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Abstract

This thesis concerns the theoretical foundations of persistence-based topological data

analysis. The primary focus of the work is on the development of theory of topolog-

ical inference in the multidimensional persistence setting, where the set of available

theoretical and algorithmic tools has remained comparatively underdeveloped, rela-

tive to the 1-D persistence setting. The thesis establishes a number of theoretical

results centered around this theme, some of which are new and interesting even for

1-D persistent homology. In addition, this work presents theory of topological infer-

ence formulated directly at the (topological) level of filtrations, rather than only at

the (algebraic) level of persistent homology modules.

The main mathematical objects of study in this work are interleavings. These

are tools for quantifying the similarity between multidimensional filtrations and per-

sistence modules. They were introduced for 1-D filtrations and persistence modules

by Chazal et al. [8], where they were used to prove a strong and very useful gener-

alization of the stability of persistence result of [14]; we generalize the definition of

interleavings appearing in [8] in several directions and use these generalizations to de-

fine pseudometrics on multidimensional filtrations and multidimensional persistence

modules called interleaving distances.

The first part of this thesis, adapted from the preprint [32], studies in detail the

theory of interleavings and interleaving distances on multidimensional persistence

modules. We present six main results about the interleaving distance.

First, we show that in the case of 1-D persistence, the interleaving distance is

equal to the bottleneck distance on tame persistence modules.

Second, we prove a theorem which implies that the restriction of the interleaving
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distance to finitely presented multidimensional persistence modules is a metric. The

same theorem, together with our first result, also yields a converse to the algebraic

stability theorem of [8]; this answers a question posed in that paper.

Third, we present an “extrinsic” characterization of interleaved pairs of multidi-

mensional persistence modules which makes transparent the sense in which interleaved

modules are algebraically similar. This characterization turns out to hold for a def-

inition of interleavings of multidimensional persistence modules rather more general

than that which we need to define the interleaving distance; the more general form

of our result is an important ingredient in inferential theory we develop in the second

part of this thesis.

Fourth, we observe that the interleaving distance is stable in four senses analogous

to those in which the bottleneck distance is known to be stable.

Fifth, we introduce several notions of optimality of metrics on persistence modules

and show that when the underlying field is Q or a field of prime order, the interleaving

distance is optimal with respect to one of these notions. This optimality result, which

is new even for 1-D persistence, is the central result of the first part of this thesis. We

also prove that a version of this result holds for ordinary persistence modules over any

field, provided we restrict attention to a class of well behaved ordinary persistence

modules containing the finitely presented ones.

Sixth, we show that the computation of the interleaving distance between two

finitely presented multidimensional persistence modules M and N reduces to deciding

the solvability of O(logm) systems of multivariate quadratic equations, each with

O(m2) variables and O(m2) equations, where m is the total number of generators and

relations in a minimal presentation for M and a minimal presentation for N .

In the second part of the thesis, we define interleavings and interleaving distances

on multidimensional filtrations, and present a theoretical treatment of these paral-

lel to our treatment of interleavings and interleaving distances on multidimensional

persistence modules. We then use interleavings and interleaving distances on mul-

tidimensional filtrations to formulate and prove several analogues of a topological

inference theorem of [11] in the multidimensional setting, and directly on the level of

filtrations. In particular, we employ localization of categories, a standard construction
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in homotopy theory, to define and study homotopy theoretic versions of interleavings

and the interleaving distance on multidimensional filtrations, which we call weak in-

terleavings and the weak interleaving distance. We formulate our main inference

results using weak interleavings and the weak interleaving distance.

To describe these inference results in detail, let γ : Rm → R be a probability

density function on Rm, and for z ∈ Z≥0 let Tz be an i.i.d. sample of size z of

a probability distribution with density γ. Let F SČe
z be the random Čech bifiltration

with vertices Tz, filtered by the superlevelsets of E(Tz), where E is a density estimator,

and by the usual scale parameter for Čech complexes.

Our first main inference result is that under mild conditions on γ and E, F SČe
z

converges in probability (with respect to the weak interleaving distance, and as z →
∞) to a bifiltration constructed directly from γ, which we call the superlevel-offset

bifiltration.

Our second main inference result is an analogue of the first result for Vietoris-Rips

bifiltrations, filtered by the superlevelsets of E(Tz) and by the usual scale parameter

for Vietoris-Rips complexes.

We also present analogues for each of these results for probability density functions

defined on Riemannian manifolds.

