
Math 4242 Sec 40

Supplemental Notes + Homework 8
(With Solutions)

1 Infinite Bases and Dimension

Though in this course we care mostly about vector spaces with finite bases,
even for this it is convenient to have the language of infinite bases at hand.
With that in mind, I’ll present the definitions of span, linearly independence,
and basis, in a way that make sense in both the finite and infinite settings.
The definitions are small tweaks of what I already presented in class.

For S a (possibly infinite) set in a vector space V over a field F , a linear
combination of elements in S is a finite sum

c1s1 + c2s2 + · · ·+ cksk,

with each ci ∈ F and each si ∈ S.
As before, we define Span(S), the span of S, to be the set of all linear

combinations of elements in S. Span(S) is a subspace of V .
A (possibly) infinite set S ∈ V is linearly independent if whenever

c1s1 + c2s2 + · · · + cksk = 0 for some ci ∈ F and the si distinct elements of
S, we have that each ci = 0. We regard an empty set of vectors as linearly
independent.

For V a vector space, a (possibly) infinite set B is a basis for V if

1. Span(B) = V,

2. B is linearly independent.

Note: the empty set is a basis for a “trivial” vector space containing only
single element ~0.

For a set S, we define |S| to be the number of elements in S, if S is finite.
Otherwise, we define |S| =∞.

Now we can state the result we proved (most of) in friday’s class, in a
more general form that makes sense for both finite and infinite bases:

Proposition 1.1. If B and D are both bases for a vector space V , then
|B| = |D|.
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Note that in particular Proposition 1.1 tells us that if a vector space V
has a finite basis, then all bases for V are finite.

Proof of Proposition 1.1. To keep notation simple, we’ll restrict attention to
the special case that B and D are finite; essentially the same proof gives the
result in general, though the notation gets a little more complex.

I’ll give the same proof from class, with some easy details omitted.
Write B = {b1, . . . , bk}. For each 0 ≤ q ≤ k, we construct bases Sq for

V by removing q elements of D and adding in the first q elements of Q. We
do this inductively, first constructing S1, by removing a single element of D
and adding in b1; then we construct S2 by removing a second element of D
from S1 and adding in b2; and so on, until we have constructed Sk. Then
in particular, Sk is a basis for V containing B. But since a basis for V is a
minimal spanning set for V , we must have that Sk = B. Since |Sk| = |D| by
construction, we have |B| = |D|, which gives the result.

For the case q = 0, we take S0 = B. This is clearly a basis. Now assume
that for some q, 1 ≤ q ≤ k, we have constructed Sq−1 as above. We construct
Sq. Write Sq−1 = {s1, . . . sl}. Since Sq−1 is a basis, bq ∈ Span(Sq−1), so we
may write

bq =
l∑

j=1

cjsj

for some scalars cj. Since B is linear independent, so is any subset of B (make
sure you understand why). Then, by the linear independence of {b1, . . . , bq},
there must exist some si ∈ Sq−1 ∩D such that ci is non-zero.

We define Sq = Sq ∪ {bq} − {si}; in other words, we form Sq from Sq−1
by adding in bq and removing si. Given the assumptions on Sq−1 it is clear
that Sq is formed by removing a set Dq of size q from D and adding in the
elements {b1, . . . , bq}, as desired.

It remains to check that Sq is really a basis. We verified this in class for the
case q = 1. The verification for arbitrary q is the same and is straightforward.
I’ll omit it here.

Proposition 1.2. Any vector space has a basis.

We’ll omit the proof of Proposition 1.2. The proof, while not especially
complicated, requires the axiom of choice, an axiom from set theory, that
I’d rather not discuss now.
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Having presented the above results and definitions, we can now define the
dimension of an arbitrary vector space V by taking dim(V ) = |B|, for B any
basis of V . We say a vector space V is finite-dimensional if dim(V ) <∞.

Example 1.3.

1. dim(Rn) = n; the standard basis for Rn has n elements.

