Name:

Question 1. (3 points) Let $A=\left(\begin{array}{ccc}1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 2 & 1\end{array}\right)$. Compute the determinant of $A$.

Answer: By the formula from class, the answer is $1^{*}-1+0^{*} 1+1^{*} 2=1$.
Question 2. (1 point) Let $B=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 2 & 1\end{array}\right)$. Building on your work from Question 1, give the determinant of $B$.

Answer: $B$ is obtained from $A$ by flipping the first and second rows, so by the properties of the determinant mentioned in class or in Meyer, $\operatorname{det}(B)=-$ $\operatorname{det}(\mathrm{A})=-1$.

Question 3. (3 points) Let $\operatorname{Id}_{\mathbb{R}^{3}}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ denote the identity map. What are the eigenvalues and eigenvectors of $\mathrm{Id}_{\mathbb{R}^{3}}$ ? [Hint: if you understand the definitions, you shouldn't have to do a big computation to answer this.]

Answer: Every $\vec{v} \in \mathbb{R}^{3}$ satisfies $\operatorname{Id}_{\mathbb{R}^{3}}(\vec{v})=\vec{v}$. Hence 1 is an eigenvalue for $\operatorname{Id}_{\mathbb{R}^{3}}$, and it is the only eigenvalue. Further, every non-zero vector in $\mathbb{R}^{3}$ is a 1-eigenvector of $\operatorname{Id}_{\mathbb{R}^{3}} . \overrightarrow{0}$ is not an eigenvector, by definition, so the eigenvectors of $\mathrm{Id}_{\mathbb{R}^{3}}$ are the non-zero vectors in $\mathbb{R}^{3}$.

Question 4. (3 points) By writing down and solving the characteristic polynomial, find all of the eigenvalues of $\left(\begin{array}{ll}3 & 0 \\ 1 & 4\end{array}\right)$.
Answer: $c_{A}(\lambda)=\operatorname{det}\left(\begin{array}{ll}3-\lambda & 0 \\ 1 & 4-\lambda\end{array}\right)=(3-\lambda)(4-\lambda)$. Setting $c_{A}(\lambda)=0$, we find that the eigenvalues of $A$ are 3 and 4 .