These inference results on the level of filtrations yield as corollaries analogous

results on the level of persistent homology, formulated in terms of the interleaving

distance and interleavings on persistence modules. Our extrinsic characterization

of interleavings from the first part of our thesis yields concrete interpretations of

these corollaries as statements about the similarity between presentations of persistent

homology modules.
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Chapter 1

Introduction

In this introduction, we offer some context and motivation for the theory devel-

oped in this thesis and present an overview of our results. Section 1.1 introduces

the broader context for the mathematics of this thesis and discusses the need for

further development of the statistical foundations of topological data analysis; Sec-

tion 1.2 introduces the problem of developing inferential theory for multidimensional

filtrations, and presents background and motivation for the problem; Sections 1.3-1.5

present detailed overviews of the results of chapters 2-4 of this thesis; and Section 1.6

closes this introduction with discussion of our motivation for considering in this thesis

persistence based inference directly at the level of filtrations.

We assume that the reader has some familiarity with some of the basic terminology

and ideas of applied topology and topological data analysis. See the reviews [23, 27, 4]

and the textbook [24] for treatment of the basics, and Sections 2.1, 3.1, and 4.1 for

foundational definitions.

1.1 On The Need for Firm Statistical Foundations

of Topological Data Analysis

To explain the mathematical context of this thesis, it will be useful for us to begin

by formulating definitions of topological inference and topological data analysis.

1



CHAPTER 1. INTRODUCTION 2

Recall first that in statistics, we distinguish between descriptive statistics and sta-

tistical inference. Descriptive statistics, as the name suggests, is that part of statistics

concerned with defining and studying descriptors of data. It involves no probability

theory and aims simply to offer tools for describing, summarizing, and visualizing

data. Statistical inference, on the other hand, concerns the more sophisticated enter-

prise of estimating descriptors of an unknown probability distribution from random

samples of the distribution. The theory and methods of statistical inference are built

on the tools of descriptive statistics: The estimators considered in statistical inference

are of course, when stripped of their inferential interpretation, merely descriptors of

data.

We define descriptive topological data analysis (descriptive TDA) to be

the branch of descriptive statistics which uses topology to define and study qualitative

descriptors of data sets.

We define topological inference to be the branch of statistical inference which

1. uses topology to define qualitative descriptors of probability distributions.

2. develops and studies estimators for inferring such descriptors from finite samples

of the distributions.

We define topological data analysis (TDA) to refer collectively to descriptive

TDA, topological inference, and the applications of these to science and engineering.

In the last 10 years the TDA community has introduced a number of novel tools

for descriptive TDA [47, 7, 5, 42, 16, 1], and has begun developing applications of

these in science and engineering. There is great interest in applying these tools to

the study of random data, and a good deal of work has already been done in this

direction [6, 43, 34, 11].

In the last few years, there also has been some important progress in topological

inference [35, 11, 10]. However, the development of tools for descriptive TDA has,

as a rule, outpaced the development of the theory of topological inference supporting

the use of these tools in the study of random data. Indeed, statistical foundations

for many of the most discussed tools in TDA—for example, Mapper [42], circle val-

ued coordinatization [16], and persistent homology of Vietoris-Rips (multi-)filtraitons



CHAPTER 1. INTRODUCTION 3

[7]—have either not been laid out at all, or have only partially (and recently) been laid

out. In many cases, there is no theoretical framework in place for interpreting these

descriptors of data as appropriately behaved estimators of descriptors of probability

distributions. (An important exception is the work of Chazal et al. [11] on estimating

the superlevelset persistent homology of density functions using Rips complexes; we’ll

discuss this work in detail in Section 1.2.2.)

Additionally there is, to date, little to no discussion in the TDA literature on

how to compute theoretically sound measures of confidence for any estimator of a

topological descriptor. This last gap is an especially critical one in the statistical

foundations of TDA: It is a basic principle of statistical inference that an estimate

of some descriptor of a probability distribution is only meaningful insofar as we also

have a good measure of confidence for that estimate.

In these senses, the statistical foundations of TDA remain quite underdeveloped;

much further progress on the methodology and theory of topological inference is

needed before the tools of TDA can sit comfortably amongst the more conventional

tools in a statistician’s toolbox.

Carrying out this work is central to the program of fully realizing TDA as a data

analysis paradigm of value in science and engineering. After all, if the statistical

foundations of topological data analysis were firmer, the output of the tools of topo-

logical data analysis on random input would be more informative, and presumably

statisticians, scientists, and engineers would be more receptive to the tools and more

inclined to invest the time to develop new applications of them.

This perspective motivates the work of this thesis: This work is an effort to

contribute to the program of fleshing out the statistical foundations of TDA. The

program is a broad one, however, and the results of this thesis amount only to a

narrow slice of what is needed to really put TDA on firm statistical footing. In

particular, the thesis focuses primarily on theoretical foundations and devotes little

direct attention to questions of data analysis methodology. Nevertheless, it is my hope

that the results presented here can offer clarity on some basic issues in topological

inference and TDA and, in so doing, open the door to progress in the development of

methodology.
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1.2 Overview: Inferential Theory for Multidimen-

sional Filtrations

We focus in this thesis on the theoretical foundations of persistence-based topological

data analysis, that central (though not all-encompassing) branch of topological data

analysis that considers topological descriptors and random variables defined using

filtrations and persistent homology. Our primary aims are, first, to develop inferential

theory for multidimensional persistence, and, second, to develop inferential theory

directly at the level of filtrations which strengthens the theory at the level of persistent

homology modules.