2. For any c ∈ R, V = {(x, y) ∈ Rn | y = cx} is a vector space with
dim(V ) = 1.

3. For any vector space V , {~0} is a subspace of V of dimension 0; the
empty set is a basis.

4. The vector space P of all polynomial functions R → R is an example
of an infinite-dimensional vector space;

S = {1, x, x2, . . .}

is a basis for P . It’s easy to see that Span(S) = P . Linear independence
of S follows from the fact that a non-zero polynomial of degree n has
at most n roots.

The following technical proposition yields a couple of intuitive and useful
results about subspaces:

Proposition 1.4. If V is a finite-dimensional vector space and W is a sub-
space of V , then any basis for W can be extended to a basis for V .

Proof. Let B0 be a basis for W . Choose a basis D = {v1, · · · , vk} for V .
Now for 1 ≤ i ≤ l, define Bi inductively, by taking Bi = Bi−1 if vi ∈

Span(Bi−1) and Bi = Bi−1 ∪ {vi} otherwise. Note that B0 ⊆ Bk. We’ll show
that Bk is a basis for V , which gives the result.

By construction, D ⊂ Span(Bk), so V = Span(D) ⊂ Span(B) ⊂ V . Thus
Span(Bk) = V . To prove that Bk is independent, we show more generally
that each Bi is linearly independent. To see this, we proceed inductively.
Note that B0 is linearly independent. Assume that Bi−1 is linearly inde-
pendent. Then it is pretty straightforward to check that Bi is a minimal
spanning set, hence linearly independent (check this!). Thus Bi is linearly
independent, as needed. We conclude that Bk is a basis for V .
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Exercise 1. Using Proposition 1.4, show that if dim(V ) < ∞ and W ⊆ V
then

dim(W ) ≤ dim(V ).

In particular, if V is finite-dimensional, then any subspace of V is finite-
dimensional.

Answer. Let B be a basis for W . Then by Proposition 1.4, there exists a set
B′ ⊂ V such that B ∪B′ is a basis for V . Thus we have

dim(W ) = |B| ≤ |B|+ |B′| = dim(V ).

Exercise 2. Using Proposition 1.4, show that if W is a subspace of V and
dim(V ) = dim(W ) <∞ then V = W .

Answer. Let B be a basis for W . Then by Proposition 1.4, there exists a set
B′ ⊂ V such that B ∪B′ is a basis for V . Therefore,

|B|+ |B′| = dim(V ) = dim(W ) = |B|.

It follows that |B′| = 0, i.e., B = ∅. Thus B is a basis for V . Since it is also
a basis for W , we have V = W .

2 The v.s.-theoretic Definition of Rank; Nul-

lity

Meyer defines the rank of a matrix A to be the number of pivots in any row
echelon form of A (or equivalently, the number of pivots in EA, the reduced
echelon form of A).

Let us now introduce the vector space-theoretic definition of rank, as well
as a similar definition of nullity. Once you get used to it, the v.s.-theoretic
definition of rank is very geometrically intuitive and elegant. When we ac-
tually do computations of rank, it is useful to also have Meyer’s definition in
mind. At the end of Section 6, you will verify in the exercises that the two
definitions are the same.

For any linear transformation T : V → W between vector spaces V and
W , define

rank(V ) = dim im(V ),
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and define
nullity(V ) = dim ker(V ).

For A a matrix, define

rank(A) = rank(TA),

and define
nullity(A) = nullity(TA).

Note that by definition rank(A) = dimR(A), the dimension of the range
(i.e., column space) of A, and nullity(A) is just the dimension of the space
of solutions to the system A~x = ~0.

Here is one of the central theorems of linear algebra:

Theorem 2.1 (Rank-Nullity Theorem). For T : V → W a linear transfor-
mation between vector spaces V and W with dim(V ) ≤ ∞,

dim(V ) = rank(T ) + nullity(T ).

Proof. By Exercise 1, we know ker(T ) has a finite basis. Let {u1, . . . ,um}
be a basis for ker(T ). By Proposition 1.4, we can extend this to a basis for
V :

{u1, . . . ,um,w1, . . . ,wn}.

