Quiz 2 Partial Solutions

 (Problems 4+5)1. (1.5 points) Which of the following numbers can be represented EXACTLY in base-10 floating point arithmetic with 3 digits of precision? (Identify all of them.)
(a) 2.201
(b) . 000304
(c) 100.04
2. (3 points) Use 3 -digit, base-10 floating point arithmetic and Gaussian elimination with partial pivoting to obtain an approximate solution the system

$$
\begin{aligned}
-10^{-5} x+y & =1 \\
x+2 y & =2 .
\end{aligned}
$$

3. (2.5 points) Find the general solution to the system

$$
\begin{aligned}
-x_{1}+2 x_{2}+x_{3}-x_{4}+x_{5} & =0 \\
-x_{2}-x_{3}+x_{4}+x_{5} & =0 \\
2 x_{1}-x_{2}+x_{3}-x_{5} & =0
\end{aligned}
$$

4. (1 point) Building on your solution to problem 3, give the general solution to the system

$$
\begin{aligned}
-x_{1}+2 x_{2}+x_{3}-x_{4}+x_{5}= & -1 \\
-x_{2}-x_{3}+x_{4}+x_{5}= & 1 \\
2 x_{1}-x_{2}+x_{3}-x_{5}= & 0
\end{aligned}
$$

Solution. It's easy to see by inspection that $(0,0,0,1,0)$ is a solution to this system. Thus, the general solution to this system is given by $(0,0,0,1,0)+G_{h}$ where, G_{h} is the general solution to the corresponding homogeneous system, which you already computed in problem 3.
5. (2 points) Consider the matrix

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

For which vectors $\vec{b} \in \mathbb{R}^{3}$ is the set of solutions to the system $A \vec{x}=\vec{b}$ closed under addition?
(The set of solutions to $A \vec{x}=\vec{b}$ is said to be closed under addition if for any pair \vec{x}_{1}, \vec{x}_{2} of solutions to $A \vec{x}=\vec{b}, \vec{x}_{1}+\vec{x}_{2}$ is also a solution to $A \vec{x}=\vec{b}$.) HINT: If the solution set to $A \vec{x}=\vec{b}$ is empty, then it is closed under addition. When is a non-empty set of solutions to $A \vec{x}=\vec{b}$ closed under addition?

Solution. Let $S(A \vec{x}=\vec{b})$ denote the solution set to $A \vec{x}=\vec{b}$. There are two cases we need to consider: First, it may be that $S(A \vec{x}=\vec{b})$ is closed under addition because it is empty. Second, we may have that $S(A \vec{x}=\vec{b})$ is closed under addition and non-empty. We need to find the possible values of \vec{b} for both cases.

First, let's find all the values of \vec{b} such that $S(A \vec{x}=\vec{b})$ is empty. If $\vec{b}=\left(b_{1}, b_{2}, b_{3}\right)$, with $b_{3} \neq 0$, then $S(A \vec{x}=\vec{b})$ is empty because the third equation in the system is $0=b_{3}$, which has no solution.

On the other hand, if $b_{3}=0$, then performing a backsolve gives that the general solution to $A \vec{x}=\vec{b}$ is

$$
A=\left(\begin{array}{r}
-b_{1}-b_{2} \\
b_{2} \\
0
\end{array}\right)+x_{3}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),
$$

so if $b_{3}=0, S(A \vec{x}=\vec{b})$ is non-empty. This shows that $S(A \vec{x}=\vec{b})$ is empty if and only if $b_{3}=0$. [Note: by the same reasoning, any time a system in row echelon form does not have any equation of the form $0=c_{1}$ for $c_{1} \in \mathbb{R}$ $c_{1} \neq 0$, the system has at least one solution.]

Now suppose that $S(A \vec{x}=\vec{b})$ is nonempty, and let both \vec{s} and \vec{t} be solutions to $A \vec{x}=\vec{b}$. We have $A(\vec{s}+\vec{t})=A \vec{s}+A \vec{t}=\vec{b}+\vec{b}=\overrightarrow{2} b$. If $S(A \vec{x}=\vec{b})$ is also closed under addition, then we also have that $A(\vec{s}+\vec{t})=\vec{b}$, implying that $\vec{b}=2 \vec{b}$, i.e., $\vec{b}=0$. Thus, if $S(A \vec{x}=\vec{b})$ is non-empty and closed under addition, then $\vec{b}=0$.

Conversely, if $\vec{b}=0$ then $A(\vec{s}+\vec{t})=A \vec{s}+A \vec{t}=\overrightarrow{0}+\overrightarrow{0}=\overrightarrow{0}$, so $S(A \vec{x}=\vec{b})$ is closed under addition. In summary, if $S(A \vec{x}=\vec{b})$ is non-empty, then $S(A \vec{x}=\vec{b})$ is closed under addition if and only if $\vec{b}=0$.

Putting together our analyses of cases $S(A \vec{x}=\vec{b})$ empty and $S(A \vec{x}=\vec{b})$ nonempty, we have that $S(A \vec{x}=\vec{b})$ is closed under addition if and only if $\vec{b}=0$ or $b_{3} \neq 0$.