1.2.1 Context and Motivation for Our Inference Results

The history of the problem of developing an inferential theory for multidimensional

persistent homology dates back several years, to the original paper on multidimen-

sional persistent homology [7]. Motivated by needs arising in their study of natural

scene statistics [6], in [7] Carlsson and Zomorodian proposed the use of Vietoris-Rips

bifiltrations to probe the qualitative structure of point cloud data of nonuniform den-

sity in exploratory data analysis applications. This proposal was motivated by the

idea that when the point cloud data set Tz is obtained as an i.i.d. sample of size

z of some probability distribution with density function γ : Rm → R, the random

Vietoris-Rips bifiltration with vertices Tz, filtered by superlevelsets of a density esti-

mator E and by the usual scale parameter for a Vietoris-Rips complex, should encode

topological information about γ.

A central aim of this thesis is to put this idea on firm mathematical footing.

Our approach builds in an essential way on recent work on persistence-based

topological inference by Chazal, Guibas, Oudot, and Skraba [11]. In that work, the

authors build on theory developed in their earlier papers [8, 12] to prove a result

[11, Theorem 5.1] on the inference of the 1-D (superlevelset) persistent homology of

a probability density function γ from a pair of filtered Vietoris-Rips complexes built

on i.i.d. samples of a probability distribution with density γ. This result is a (loose)
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analogue for persistent homology of the weak law of large numbers.

The primary aim of the paper [11] is to leverage persistent homology to introduce a

clustering algorithm with good theoretical properties; the exposition there is such that

the inference result [11, Theorem 5.1] plays a supporting role, serving as the engine

for the development of theoretical guarantees on the clustering algorithm presented

in that paper.

Nevertheless, the result is a very significant one in of itself: It proves (implicitly,

at least), for the first time, the consistency of an estimator of the superlevelset per-

sistent homology of a density function on a Euclidean space. Moreover, because that

estimator is defined using only a pair of Vietoris-Rips complexes, it is simple and

quite computable.

One disadvantage of the estimator introduced in [11], however, is that its con-

struction depends on a choice of scale parameter. As noted in [11], a correct value

for this parameter can be difficult to choose in practice. Moreover, in spite of the

good asymptotic properties of the estimator studied in [11], for finite data sets having

non-trivial topological features (in the usual TDA sense) across a range of density and

length scales, it can be that for any single choice of scale parameter, this estimator

is unable to fully detect the topological features of the data.

A main goal of this work is to adapt the topological inference result [11, Theorem

5.1] to the multidimensional persistence setting and directly to the level of filtrations.

We present such adaptations Chapter 4 of this thesis. As we will see, the multidi-

mensional setting has the advantage that in constructing estimators there analogous

to that considered in [11], we do not need to choose a scale parameter.1

1For both the estimator considered in [11] and the estimators we consider here, it is necessary
to chose a bandwidth parameter for a density estimator. In the Euclidean case, the need to select
a bandwidth parameter is not an unmanageable difficulty, at least in low dimensions: For density
functions on Euclidean spaces, the problem of optimally selecting a bandwidth parameter for a kernel
density estimator has been well studied—see [39].
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1.2.2 The Result of Chazal et al. on the Inference of Sub-

levelset Persistent Homology Using Rips Complexes

To understand the context of our inference results, it is important to understand the

result [11, Theorem 5.1]. We now present an asymptotic corollary of [11, Theorem

5.1] which will serve as our mathematical point of departure in our pursuit of our

own inference results.

To prepare for the result, we review some basics about density estimation.

Density Estimation Preliminaries

Let D(Rm) denote the set of probability density functions on Rm. Define a density

estimator E on a Rm to be a sequence of functions {Ez : (Rm)z → D(Rm)}z∈N such

that for each z ∈ N, the restriction of Ez to any point in Rm is a measurable function

from (Rm)z to R. In formulating our results, we will consider pairs (γ,E), where γ

is a density function and E is a density estimator, for which one of the following two

assumptions holds:

A1: E converges uniformly in probability to γ.

A2: E converges uniformly in probability to the convolution of γ with some kernel

function K.

A1 is known to hold for kernel density estimators, for a wide class of kernels and

density functions γ, provided the kernel width tends to 0 at an appropriate rate as

z tends to infinity. A2 is known to hold for the kernel density estimator with kernel

K (with fixed width as the number of samples z varies) for a wide class of kernels K

and density functions γ. See Section 4.1.3 for more details and references.