Since nullity(T ) = dim ker(T ) = m and dim(V ) = m+ n, it suffices to show
that rank(T ) = dim im(T ) = n. To do this, we show that

{Tw1, . . . , Twn}

is a basis for im(T ).
Let v be an arbitrary vector in V . Then there exist scalars

a1, . . . , am, b1, . . . , bn

such that:
v = a1u1 + · · ·+ amum + b1w1 + · · ·+ bnwn.

Therefore,

Tv = a1Tu1 + · · ·+ amTum + b1Tw1 + · · ·+ bnTwn

= b1Tw1 + · · ·+ bnTwn,
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since each Tui = 0. Since every vector in imT is of the form Tv for some
v ∈ V , this shows that Span{Tw1, . . . , Twn} = T .

Now we check that {Tw1, . . . , Twn} is linearly independent: Suppose we
have scalars c1, . . . , cn with

c1Tw1 + · · ·+ cnTwn = 0.

Then by linearity,
T (c1w1 + · · ·+ cnwn) = 0.

That is,
c1w1 + · · ·+ cnwn ∈ ker(T ).

Then, since the ui form a basis for kerT , there exist scalars di such that:

c1w1 + · · ·+ cnwn = d1u1 + · · ·+ dmum.

Since {u1, . . . ,um,w1, . . . ,wn} is a basis for V , all the scalars ci and di must
be zero. Therefore, {Tw1, . . . , Twn} is linearly independent and is thus a
basis of for im(T ), as desired.

Exercise 3. Using Theorem 2.1, give a quick proof that the rank nullity
theorem for matrices also holds: For A any matrix,

# columns of A = rank(A) + nullity(A).

[Note: Once we establish that the two definitions of rank are the same, the
result of this exercise can also be deduced by observing that rank(A) is the
number of basic columns of A, and nullity(A) is the number of non-basic
columns of A; since every column is either basic or non-basic, the result
follows. This is Meyer’s argument in Section 4.4.]

Answer. By definition, rank(A) = rank(TA) and nullity(A) = nullity(TA).
Let n = # columns of A. Then TA is a linear map with domain Rn. By the
rank nullity theorem for linear maps, we have

rank(A) + nullity(A) = rank(TA) + nullity(TA) = n = # columns of A,

as desired.
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3 Verifying that a Set of Vectors is a Basis in

a Smarter Way

Proposition 3.1. Let V be a vector space of dimension n ≤ ∞ and let
S = {v1, v2, . . . , vn} ⊂ V . The following are equivalent:

1. S is a basis for V ,

2. S is linearly independent

3. Span(S) = V .

Proof. It’s clear that from the definition of a basis that 1 =⇒ 3 and
1 =⇒ 2. Let’s check that 2 =⇒ 1 and 3 =⇒ 1. The proof I showed in
class uses the rank nullity theorem. A student in class suggested a different
proof apprch, which I think is shorter and easier to follow than my proof
from class. In this revision of the note, I’ll share his approach.

First we show that 2 =⇒ 1. If S is linearly independent, then it is a
basis for Span(S). This implies that dim Span(S) = n. By Exercise 2, we
must have Span(S) = V , so S is a basis for V .

To show that 3 =⇒ 1, suppose that Span(S) = V . Then S contains a
minimal spanning set S ′ for V . We’ve seen that a minimal spanning set is a
basis, so S ′ is a basis for V . Since dim(V ) = n, it must be that |S ′| = n, so
in fact S ′ = S, which implies that S is a basis for V .

Exercise 4. Taking advantage of Proposition 3.1, show that the columns of

the matrix A =

 1 0 1
0 1 1
0 1 0

 form a basis for R3.

Answer. The row echelon form of A is

 1 0 1
0 1 1
0 0 −1

. This is a matrix with

no non-basic columns, so the nullspace of A is {~0}. Thus, the columns of A
are linearly independent. By Proposition 3.1 above, the columns of A form
a basis for R3.

I give another application of the rank-nullity theorem in Section 8 below.

7



4 Injections, Surections, Bijections, and In-

verses

Let’s review injective, surjective, and bijective functions. For any sets A, B,
a function f : A → B is an injection (or is 1-1) if whenever f(a) = f(a′),
we have a = a′. f is a surjection (or onto) if the image of f is all of B;
that is, for every b ∈ B we have f(a) = b for some a ∈ A. f is a bijection
if f is both an injection and a surjection.

