Math 4242 Sec 40

## Homework 4 Supplement

1. Let  $F : \mathbb{R}^3 \to \mathbb{R}^3$  be the linear function given by

$$F(x, y, z) = \left(\begin{array}{c} y+z\\ x+z\\ x+y \end{array}\right)$$

and let  $G: \mathbb{R}^3 \to \mathbb{R}^2$  be the linear function given by

$$G(x,y,z) = \left( egin{array}{c} x+z \ y+z \end{array} 
ight).$$

Find a  $2 \times 3$  matrix A such that for any  $\vec{v} \in \mathbb{R}^3$ ,  $G \circ F(\vec{v}) = A\vec{v}$ .

## Answer:

$$G \circ F(x, y, z) = G(y+z, x+z, x+y) = \begin{pmatrix} x+2y+z\\ 2x+y+z \end{pmatrix} = \begin{pmatrix} 1 & 2 & 1\\ 2 & 1 & 1 \end{pmatrix} \begin{pmatrix} x\\ y\\ z \end{pmatrix}$$

 $\operatorname{So}$ 

$$A = \left(\begin{array}{rrr} 1 & 2 & 1 \\ 2 & 1 & 1 \end{array}\right).$$

2. In the problem above, what is the relationship between A and the matrices [F] and [G]?

**Answer:** Note that A is the matrix such that  $T_A = G \circ F$ , for  $T_A : \mathbb{R}^3 \to \mathbb{R}^2$  as defined in class. So by results from class,  $A = [T_A] = [G \circ F] = [G][F].$ 

3. Write down the  $3 \times 3$  matrix E such that for any matrix A with 3 rows, EA is the matrix obtained from A by first adding  $3A_{2*}$  to  $A_{3*}$  and then switching the rows  $A_{2*}$  and  $A_{1*}$ .

**Answer:** Let  $E_1$  be the matrix such that  $E_1A$  is the matrix obtained from A by adding  $3A_{2*}$  to  $A_{3*}$ , for any matrix  $A \le M/3$  rows.

Let  $E_2$  be the matrix such that  $E_2A$  is the matrix obtained from A by switching the rows  $A_{2*}$  and  $A_{1*}$ , for any matrix A w/ 3 rows.

Then  $E = E_2 E_1$ . Recall from Friday that to find the elementary matrix associated to an row elementary operation, we apply that row operation to the identity matrix. Thus,

$$E_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{pmatrix}, \quad E_2 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Therefore

$$E = \left(\begin{array}{rrrr} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 3 & 1 \end{array}\right).$$

4. We define elementary column operations of Types I—III on a matrix in a way exactly analogous to the way we defined elementary row operations. That is,

- (1) an elementary column operation of type I switches two columns,
- (2) an elementary row operation of type II multiplies a column by a non-zero scalar,
- (3) an elementary column operation of type III adds a multiple of one column to another column.

Explain why for any matrix A, we can perform any elementary column operation on A by multiplying A on the **right** by an elementary matrix of the form considered in class on Friday.

HINTS: Since transposes convert rows to columns and columns to rows, performing an elementary column operation on A is the same as performing an elementary row operation on  $A^T$  and then taking the transpose of the resulting matrix. Use the facts that for any matrices A, B whose product AB is defined, we have  $(AB)^T = B^T A^T$  and  $((AB)^T)^T) = AB$ . You will also want to use the fact that the transpose of each of the elementary matrices  $P_n^{i,j}, Q_n^{i,\alpha}, R_n^{i,j,\alpha}$  introduced in class is an elementary matrix of the same type.

**Answer:** We'll show that to perform an elementary column operation on A, we can multiply A on the right by  $E^T$ , where E is the matrix representation of the corresponding row operation. For example, if E is the matrix such that multiplying A on the left by E adds  $3A_{2*}$  to  $A_{5*}$ , then multiplying A on the right by  $E^T$  has the effect of adding  $3A_{*2}$  to  $A_{*5}$ .

As noted in the hint, to perform an elementary column operation on A, we can perform the corresponding elementary row operation on  $A^T$  and then take the transpose of the resulting matrix. Let E be the elementary matrix such that multiplying  $A^T$  on the left by E performs the corresponding row operation. Then  $(EA^T)^T$  is matrix obtained after performing our elementary column operation on A. But  $(EA^T)^T = (A^T)^T E^T = AE^T$ . Thus multiplying A on the right by  $E^T$  performs the column operation on A.

As mentioned in the hint,  $E^T$  is an elementary matrix of the same type as E. (That is for  $j = 1, 2, 3, E^T$  is an elementary matrix of Type j iff E is an elementary matrix of Type j; check this.) So we are done.

5. Find a  $4 \times 4$  matrix E such that for any matrix A with 4 columns, AE is the matrix obtained from A by adding the second column of A to the fourth column.

**Answer:** For any matrix B with 4 rows,  $R_4^{4,2,1}B$  is the matrix obtained from B by adding the second row of A to the fourth row, where as defined in class,

$$R_4^{2,4,1} = \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{array}\right).$$

By the answer to question 4, then, we have that

$$E = (R_4^{4,2,1})^T = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = R_4^{2,4,1}.$$

It's also easy to see that this is the right answer directly from the column-wise definition of matrix multiplication. (You should check this.)