Our Asymptotic Corollary of the Inference Result [11, Theorem 5.1]

The form of the result we quote here is different in several ways than that of [11,

Theorem 5.1]. First, as we noted above, rather than recall the original form of [11,

Theorem 5.1], we will present a tidier asymptotic corollary of it whose form is closer
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to that of our main inference results. The proof of the asymptotic corollary, given

the original form of the result, follows from an ε-δ argument very similar to that used

in the proof of our Theorem 4.5.2. Second, because of the emphasis on clustering in

[11], the result [11, Theorem 5.1] is stated only for 0th persistent homology, but as the

authors note, the result adapts immediately to higher persistent homology via the

results of [12]. We will present here a version of the asymptotic corollary which holds

for ith persistent homology, i ∈ Z≥0. Third, to minimize the technicalities in this

introduction, we present the result for density functions defined on Euclidean space;

the result adapts readily to Riemannian manifolds with sectional curvature bounded

above and below.

Let γ : Rm → R be a c-Lipchitz density function such that for i ∈ Z≥0, the

superlevelset persistent homology module Hi(−γ) is tame2; let Tz be an i.i.d. random

sample of a probability distribution with density γ of size z; let dp be the restriction

of some Lp metric to Tz, for 1 ≤ p ≤ ∞; and let E be a density estimator.

For δ > 0, let F SR(Tz, d
p,−E(Tz), δ) be a Rips filtration on (Tz, d

p) with fixed

scale parameter δ, filtered by sublevelsets of −E(Tz). For i ∈ Z≥0, let Hi denote the

ith persistent homology functor. The inclusion

F SR(Tz, d
p,−E(Tz), δ) ↪→ F SR(Tz, d

p,−E(Tz), 2δ)

induces a homomorphism

jz,δ : Hi(F
SR(Tz, d

p,−E(Tz), δ))→ Hi(F
SR(Tz, d

p,−E(Tz), 2δ))

of persistence modules. Im(jz,δz) is then itself a persistence module.

For a 1-D persistence module M , let M+ denote the submodule of M generated by

homogeneous vector space summands Ma of M with a ≥ 0 and let R0(M) = M/M+.

Let dB denote the bottleneck distance on tame persistence modules [8]. If {Xz}z∈N
is a sequence of random variables, and X is a random variable such that Xz converges

2In this thesis, a tame persistence module is one whose homogeneous vector space summands
are each finite dimensional; see Section 2.1.3. The tameness condition ensures that the bottleneck
distance in the statement of [11, Theorem 5.1] is well defined.
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in probability to X, we write Xz
P−→ X.

Theorem 1.2.1 (Inference result of [11] (asymptotic form)).

(i) If (γ,E) satisfies A1 then ∃ a sequence {δz}z∈N such that

dB(R0(Im(jδz ,z)), R0(Hi(−γ)))
P−→ 0

(as z →∞).

(ii) If (γ,E) satisfies A2 for some kernel K then ∃ a sequence {δz}z∈N such that

dB(R0(Im(jδz ,z)), R0(Hi(−γ ∗K)))
P−→ 0.

1.2.3 Distances and Measures of Proximity on Filtrations

and Persistence Modules

As we have noted above, one of the main goals of this work is to adapt the consistency

result Theorem 1.2.1 to the multidimensional setting and to the level of filtrations.

Since Theorem 1.2.1 is formulated in terms of the bottleneck distance, to carry out

this adaptation we require analogues of this distance on multidimensional persistence

modules and filtrations. The main obstacle to adapting Theorem 1.2.1 to the multi-

dimensional setting is that the bottleneck distance of ordinary persistent homology

does not admit a naive extension to the multidimensional setting. Similarly, the

main obstacle to adapting the theorem to the level of filtrations is that the bottleneck

distance does not admit a naive adaptation to a distance on filtrations, even in 1-D.

Most of the effort of this thesis is put not directly towards proving inference results,

but rather towards introducing and studying generalizations of the bottleneck distance

to multidimensional filtrations and persistence modules which we need to formulate

our inference results. Indeed, one of the main themes of this work is that developing

the theory of topological inference largely boils down to the problem of selecting

and understanding distances (or more general measures of proximity, which strictly

speaking, are not distances in any reasonable mathematical sense) on appropriate

objects: Once we develop the mathematical vocabulary needed to properly formulate
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our inference results in this thesis, the proofs of the results turn out to be reasonably

straightforward, given existing ideas in the literature (and particularly those put

forth [11]). The main mathematical challenge then is to make sense of the distances

and measures of proximity between filtrations and between persistence modules with

which we formulate the inference results, and to show that these measures are, in

suitable senses, the right ones to use.