A function g : B → A is an inverse of f if

g ◦ f = IdA,

f ◦ g = IdB .

Exercise 5. Show that f has an inverse if and only if f is a bijection.

Answer. Suppose f : A→ B has an inverse g : B → A, so that we have

g ◦ f = IdA,

f ◦ g = IdB .

Suppose f(a) = f(b). Then

a = g ◦ f(a) = g ◦ f(b) = b,

so f is injective. For b ∈ B, b = f ◦ g(b), i.e. b = f(g(b)) so f is surjective.
Hence f is a bijection.

Conversely, suppose f is a bijection. By surjectivity, for each b ∈ B there
is some b∗ ∈ A with f(b∗) = b; by injectivity, that element b∗ is unique. We
may thus define g : B → A by taking g(b) = b∗ for all b ∈ B. It is easy to
check that in fact g ◦ f = IdA and f ◦ g = IdB, so g is an inverse for f .

Exercise 6. Show that if f is a bijection, then its inverse is unique. [Hint:
The argument is very similar the argument that the inverse of an invertible
matrix is unique.]

Answer. Let g, h : B → A be two inverses for f : A→ B. We have

g = g ◦ IdB = g ◦ f ◦ h = IdA ◦h = h.
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We denote the inverse of f as f−1.

Exercise 7. Show that if f : A → B is a bijection and g : B → C is a
bijection, then g ◦ f : A→ C is a bijection.

Answer. It’s easy to check that g ◦ f has inverse f−1 ◦ g−1. Since g ◦ f has
an inverse, it is a bijection by Exercise 5.

5 Isomorphisms of Vector Spaces

We call a linear bijection of vector spaces an isomorphism. If there exists
an isomorphism T : V → W between vector spaces V and W , we say V and
W are isomorphic.

The word isomorphism derives from the Greek for “equal shape.” Intu-
itively, if two vector spaces are isomorphic, they have the same “structure” as
vector spaces. Even though they may be different as sets, isomorphic vector
spaces are the same in all ways that matter in linear algebra.

Remark 5.1. The notion of isomorphism of objects is pervasive in math-
ematics and extends well beyond vector space—mathematicians talk about
isomorphisms of all kinds of algebraic and geometric objects. The general
setting for talking about isomorphisms of mathematical objects is called cat-
egory theory.

Exercise 8. Show that if V and W are vector spaces and T : V → W is an
isomorphism, then T−1 is also linear.

Answer. We need to show that for w1, w2 ∈ W and α ∈ F ,

1. T−1(w1 + w2) = T−1(w1) + T−1(w2),

2. T−1(αw1) = αT−1(w1).

Using the linearity of T , we have

T◦T−1(w1+w2) = w1+w2 = T◦T−1(w1)+T◦T−1(w2) = T (T−1(w1)+T
−1(w2)).

T is an isomorphism, so is injective. Thus we have that

T−1(w1 + w2) = T−1(w1) + T−1(w2).

The argument that T−1(αw1) = αT−1(w1) is similar.
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The following appeared as a bonus question on Quiz 6:

Proposition 5.2. For T : V → W a linear map between vector spaces, prove
that ker(T ) = {~0} if and only if T is injective.

Proof. If T is injective, then for every w ∈ W , there is at most one v ∈ V
with T (v) = w. Taking w = ~0, we have that ker(T ) contains at most one
element. Thus to see that ker(T ) = {~0}, it suffices to observe that for any
linear map T , T (~0) = ~0: T (~0) = T (~0 +~0) = T (~0) + T (~0), so by the cancella-
tion law, T (~0) = ~0. Thus ker(T ) = {~0}.

Conversely, suppose ker(T ) = {~0}. To establish injectivity of T , we need
to show that for any v1, v2 with T (v1) = T (v2), v1 = v2. Then

~0 = T (v1)− T (v2) = T (v1 − v2),

so v1 − v2 ∈ ker(T ). But since ker(T ) = {~0}, we have v1 − v2 = ~0. Thus
v1 = v2.

