1. (2 points) Does there exist an invertible diagonal matrix A such that $A_{i i}=0$ for some i ? If so, give an example of such a matrix A. If not, show that such a matrix cannot exist.

Answer: There does not exist such a matrix: If A is a diagonal matrix with $A_{i i}=0$ then in fact $A_{* i}=\overrightarrow{0}$. If A is invertible then by the element-wise definition of matrix multiplication,
$\left(A^{-1} A\right)_{i i}=A_{i *}^{-1} A_{* i}=A_{i *}^{-1} \overrightarrow{0}=0$. But by the definition of an inverse, we must have $A^{-1} A=I$, and in particular $\left(A^{-1} A\right)_{i i}=1$, contradicting the above. We conclude that an inverse of A cannot exist.
2. (3 points) For

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2 \\
3 & 3 & 3
\end{array}\right)
$$

Find a matrix E such that

$$
E A=\left(\begin{array}{lll}
3 & 3 & 3 \\
1 & 1 & 1 \\
2 & 2 & 2
\end{array}\right)
$$

Answer: We obtain the second matrix from A by first switching rows 1 and 2 in A, and then switching rows 3 and 1 in the resulting matrix.
Therefore $E=E_{2} E_{1}$, where

$$
E_{2}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right), \quad E_{1}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Thus,

$$
E=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) .
$$

3. (2 points) For E as in problem 2, what is E^{-1} ? [Hint: Recall from class that for P an elementary matrix of type one, $P^{-1}=P$.]

Answer: $E^{-1}=\left(E_{2} E_{1}\right)^{-1}=E_{1}^{-1} E_{2}^{-1}$. From the hint, $E_{1}^{-1}=E_{1}$ and $E_{2}^{-1}=E_{2}$, so

$$
E^{-1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right) .
$$

4. (3 points) By performing Gaussian Elimination on the matrix

$$
A=\left(\begin{array}{rr}
2 & 1 \\
6 & 2 \\
-2 & 2
\end{array}\right)
$$

Find a matrix E such that $E A$ is in row echelon form.
[Hint: What elementary row operations do I need to do in order to put A into row echelon form? What are the matrix representatives of these row operations?]

Answer: To put A in row echelon form via Gaussian Elimination, we perform the following 3 elementary matrix operations:
(1) add -3 times the first row to the second row,
(2) add the first row to the third row,
(3) add 3 times the second row to the third row.

Thus we may take

$$
E=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 3 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{rrr}
1 & 0 & 0 \\
-3 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{rrr}
1 & 0 & 0 \\
-3 & 1 & 0 \\
-8 & 3 & 1
\end{array}\right) .
$$