We formulate our inference results using interleavings and distances defined in

terms of interleavings called interleaving distances. As noted in the abstract, inter-

leavings are tools for quantifying the similarity between multidimensional filtrations

and persistence modules. Interleaving distances are generalizations of the bottleneck

distance to pseudometrics on multidimensional filtrations and on multidimensional

persistence modules. The most basic type of interleavings, called ε-interleavings,

were introduced for 1-D persistence filtrations and persistence modules by Chazal

et al. [8]. This thesis introduces generalizations of the definition of ε-interleavings

given in [8] to definitions of ε-interleavings on multidimensional filtrations and multi-

dimensional persistence modules. We define interleaving distances in terms of these

generalized ε-interleavings.

In fact, in this thesis we generalize the notion of ε-interleavings yet further to

arrive at the definition of (J1, J2)-interleavings, which we also sometimes call gen-

eralized interleavings. We apply interleaving distances and (J1, J2)-interleavings

to formulate results on multidimensional inference at the level of filtrations. In a sense

that we will make precise later, (J1, J2)-interleavings allow us to quantify anisotropic

and asymmetric similarities between filtrations and between persistence modules that

cannot be completely described using interleaving distances. They turn out to be the

right mathematical tools for interpreting random Vietoris-Rips bifiltrations as infer-

ential objects.
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1.3 Chapter 2: Interleavings and Interleaving Dis-

tances for Multidimensional Persistence Mod-

ules

In Chapter 2 of this thesis, we introduce interleavings and the interleaving distance

dI on multidimensional persistence modules, and treat the theory of these in detail.

Chapter 2 of this thesis is adapted from the preprint [32]; the content of Chapter 2 is

very close to that of [32]. The most important difference is that we define interleavings

in greater generality and extend our extrinsic characterization of ε-interleavings in [32]

to an extrinsic characterization of generalized interleavings. There are some other

minor differences between Chapter 2 of the thesis and [32], but none of any great

significance.

1.3.1 Results

In Chapter 2, we present six main results on interleavings and the interleaving dis-

tance. The first result, Theorem 2.4.2, shows that in the case of ordinary persistence,

the interleaving distance is in fact equal to the bottleneck distance on tame persistence

modules. Our proof relies on a generalization of the structure theorem [47] for finitely

generated ordinary persistence modules to (discrete) tame persistence modules. This

generalization is proven e.g. in [46].

Our second main result is Theorem 2.5.1, which tells us that if M and N are

two finitely presented persistence modules and dI(M,N) = ε then M and N are ε-

interleaved. As an immediate consequence of this theorem, we have Corollary 2.5.2,

which says that the interleaving distance restricts to a metric on finitely presented

persistence modules. Theorems 2.4.2 and 2.5.1 together also yield Corollary 2.5.3, a

converse to the algebraic stability theorem of [8]. The converse says, firstly, that if

two tame 1-D persistence modules M and N are are distance ε apart in the bottleneck

distance, then they are ε+δ-interelaved for any δ > 0. Secondly, the converse says that

if in addition M and N are each finitely presented (which is stronger than tameness),

then M and N are in fact ε-interleaved. This result answers a question posed in [8].
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Our third main result is Theorem 2.6.4, an “extrinsic” characterization of (J1, J2)-

interleaved pairs of persistence modules; it expresses transparently the sense in which

(J1, J2)-interleaved persistence modules are algebraically similar. Since ε-interleavings

are a special type of (J1, J2)-interleaving, and since the interleaving distance is defined

in terms of ε-interleavings, the result also yields an extrinsic characterization of the

interleaving distance. The result is reminiscent of the extrinsic characterization of the

Gromov-Hausdorff distance, which expresses the Gromov-Hausdorff distance between

two compact metric spaces in terms of the Hausdorff distance between embeddings

of two metric spaces into a third metric space. Roughly speaking, Theorem 2.6.4

characterizes ε-interleaved pairs of persistence modules in terms of a distance between

embeddings of presentations of such modules into a free persistence module.

As noted above, Theorem 2.6.4 was presented in [32] only for the special case of

ε-interleavings. The more general form of our result will be an important ingredient

of the inferential theory we develop in the second part of this thesis.

Our fourth result is the observation that the interleaving distance is stable in four

senses analogous to those in which the bottleneck distance is known to be stable.

These stability results, while notable, require very little mathematical work; two of

the stability results turn out to be trivial, the third follows from a minor modification

of an argument given in [9], and the fourth admits a straightforward proof.