Exercise 9. Show that if T : V → W is an isomorphism of finite-dimensional
vector spaces and S ⊂ V , then

(a) S is linearly independent if and only if T (S) is linearly independent.

(b) S is a basis for V if and only if T (S) is a basis for W .

(c) Conclude that if V and W are isomorphic vector spaces of finite di-
mension then dim(V ) = dim(W ).

[Note: The finite-dimension assumption is actually unnecessary here. That
is to just make your life a little simpler.]

Answer. Let S = {s1, sk, . . . , sk}.
To prove (a), Suppose S is linearly independent, and let us consider a

linear combination
~0 = c1T (s1) + · · ·+ ckT (sk).

We need to show that ci = 0 for each i. By linearity, we have

~0 = T (c1(s1) + · · ·+ ck(sk)).

Since T is an isomorphism, ker(T ) = {~0}, so

c1s1 + · · ·+ cksk = ~0.
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Since S is linearly independent, we have that ci = 0 for each i, as we wanted
to show.

Conversely, suppose T (S) is linearly independent. Then since T−1 is an
isomorphism, the argument above gives that T−1 ◦ T (S) = S is linearly
independent as well.

given (a), to prove (b), it suffices to show that Span(S) = V if and only
if Span(T (S)) = W . Because T is surjective, for any w ∈ W , there exists
v ∈ V with T (v) = w. If Span(S) = V then we may write

v = c1s1 + · · ·+ cksk.

Then by the linearity of T ,

w = c1T (s1) + · · ·+ ckT (sk).

Thus w ∈ Span(T (S)). Since w was an arbitrary vector in W , this shows
that Span(T (S)) = W .

Conversely, if Span(T (S)) = W , then since T−1 is an isomorphism, the
argument above gives that Span(T−1 ◦ T (S)) = Span(S) = V .

(c) |T (S)| = |S|, since T is a bijection. So from (b) we have

dim(V ) = |S| = |T (S)| = dim(W ).

Exercise 10. As a converse to the previous exercise, show that if V and
W are vector spaces with dim(V ) = dim(W ) ≤ ∞, then V and W are
isomorphic. [Hint: consider an arbitrary bijection between any bases for V
and W and extend this to an isomorphism.]

Answer. Let B = {b1, . . . , bk} and D = {d1, . . . , dk} be bases for V and W
respectively. We’ve seen that any v can be written as

v = v1b1 + · · ·+ vkbk

for unique scalars v1, . . . , vk. Thus we obtain a well-defined function T : V →
W by taking

T (v1b1 + · · ·+ vkbk) = v1d1 + · · ·+ vkdk.

T is invertible; T−1 : W → V is given by

T−1(w1d1 + · · ·+ wkdk) = (w1b1 + · · ·+ wkbk).
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It remains to check that T is linear. For v, v′ ∈ V , write v =
∑k

i=1 vibi
and v′ =

∑k
i=1 v

′
ibi.

T (v) + T (v′) =
k∑

i=1

vidi +
k∑

i=1

v′idi =
k∑

i=1

(vi + v′i)di = T (v + v′).

The check that T (cv) = cT (v) for all scalars c is essentially the same.

Exercise 11.

(a) Show that for any n ≥ 0, there exists an isomorphism between Rn+1

and the vector space P of polynomials of degree at most n.

(b) Show that for any m,n ≥ 1, there exists an isomorphism between Rmn

and Mm×n, the vector space of m× n matrices with real coefficients.

answer. In view of Exercise 10, to prove (a) it suffices to find a basis of size
n+ 1 for P . In fact,

S = {1, x, x2, . . . , xn}

is such a basis. Clearly, Span(S) = P . S is also linearly independent, by the
fundamental theorem of algebra, which tells us that a non-zero polynomial
of degree n has at most n -distinct roots.

To prove (b), let Sm×n denote the set of m × n matrices with exactly
one non-zero entry, equal to 1. Sm×n is clearly a basis for Mm×n. Since
|Sm×n| = mn = |Sn×m|, the result follows from Exercise 10.

