1. Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear function given by

$$
F(x, y, z)=\left(\begin{array}{l}
y+z \\
x+z \\
x+y
\end{array}\right)
$$

and let $G: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the linear function given by

$$
G(x, y, z)=\binom{x+z}{y+z} .
$$

Find a 2×3 matrix A such that for any $\vec{v} \in \mathbb{R}^{3}, G \circ F(\vec{v})=A \vec{v}$.

Answer:

$G \circ F(x, y, z)=G(y+z, x+z, x+y)=\binom{x+2 y+z}{2 x+y+z}=\left(\begin{array}{lll}1 & 2 & 1 \\ 2 & 1 & 1\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$.
So

$$
A=\left(\begin{array}{lll}
1 & 2 & 1 \\
2 & 1 & 1
\end{array}\right) .
$$

2. In the problem above, what is the relationship between A and the matrices $[F]$ and $[G]$?

Answer: Note that A is the matrix such that $T_{A}=G \circ F$, for $T_{A}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ as defined in class. So by results from class, $A=\left[T_{A}\right]=[G \circ F]=[G][F]$.
3. Write down the 3×3 matrix E such that for any matrix A with 3 rows, $E A$ is the matrix obtained from A by first adding $3 A_{2 *}$ to $A_{3 *}$ and then switching the rows $A_{2 *}$ and $A_{1 *}$.

Answer: Let E_{1} be the matrix such that $E_{1} A$ is the matrix obtained from A by adding $3 A_{2 *}$ to $A_{3 *}$, for any matrix A w/ 3 rows.

Let E_{2} be the matrix such that $E_{2} A$ is the matrix obtained from A by switching the rows $A_{2 *}$ and $A_{1 *}$, for any matrix $A \mathrm{w} / 3$ rows.

Then $E=E_{2} E_{1}$. Recall from Friday that to find the elementary matrix associated to an row elementary operation, we apply that row operation to the identity matrix. Thus,

$$
E_{1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 3 & 1
\end{array}\right), \quad E_{2}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Therefore

$$
E=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 3 & 1
\end{array}\right)
$$

4. We define elementary column operations of Types I-III on a matrix in a way exactly analogous to the way we defined elementary row operations. That is,
(1) an elementary column operation of type I switches two columns,
(2) an elementary row operation of type II multiplies a column by a non-zero scalar,
(3) an elementary column operation of type III adds a multiple of one column to another column.
Explain why for any matrix A, we can perform any elementary column operation on A by multiplying A on the right by an elementary matrix of the form considered in class on Friday.

HINTS: Since transposes convert rows to columns and columns to rows, performing an elementary column operation on A is the same as performing an elementary row operation on A^{T} and then taking the transpose of the resulting matrix. Use the facts that for any matrices A, B whose product $A B$ is defined, we have $(A B)^{T}=B^{T} A^{T}$ and $\left.\left((A B)^{T}\right)^{T}\right)=A B$. You will also want to use the fact that the transpose of each of the elementary matrices $P_{n}^{i, j}, Q_{n}^{i, \alpha}, R_{n}^{i, j, \alpha}$ introduced in class is an elementary matrix of the same type.

Answer: We'll show that to perform an elementary column operation on A, we can multiply A on the right by E^{T}, where E is the matrix representation of the corresponding row operation. For example, if E is the matrix such that multiplying A on the left by E adds $3 A_{2 *}$ to $A_{5 *}$, then multiplying A on the right by E^{T} has the effect of adding $3 A_{* 2}$ to $A_{* 5}$.

As noted in the hint, to perform an elementary column operation on A, we can perform the corresponding elementary row operation on A^{T} and then take the transpose of the resulting matrix. Let E be the elementary matrix such that multiplying A^{T} on the left by E performs the corresponding row operation. Then $\left(E A^{T}\right)^{T}$ is matrix obtained after performing our elementary column operation on A. But $\left(E A^{T}\right)^{T}=\left(A^{T}\right)^{T} E^{T}=A E^{T}$. Thus multiplying A on the right by E^{T} performs the column operation on A.

As mentioned in the hint, E^{T} is an elementary matrix of the same type as E. (That is for $j=1,2,3, E^{T}$ is an elementary matrix of Type j iff E is an elementary matrix of Type j; check this.) So we are done.
5. Find a 4×4 matrix E such that that for any matrix A with 4 columns, $A E$ is the matrix obtained from A by adding the second column of A to the fourth column.

Answer: For any matrix B with 4 rows, $R_{4}^{4,2,1} B$ is the matrix obtained from B by adding the second row of A to the fourth row, where as defined in class,

$$
R_{4}^{2,4,1}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right) .
$$

By the answer to question 4, then, we have that

$$
E=\left(R_{4}^{4,2,1}\right)^{T}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)=R_{4}^{2,4,1} .
$$

It's also easy to see that this is the right answer directly from the column-wise definition of matrix multiplication. (You should check this.)