Our fifth main result, Corollary 2.10.2, is an optimality result for the interleaving

distance. It tells us that when the underlying field is Q or a field of prime order, the

interleaving distance is stable in a sense analogous to that in which the bottleneck

distance is shown to be stable in [14, 8], and further, that the interleaving distance

is, in a uniform sense, the most sensitive of all stable pseudometrics. This “maxi-

mum sensitivity” property of the interleaving distance is equivalent to the property

that, with respect to the interleaving distance, multidimensional persistent homology

preserves the metric on source objects as faithfully as is possible for any choice of

stable pseudometric on multidimensional persistence modules; see Remark 2.9.7 for

a precise statement. Our optimality result is new even for 1-D persistence. In that

case, it offers some mathematical justification, complementary to that of [14, 8], for

the use of the bottleneck distance.
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In fact, provided we restrict attention to a class of well behaved ordinary persis-

tence modules containing the finitely presented ones, the assumption that the under-

lying field is Q or a field of prime order is unnecessary; our Theorem 2.10.8 gives

an analogue of our optimality result Corollary 2.10.2 for this class of modules, over

arbitrary fields.

The main ingredient in the proof of Corollary 2.10.2 is our characterization result

Theorem 2.6.4. Using that result, we present a constructive argument which shows

that when the underlying field is Q or a field of prime order, ε-interleavings can,

in a suitable sense, be lifted to a category of Rn-valued functions. Given this, our

optimality result follows readily.

Given our first five main results, it is natural to ask if and how the interleaving

distance can be computed. Our sixth main result speaks to this question. The result,

which follows from Theorem 2.11.5 and Proposition 2.11.9, is that the computation of

the interleaving distance between two finitely presented multidimensional persistence

modules M and N reduces to deciding the solvability of O(logm) systems of multi-

variate quadratic equations, each with O(m2) variables and O(m2) equations, where

m is the total number of generators and relations in a minimal presentation for M and

a minimal presentation for N . This result is just a first step towards understanding

the problem of computing the interleaving distance; we hope to address the problem

more fully in future work.

A Note On Prior Work

After making the results of the first part of this thesis publicly available (in form

of the preprint [32]), it was brought to our attention that in [22], d’Amico et al.

proved an optimality result for the bottleneck distance similar to the optimality results

given here, for the special case of 0-dimensional ordinary persistent homology. Our

Theorem 2.10.8 generalizes a slight weakening of [22, Theorem 32]; see Remark 2.10.9.
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1.4 Chapter 3: Strong and Weak Interleavings and

Interleaving Distances for Multi-D Filtrations

In Chapter 3 we introduce and study interleavings and interleaving distances on

multidimensional filtrations. The first goal of Chapter 3 is to present theory for inter-

leavings on filtrations analogous to that which Chapter 2 presents for interleavings on

multidimensional persistence modules; the second goal of the chapter is to establish

the technical foundations needed to formulate and prove topological inference results

directly at the level of filtrations.

We in fact introduce two types of interleavings on multidimensional filtrations,

strong interleavings and weak interleavings; each induces a distance on multi-

dimensional filtrations, the strong interleaving distance dSI and the weak inter-

leaving distance dWI , respectively. We define strong interleavings in a way closely

analogous to the way in which we define interleavings on persistence modules, and

they share some of the favorable theoretical properties of such interleavings.

However, strong interleavings turn out to be too sensitive for the purpose of prov-

ing inference results analogous to Theorem 1.2.1 at the level of filtrations. The reason,

put somewhat coarsely, is that strong interleavings are sensitive to the topology of

the spaces in filtrations up to homeomorphism; in developing theory of topological

inference, it turns out to be necessary to work with a notion of interleaving that is

sensitive only to the homotopy type of the spaces in the filtrations. Weak interleav-

ings have this property, in a certain sense. We use weak interleavings and the weak

interleaving distance to formulate our main inference results on the level of filtrations.

Because our inference results at the level of filtrations are formulated using weak

interleavings rather than strong interleavings, we are less interested in understanding

strong interleavings and the strong interleaving distance than their weak counterparts.

Nevertheless, the theory of strong interleavings is worth developing, if only as a bridge

to developing the theory of weak interleavings.
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1.4.1 Strong Interleavings and the Strong Interleaving Dis-

tance

Section 3.2 presents the definition and basic theory of strong interleavings. We present

three main results on the theory of strong interleavings.

Our first main result, Theorem 3.2.7, is a characterization of strongly interleaved

pairs of filtrations of nested type—filtrations of nested type are simply filtrations,

each of whose transition maps is an injection; all filtrations we have occasion to

consider in the development of our inferential theory in Chapter 4 are of nested type.

Our characterization of strongly interleaved pairs of filtrations of nested type

is loosely analogous to our characterization Theorem 2.6.4 of interleaved pairs of

persistence modules in Chapter 2. Whereas our characterization of interleaved pairs of

persistence modules in Chapter 2 is given in terms of free covers of persistence modules

(i.e. the 0th modules in free resolutions of persistence modules) our characterization

of strongly interleaved pairs of filtrations of nested type is given in terms of colimits

of filtrations.

Theorems 3.2.10 and 3.2.11, our second and third main results on the theory of

strong interleavings, are optimality results for dSI , each analogous to our optimality

result Corollary 2.10.2 for dI . We prove these using Proposition 2.10.4 (which, as

noted above, is the main step in our proof of Corollary 2.10.2, our optimality result for

multidimensional persistence modules) and our characterization result Theorem 3.2.7.