6 Reconciling the v.s.-theoretic Definition of

Rank with Meyer’s Definition

Proposition 6.1. For linear maps F : U → V , G : V → W with U, V,W ,
finite dimensional,

1. rank(G ◦ F ) ≤ rank(G)

2. rank(G ◦ F ) ≤ rank(F ).
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Proof. By the definition of rank we have that

rank(G ◦ F ) = dim im(G ◦ F )

rank(F ) = dim im(F )

rank(G) = dim im(G).

To show 1, it suffices to show that im(G ◦ F ) ⊆ im(G), by Exercise 1. But
this is clear, because

im(G) = {G(v) | v ∈ V }
im(G ◦ F ) = {G(v) | v ∈ im(F )},

and im(F ) ⊆ V .
To show 2, note that the rank-nullity theorem tells us that

rank(G ◦ F ) = dim(U)− nullity(G ◦ F ),

rank(F ) = dim(U)− nullity(F ).

Thus, it suffices to show that nullity(G ◦ F ) ≥ nullity(F ). The rest of the
argument is similar to the argument for 1. By definition,

nullity(G ◦ F ) = dim ker(G ◦ F )

nullity(F ) = dim ker(F ),

so by Exercise 1, it’s enough to show that ker(F ) ⊆ ker(G ◦ F ). But this is
clearly true because for any u ∈ U with F (u) = ~0, we also have G◦F (u) = ~0.
This establishes 2, and thus completes the proof.

Proposition 6.2. If E : V → V and G : W → W are isomorphisms of
finite-dimensional vector spaces and F : V → W is a linear map, then

rank(G ◦ F ◦ E) = rank(F ).

Proof. It suffices to show that

rank(G ◦ F ◦ E) ≤ rank(F )

and
rank(F ) ≤ rank(G ◦ F ◦ E).

13



By Proposition 6.1, we have

rank((G ◦ F ) ◦ E) ≤ rank(G ◦ F ) ≤ rank(F ).

Note that F = G−1 ◦G ◦ F ◦ E ◦ E−1. Thus we have

rank(F ) = rank((G−1◦G◦F◦E)◦E−1) ≤ rank(G−1◦(G◦F◦E)) ≤ rank(G◦F◦E).

This gives the result.

Exercise 12. Prove that a square matrix A is invertible if and only if TA is
an isomorphism. [Hint: Recall that TIn = IdRn , the identity map on Rn.]

Answer. If A is an invertible n× n matrix, we have

AA−1 = In,

A−1A = In,

where In denotes the n× n identity matrix. Applying T to these equations,
and using the fact that TC ◦ TD = TCD for all matrices A, A−1 of the appro-
priate dimensions, we have

TA ◦ TA−1 = TAA−1 = IdRn

TA−1 ◦ TA = TA−1A = IdRn ,

so TA is an isomorphism with inverse TA−1 .
Conversely, if TA is an isomorphism, then we have

TA ◦ T−1A = IdRn ,

T−1A ◦ TA = IdRn .

Applying the “bracket map” to these equations, and using properties of T
and [·] established in class a while ago, we have

A[T−1A ] = [TA][T−1A ] = [TA ◦ T−1A ] = In,

[T−1A ]A = [T−1A ][TA] = [T−1A ◦ TA] = In.

so A is invertible, with A−1 = [T−1A ].

Exercise 13. Using Exercise 12 and Propsition 6.2, show that if A, B, and
C are matrices of dimensions m×m, m× n, and n× n, respectively, with A
and C non-singular, then

rank(ABC) = rank(B).

14



Answer.

rank(ABC) = rank(TABC) = rank(TA ◦ TB ◦ TC) = rank(TB) = rank(B);

the first and last equals follows from the definition of the rank of a matrix,
and the third inequality follows from Exercise 12 and Propsition 6.2.

Exercise 14. Using Exercise 13, explain why the rank of a matrix A, as
defined using the v.s.-theoretic definition, doesn’t change when we perform
elementary row and column operations on A.

