbb{R}^{2}=2$, so by Proposition 3.1 from (the revised version of) my notes, any linearly independent subset $Q \subset S$ with $|Q|=2$ is a basis for \mathbb{R}^{2}. Hence every 2-element subset of S except $\left\{\binom{1}{0},\binom{3}{0}\right\}$ is a basis for \mathbb{R}^{2}.
4. (2 points) Let $\mathcal{B}=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ be a basis for a vector space V.

Prove that each $v \in V$ can be expressed as a linear combination of the b_{i} 's:

$$
v=\alpha_{1} b_{1}+\alpha_{2} b_{2}+\cdots+\alpha_{n} b_{n}
$$

in only one way-i.e., the coordinates α_{i} are unique.
Answer: If

$$
v=\alpha_{1} b_{1}+\alpha_{2} b_{2}+\cdots+\alpha_{n} b_{n}=\beta_{1} b_{1}+\beta_{2} b_{2}+\cdots+\beta_{n} b_{n}
$$

then

$$
\left(\alpha_{1}-\beta_{1}\right) b_{1}+\left(\alpha_{2}-\beta_{2}\right) b_{2}+\cdots+\left(\alpha_{n}-\beta_{n}\right) b_{n}=\overrightarrow{0}
$$

By the linear independence of $B, \alpha_{i}-\beta_{i}=0$ for each i, so $\alpha_{i}=\beta_{i}$ for each i. This gives the result.
5. Bonus (2 points) : Note that in view of the result you proved in 4, for any finite basis $\mathcal{B}=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ of a vector space V, we obtain a well defined function $L_{\mathcal{B}}: V \rightarrow \mathbb{R}^{n}$, defined by

$$
L_{\mathcal{B}}\left(\alpha_{1} b_{1}+\alpha_{2} b_{2}+\cdots+\alpha_{n} b_{n}\right)=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)^{T} .
$$

New terminology: We call an invertible linear map an isomorphism.
Prove that $L_{\mathcal{B}}$ is an isomorphism.
Answer: To show that L_{β} is linear for any $v, v^{\prime} \in V$, write

$$
\begin{gathered}
v=\alpha_{1} b_{1}+\cdots \alpha_{n} b_{n} \\
v^{\prime}=\alpha_{1}^{\prime} b_{1}+\cdots \alpha_{n}^{\prime} b_{n} . \\
L_{\mathcal{B}}\left(v+v^{\prime}\right)=L_{\mathcal{B}}\left(\left(\alpha_{1}+\alpha_{1}^{\prime}\right) b_{1}+\cdots+\left(\alpha_{n}+\alpha_{n}^{\prime}\right) b_{n}\right) \\
=\left(\left(\alpha_{1}+\alpha_{1}^{\prime}\right), \ldots,\left(\alpha_{n}+\alpha_{n}^{\prime}\right)\right) \\
=\left(\alpha_{1}, \ldots, \alpha_{n}^{\prime}\right)+\left(\alpha_{1}^{\prime}, \ldots, \alpha_{n}^{\prime}\right) \\
= \\
L_{\mathcal{B}}(v)+L_{\mathcal{B}}\left(v^{\prime}\right) .
\end{gathered}
$$

A similar argument shows that $L_{\mathcal{B}}(c v)=c L_{\mathcal{B}}(v)$ for all scalars c. Hence $L_{\mathcal{B}}$ is linear.

Further, $L_{\mathcal{B}}$ is invertible: $L_{\mathcal{B}}^{-1}: \mathbb{R}^{n} \rightarrow V$ is given by

$$
L_{\mathcal{B}}^{-1}\left(\alpha_{1}, \ldots, \alpha_{n}\right)=\alpha_{1} b_{1}+\alpha_{2} b_{2}+\cdots+\alpha_{n} b_{n} .
$$

It's clear that $L_{\mathcal{B}} \circ L_{\mathcal{B}}^{-1}(v)=\operatorname{Id}_{\mathbb{R}^{\mathrm{n}}}$ and $L_{\mathcal{B}}^{-1} \circ L_{\mathcal{B}}=\mathrm{Id}_{\mathrm{V}}$, so that these functions are in fact inverses.

