Name: \qquad

1. (3 points) For $A=\left(\begin{array}{rrrr}1 & 0 & -1 & 3 \\ 1 & 1 & 1 & 3 \\ -1 & 1 & 1 & -5 \\ 0 & -1 & 0 & 2\end{array}\right)$, find a set of vectors S such that $\operatorname{Span}(\mathrm{S})=\mathcal{N}(\mathrm{A})$, where $\mathcal{N}(A)$ denotes the null space of A.
2. (2 points) Is

$$
v=\left(\begin{array}{r}
3 \\
3 \\
-5 \\
2
\end{array}\right) \in \operatorname{Span}\left\{\left(\begin{array}{r}
1 \\
1 \\
-1 \\
0
\end{array}\right),\left(\begin{array}{r}
0 \\
1 \\
1 \\
-1
\end{array}\right),\left(\begin{array}{r}
-1 \\
1 \\
1 \\
0
\end{array}\right)\right\} ?
$$

Justify your answer. [Hint: You should be able to leverage some of your work on problem 1 to solve this problem.]
3. (2 points) Prove that in any vector space V, the cancellation law holds: For $a, b, c \in V$, if $a+b=a+c$, then $b=c$. Show all steps, and be clear about how you are using the vector space axioms.

Answer: One of the vector space axioms tells us that for any $v \in V$, there exists some element $-v \in V$ with $v+(-v)=0$; for any $v_{1}, v_{2} \in V, v_{1}-v_{2}$ is defined as $v_{1}+\left(-v_{2}\right)$. We have
$a+b=a+c \Longrightarrow(a+b)-a=(a+c)-a$. By commutativity of addition, then, $(a-a)+b=(a-a)+c \Longrightarrow \overrightarrow{0}+b=\overrightarrow{0}+c$. But for any $v \in V$, $\overrightarrow{0}+v=v$, so we have that $b=c$ as desired.
4. (3 points) Prove that for any field F and vector space $V, \alpha \overrightarrow{0}=\overrightarrow{0}$ for all $\alpha \in F$. Show all steps, and be clear about how you are using the vector space axioms. [Hints: You may want to use the cancellation law from problem 2. You may also find it helpful to use the fact that $\overrightarrow{0}+\overrightarrow{0}=\overrightarrow{0}$.]

Answer: The answer is given as a part of the solution to the first question in the supplement to homework 6.
5. (Bonus, 2 points) For $T: V \rightarrow W$ a linear map between vector spaces, prove that $\operatorname{ker}(T)=\{\overrightarrow{0}\}$ if and only if T is $1-1$.

Answer: First, to be clear, 1-1 here means the same thing as "injective." If T is $1-1$, then for every $w \in W$, there is at most one $v \in V$ with $T(v)=w$. Taking $w=\overrightarrow{0}$, we have that $\operatorname{ker}(T)$ contains at most one element. Thus it suffices to check that for any linear map $T, T(\overrightarrow{0})=\overrightarrow{0}$. (Note that I am using $\overrightarrow{0}$ to denote both the zero vector in V and the zero vector in W.) $T(\overrightarrow{0})=T(\overrightarrow{0}+\overrightarrow{0})=T(\overrightarrow{0})+T(\overrightarrow{0})$, so by the cancellation law, $T(\overrightarrow{0})=\overrightarrow{0}$. Thus $\operatorname{ker}(T)=\{\overrightarrow{0}\}$.

Conversely, suppose $\operatorname{ker}(T)=\{\overrightarrow{0}\}$. We need to show that for any v_{1}, v_{2} with $T\left(v_{1}\right)=T\left(v_{2}\right), v_{1}=v_{2} . \overrightarrow{0}=T\left(v_{1}\right)-T\left(v_{2}\right)=T\left(v_{1}-v_{2}\right)$, so $v_{1}-v_{2} \in \operatorname{ker}(T)$. But since $\operatorname{ker}(T)=\{\overrightarrow{0}\}$, we have $v_{1}-v_{2}=\overrightarrow{0}$. Thus $v_{1}=v_{2}$.