Answer. Any sequence of elementary row and column operations can be per-
formed on A by multiplying A on the left and right, respectively, by prod-
ucts of elementary matrices. Elementary matrices are non-singular, and so
their products are non-singular as well. Thus the result follows from Exer-
cise 13.

Exercise 15. Show that for a matrix A in reduced echelon form, Meyer’s
definition of rank(A) and the v.s.-theoretic definition of rank(A) coincide.
Using exercise 14, conclude that for arbitrary matrices A, the two definitions
coincide. (For this, we only need to think about row operations, in fact.)

Answer.

rank(EA) = dim(R(EA))

= dim Span(columns of EA)

= dim Span(basic columns of EA)

= # of basic columns of EA,

where the third equality holds because the non-basic columns of EA are linear
combinations of the basic columns of EA; and last equality holds because the
basic columns of EA are standard basis vectors, so are linearly independent.

Since EA is obtained from A (via Gauss-Jordan elimination) by perform-
ing elementary row operations on A, we have rank(A) = rank(EA) by Ex-
ercise 14. Thus rank(A) = # of basic columns of EA. This shows that our
vector space definition of rank and Meyer’s definition coincide.
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7 Proving that rank(A) = rank(AT )

One of the very fundamental facts from basic linear algebra is that for any
matrix A, rank(A) = rank(AT ). The proof is not quite as obvious as you
might expect, but with the machinery we have now, it’s reasonably easy.
Meyer also gave a proof of this in 3.9, but I think it is more pleasant to treat
this this question with the v.s.-theoretic definition of rank in mind, so I’ve
waited on this.

First a lemma, which Meyer also established in Chapter 3.

Lemma 7.1. any matrix m × n has a factorization of the form A = UΣV ,
where U and V are non-singular matrices of dimension m and n, and Σ is
a block matrix of the form

Σ =

(
Ir 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

)
for some r; Here 0a×b denotes the a× b matrix consisting of all zeros.

Proof. To put A in reduced echelon form EA, we perform row operations.
By doing column operation of type III on EA, we can zero out the non-basic
columns of EA; then, via column operations of type I, we can move the basic
columns of the resulting matrix into the first r positions, giving a matrix Σ
as above. Thus we can transform A into Σ by performing row and column
operations on A. The row operations can be carried out by multiplying A on
the left by a non-singular matrix U ′. The column operations can be carried
out by multiplying A on the right by a non-singular matrix V ′ : Σ = U ′AV ′.
Taking U = U ′−1, V = V ′−1, we then have A = UΣV .

Theorem 7.2. For A any matrix, rank(A) = rank(AT ).

Proof. Consider the decomposition of A = UΣV as in Lemma 7.1. Clearly
rank(Σ) = r, so by Exercise 13, rank(A) = r. Now consider the transpose:
AT = V TΣTV T .

ΣT =

(
Ir 0r×(m−r)

0(n−r)×r 0(n−r)×(m−r)

)
,

so clearly we also have that rank(ΣT ) = r. The transpose of a nonsingular
matrix is non-singular (do you remember why?), so by Exercise 13 again, we
have that

rank(AT ) = r = rank(A).
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8 A Loose End on the Inverses of Matrices

In 3.7, Meyer proved the following

Proposition 8.1. If A and B are square matrices of the same dimension n
and AB = In then A and B are inverses; that is, BA = In, as well.

I think this is a very cool and fundamental fact, and it is needed to show
that we can compute the inverse on an n × n matrix by solving n systems
of linear equations. But I found Meyer’s proof ugly, so I skipped it in class.
Now, we are ready for a slick proof.

Proof. First we check that A is invertible.

TA ◦ TB = TAB = TIn ,

so TA must be surjective (check this). Thus

rank(TA) = dim im(TA) = dimRn = n.

By the rank-nullity theorem, then, nullity(TA) = 0, i.e. ker(TA) = {0}. By
Proposition 5.2 then, TA is injective. Thus TA an isomorphism. By Exercise
11, then, A is invertible.

We’ve seen that the inverse of a matrix is unique, if it exists, so A has a
unique inverse A−1. Multiplying the equation AB = In on the left by A−1

gives that B = A−1, as desired.
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