1. Let V be an arbitrary vector space over a field F. For $\alpha \in F$ and $\vec{v} \in V$, show that $\alpha F=\overrightarrow{0}$ if and only if $\alpha=0$ or $\vec{v}=\overrightarrow{0}$. Be explicit about which vector space axioms you are using.

Answer: Recall the cancellation property for vector spaces proven in class: For any $\vec{a}, \vec{b}, \vec{c} \in V$, if $\vec{a}+\vec{b}=\vec{a}+\vec{c}$ then $\vec{b}=\vec{c}$.

Using this, we first show that $0 \vec{v}=\overrightarrow{0}$ for all $\vec{v} \in V$. We have

$$
0 \vec{v}=(0+0) \vec{v}=0 \vec{v}+0 \vec{v}
$$

Note also that $0 \vec{v}=0 \vec{v}+\overrightarrow{0}$ by (A4). Thus we have $0 \vec{v}+\overrightarrow{0}=0 \vec{v}+0 \vec{v}$. Now we apply the cancellation law to this equation, with $\vec{a}=0 \vec{v}, \vec{b}=\overrightarrow{0}, c=0 \vec{v}$, which gives $\overrightarrow{0}=0 \vec{v}$ as desired.

Next we show that $\alpha \overrightarrow{0}=\overrightarrow{0}$ for all $\vec{\alpha} \in 0$. The proof is similar to the above:

$$
\alpha \overrightarrow{0}+\overrightarrow{0}=\alpha \overrightarrow{0}=\alpha(\overrightarrow{0}+\overrightarrow{0})=\alpha \overrightarrow{0}+\alpha \overrightarrow{0}
$$

by (A4) and (M4). Now apply the cancellation law as above.
We have shown that if $\alpha=0$ or $\vec{v}=\overrightarrow{0}$, then $\alpha \vec{v}=\overrightarrow{0}$. It remains to show the converse. Suppose that $\alpha \vec{v}=\overrightarrow{0}$, and also that $\alpha \neq 0$. We check that then $\vec{v}=\overrightarrow{0}$. Multiplying both sides of the equation $\alpha \vec{v}=\overrightarrow{0}$ on the left by $\frac{1}{\alpha}$ gives $\frac{1}{\alpha}(\alpha \vec{v})=\frac{1}{\alpha} \overrightarrow{0}=\overrightarrow{0}$, where the last equality follows from what we showed above. But note that by (M2) and (M5),

$$
\frac{1}{\alpha}(\alpha \vec{v})=\left(\frac{1}{\alpha} \alpha\right) \vec{v}=1 \vec{v}=\vec{v}
$$

Thus we have $\vec{v}=\overrightarrow{0}$.

Now assume that $\alpha \vec{v}=\overrightarrow{0}$ and $\vec{v} \neq 0$. We just showed that if $\alpha \neq 0$, then $\vec{v}=\overrightarrow{0}$, so we must have that $\alpha=0$. We have now shown that if $\alpha F=\overrightarrow{0}$ then either $\alpha=0$ or $\vec{v}=\overrightarrow{0}$. This completes the proof.
2.Let $v_{1} \in \mathbb{R}^{3}$ be a non-zero vector and suppose we have $v_{2} \in \mathbb{R}^{3}$ such that $v_{2} \notin \operatorname{Span}\left\{v_{1}\right\}$. Let $w=v_{1} \times v_{2}$ (the cross product of v_{1} and v_{2}). Show that $\operatorname{Span}\left\{v_{1}, v_{2}\right\}=P$, where

$$
P=\left\{v \in \mathbb{R}^{3} \mid w \cdot v=0\right\}
$$

the plane perpendicular to w and passing through $\overrightarrow{0}$. [Hint: Show $\operatorname{Span}\left\{v_{1}, v_{2}\right\} \subseteq P$ and $\left.P \subseteq \operatorname{Span}\left\{v_{1}, v_{2}\right\}.\right]$

Answer: For any $a, b \in \mathbb{R}, w \cdot\left(a v_{1}+b v_{2}\right)=a w \cdot v_{1}+b w \cdot v_{2}=0+0=0$, because a cross product of two vectors is perpendicular to both vectors. Thus any linear combination of v_{1}, v_{2} is in P. Hence $\operatorname{Span}\left\{v_{1}, v_{2}\right\} \in P$.

With a little more vector space theory, it would be very quick to check that, in fact, $\operatorname{Span}\left\{v_{1}, v_{2}\right\}=P$. An informal argument would be: $\operatorname{Span}\left\{v_{1}, v_{2}\right\}$ is a subspace of P which strictly contains a line, so it is a plane. Therefore it must be equal to the whole plane P. For now, this is good enough for our purposes.

Here is a more rigorous (but laborious) proof in the "Meyer style," using the machinery we have. First, we observe that $\operatorname{Span}\left\{v_{1}, v_{2}, w\right\}=\mathbb{R}^{3}$. To show this, we argue by contradiction: If $\operatorname{Span}\left\{v_{1}, v_{2}, w\right\} \neq \mathbb{R}^{3}$, then there is some vector $z \in \mathbb{R}^{3}$ that is not a linear combination of $\left\{v_{1}, v_{2}, w\right\}$. Let $A=\left(v_{1}\left|v_{2}\right| w \mid z\right) . v_{2}$ is not a multiple of v_{1} by assumption. Also since w is perpendicular to both v_{1} and v_{2}, w is not a linear combination of v_{1} and v_{2}. Hence, no column of A is a linear combination of previous columns. Thus it must be that every column in A is basic. But since A has only 3 rows, this is impossible. Hence $\operatorname{Span}\left\{v_{1}, v_{2}, w\right\}=\mathbb{R}^{3}$.

Thus for any $v \in P$ we may write $P=a v_{1}+b v_{2}+c w$ for $a, b, c \in \mathbb{R}$. But then

$$
0=w \cdot v=a w \cdot v_{1}+b w \cdot v_{2}+c w \cdot w=c w \cdot w
$$

$w \cdot w \neq 0$, so we must have $c=0$. Thus $v \in \operatorname{Span}\left\{v_{1}, v_{2}\right\}$. This shows that $P \subset \operatorname{Span}\left\{v_{1}, v_{2}\right\}$. We conclude that $P=\operatorname{Span}\left\{v_{1}, v_{2}\right\}$ as claimed.