1.4.2 Weak Interleavings and the Weak Interleaving Distance

In Section 3.3, we define and study weak interleavings and the weak interleaving

distance. Our definition of weak (J1, J2)-interleavings, via which we formulate our

second main inference result, Theorem 4.4.4, is perhaps the most interesting object

of study of this thesis.

We’ll now discuss at a high level the motivation for the definition of weak inter-

leavings, the use of localization of categories in formulating the definition, and the

theory of weak interleavings.
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Motivation For Considering Weak Interleavings

As we have noted above, strong interleavings are too sensitive for our use in formu-

lating our inference results. We begin by explaining the sense in which this is so:

To adapt Theorem 1.2.1 to the level of filtrations, we want a notion of distance d

between interleavings between filtrations such that if f : X → Y is a morphism of

filtrations3 which is a levelwise homotopy equivalence, meaning that each component

map fa : Xa → Ya is a homotopy equivalence, then d(X, Y ) = 0. The reason we

want a distance on filtrations with this property is simple: To adapt the proof of

Theorem 1.2.1 to proofs of inference results at the level of filtrations, we need an

adaptation of the persistent nerve lemma of [13] which holds on the level of filtra-

tions rather than only on the level of persistent homology; such an adaptation can be

formulated in terms of a distance d on filtrations with the above property.

When we give the definition of dSI(X, Y ) in Section 3.2, it will be easy to see that

it is not true that dSI(X, Y ) = 0 whenever there is a levelwise homotopy equivalence

between X and Y ; see Remark 4.2.2 for a counterexample. On the other hand, our

Proposition 4.2.1 shows that dWI does have this property. In fact, we formulate the

definitions of weak interleavings and dWI so as to explicitly enforce the property.

Localization of Categories and Weak Interleavings

To define weak interleavings, we first modify the category of multidimensional filtra-

tions by formally adjoining inverses of levelwise homotopy equivalences. The math-

ematical tool for this is localization of categories. Localization of categories is anal-

ogous to the localization of rings and modules in commutative algebra. In analogy

with those versions of localization, it is characterized by a simple universal property.

Localization of categories is intimately connected to homotopy theory and in partic-

ular to closed model categories and the axiomatic homotopy theory of Quillen [37].

We discuss this connection in Section 3.3.1.

We observe that we can define interleavings between filtrations in a localized

category of multidimensional filtrations in much the same way that we define strong

3See Section 2.7.2 for the definition of a morphism of filtrations.
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interleavings in the ordinary category of multidimensional filtrations. We define weak

interleavings to be the interleavings in the localized category, and then define dWI in

terms of weak interleavings.

Properties of Weak Interleavings and the Weak Interleaving Distance

Our definitions are such that dWI ≤ dSI . On the other hand, dWI is sensitive enough

that persistent homology functors defined over arbitrary commutative coefficient rings

are stable, with respect to the weak interleaving distance on n-filtrations and the in-

terleaving distance on persistence modules. This is the content of our Theorem 3.3.10.

As we will see, this theorem is quite useful in passing from inference results on the

level of filtrations to inference results on the level of persistent homology.

In this thesis, we do not prove an optimality result for dWI analogous to those

which we prove for dI and dSI . Such a result, if we had it, would offer a fuller picture

of the sensitivity properties of dWI . Also, we do not offer a geometrically transparent

characterization of dWI analogous either to the algebraic characterization of dI given

by Theorem 2.6.4 or to the geometric characterization of dSI given by Theorem 3.2.7.

Thus, in spite of our Theorem 3.3.10 and the close analogy between dWI and both dSI

and dI , for which this thesis presents transparent characterizations, at the conclusion

of this work dWI still remains somewhat of a mysterious object. An optimality result

for dWI and a geometrically transparent characterization of dWI would do much to

improve our understanding of dWI . In Section 3.3.7, we discuss these problems further

and offer a conjectural optimality result for dWI .

1.5 Chapter 4: Approximation and Inference Re-

sults

In Chapter 4 we present our main inference results for multidimensional persistence.

These adapt Theorem 1.2.1 to the multidimensional setting and to the level of fil-

trations. We present two main inference results, Theorems 4.4.2 and 4.4.4: The first

concerns inference using Čech bifiltrations and the second concerns inference using
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Rips bifiltrations.

We also present two additional results, one deterministic and one probabilistic,

which are similar in spirit to our main results. These are our Theorems 4.2.10

and 4.5.2; we describe them at the end of this section.

1.5.1 Definitions of Filtrations

To state our first main inference result, we need to define a few types of filtrations.

All definitions we present here also appear later in the thesis in fuller generality; see,

in particular, Sections 2.7 and 3.1.

