
Math 4242 Sec 40 Homework 6 Supplement

1. Let V be an arbitrary vector space over a field F . For α ∈ F and ~v ∈ V ,
show that αF = ~0 if and only if α = 0 or ~v = ~0. Be explicit about which
vector space axioms you are using.

Answer: Recall the cancellation property for vector spaces proven in

class: For any ~a,~b,~c ∈ V , if ~a+~b = ~a+ ~c then ~b = ~c.

Using this, we first show that 0~v = ~0 for all ~v ∈ V . We have

0~v = (0 + 0)~v = 0~v + 0~v.

Note also that 0~v = 0~v +~0 by (A4). Thus we have 0~v +~0 = 0~v + 0~v. Now

we apply the cancellation law to this equation, with ~a = 0~v, ~b = ~0, c = 0~v,
which gives ~0 = 0~v as desired.

Next we show that α~0 = ~0 for all ~α ∈ 0. The proof is similar to the above:

α~0 +~0 = α~0 = α(~0 +~0) = α~0 + α~0

by (A4) and (M4). Now apply the cancellation law as above.

We have shown that if α = 0 or ~v = ~0, then α~v = ~0. It remains to show the
converse. Suppose that α~v = ~0, and also that α 6= 0. We check that then
~v = ~0. Multiplying both sides of the equation α~v = ~0 on the left by 1

α gives
1
α(α~v) = 1

α
~0 = ~0, where the last equality follows from what we showed

above. But note that by (M2) and (M5),

1

α
(α~v) = (

1

α
α)~v = 1~v = ~v.

Thus we have ~v = ~0.

Now assume that α~v = ~0 and ~v 6= 0. We just showed that if α 6= 0, then
~v = ~0, so we must have that α = 0. We have now shown that if αF = ~0
then either α = 0 or ~v = ~0. This completes the proof. �

2.Let v1 ∈ R3 be a non-zero vector and suppose we have v2 ∈ R3 such that
v2 6∈ Span{v1}. Let w = v1 × v2 (the cross product of v1 and v2). Show
that Span{v1, v2} = P , where

P = {v ∈ R3 | w · v = 0},

the plane perpendicular to w and passing through ~0. [Hint: Show
Span{v1, v2} ⊆ P and P ⊆ Span{v1, v2}.]
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Answer: For any a, b ∈ R, w · (av1 + bv2) = aw · v1 + bw · v2 = 0 + 0 = 0,
because a cross product of two vectors is perpendicular to both vectors.
Thus any linear combination of v1, v2 is in P . Hence Span{v1, v2} ∈ P.

With a little more vector space theory, it would be very quick to check
that, in fact, Span{v1, v2} = P. An informal argument would be:
Span{v1, v2} is a subspace of P which strictly contains a line, so it is a
plane. Therefore it must be equal to the whole plane P . For now, this is
good enough for our purposes.

Here is a more rigorous (but laborious) proof in the “Meyer style,” using
the machinery we have. First, we observe that Span{v1, v2, w} = R3. To
show this, we argue by contradiction: If Span{v1, v2, w} 6= R3, then there is
some vector z ∈ R3 that is not a linear combination of {v1, v2, w}. Let
A = (v1|v2|w|z). v2 is not a multiple of v1 by assumption. Also since w is
perpendicular to both v1 and v2, w is not a linear combination of v1 and
v2. Hence, no column of A is a linear combination of previous columns.
Thus it must be that every column in A is basic. But since A has only 3
rows, this is impossible. Hence Span{v1, v2, w} = R3.

Thus for any v ∈ P we may write P = av1 + bv2 + cw for a, b, c ∈ R. But
then

0 = w · v = aw · v1 + bw · v2 + cw · w = cw · w.
w · w 6= 0, so we must have c = 0. Thus v ∈ Span{v1, v2}. This shows that
P ⊂ Span{v1, v2}. We conclude that P = Span{v1, v2} as claimed.