For u, v ∈ (−∞,∞], a (u, v)-filtration X (of nested type) is a collection of topolog-

ical spaces {X(a,b)}a<u,b<v such that if (a, b) ≤ (a′, b′) (w.r.t. the usual partial ordering

on R2) then X(a,b) ⊂ X(a′,b′). We can define the (multidimensional) persistent homol-

ogy functor of a (u, v)-filtration for any (u, v) ∈ (−∞,∞]2—see Section 3.1.2.

For an (∞,∞)-filtration X and u, v ∈ (−∞,∞], let R(u,v)(X) denote the (u, v)-

filtration such that for (a, b) < (u, v), R(u,v)(X)(a,b) = Xa,b.

Superlevelset-Offset Filtrations

We now introduce sublevelset-offset filtrations and superlevelset-offset filtrations. In-

formally, whereas the topology of a superlevelset filtration encodes only the height

of topographical features of the graph of an R-valued function, the topology of a

superlevelset-offset filtration simultaneously encodes both the height and the width

of those topographical features.

Superlevelset-offset filtrations are a natural common extension of superlevelset

filtrations and offset filtrations [13], two types of 1-D filtrations which are standard

objects of study in the computational topology literature.

If (Y, d) is a metric space, X ⊂ Y , and γ : X → R is a function, F SO(X, Y, d, γ),

the sublevelset-offset filtration of γ (w.r.t the metric d), is the (∞,∞)-filtration

for which

F SO(X, Y, d, γ)a,b = {y ∈ Y |d(y, γ−1((∞, a])) ≤ b}.

We write F SO(Y, Y, d, γ) simply as F SO(Y, d, γ).
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Informally, F SO(X, Y, d, γ)a,b is the thickening of the a-sublevelset of γ by offset

parameter b. We call F SO(X, Y, d,−γ). the superlevelset-offset filtration of γ.

Superleveset-Čech Bifiltrations

Given X, Y, and d as above and b ∈ R, let Čech(X, Y, d, b), the (closed) Čech complex

of (X, d) with parameter b, be the abstract simplicial complex with vertex set X

such that for l ≥ 2 and x1, x2, .., xl ∈ X, Čech(X, Y, d, b) contains the (l− 1)-simplex

[x1, ..., xl] iff there is a point y ∈ Y such that d(y, xi) ≤ b for 1 ≤ i ≤ l.

For any γ : X → R, let F SČe(X, Y, d, γ), the sublevelset-Čech filtration of γ

(w.r.t the metric d), be the (∞,∞)-filtration for which

F SČe(X, Y, d, γ)a,b = Čech(γ−1((∞, a]), Y, d, b).

We call F SČe(X, Y, d,−γ) the superlevelset-Čech filtration of γ.

Superlevelset-Rips Bifiltrations

Given a metric space (X, d) and b ∈ R, let Rips(X, d, b), the Rips complex of (X, d)

with parameter b, be the maximal abstract simplicial complex with vertex set X

such that for x1, x2 ∈ X, the 1-skeleton of R(X, d, b) contains the edge [x1, x2] iff

d(x1, x2) ≤ 2b.

For any γ : X → R, let F SR(X, d, γ), the sublevelset-Rips filtration of γ (w.r.t

the metric d), be the (∞,∞)-filtration for which

F SR(X, d, γ)a,b = Rips(γ−1((∞, a]), d, b).

We call F SČe(X, d,−γ) the superlevelset-Rips filtration of γ.
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1.5.2 An Inferential Interpretation of Superlevelset-Čech Bi-

filtrations

We now describe our first main inference result. For simplicity, we state the result

here only for density functions on Euclidean space; it adapts readily to the case of

density functions on Riemannian manifolds.

Let γ : Rm → R be a c-Lipchitz density function for some c > 0; for z ∈ N, let Tz

be an i.i.d. sample of size z of a random variable with density γ; fix p ∈ [1,∞], let dp

denote both the Lp-metric on Rm and (by slight abuse of notation) the restriction of

the dp to any subset of Rm; let E be a density estimator on Rm.

Write F SR
z = F SR(Tz, d

p,−E(Tz)), F
SČe
z = F SČe(Tz,Rm, dp,−E(Tz)), and F SO =

F SO(Rm,Rm, dp,−γ))). For a kernel K, write F SO
K = F SO(Rm, dp,−γ ∗K).

Our first main result, Theorem 4.4.2, is the following.

Theorem.

(i) If (γ,E) satisfies A1 then

dWI(R(0,∞)(F
SČe
z ), R(0,∞)(F

SO))
P−→ 0.

(ii) If (γ,E) satisfies A2 for a kernel K then

dWI(R(0,∞)(F
SČe
z ), R(0,∞)(F

SO
K ))

P−→ 0.

Note that unlike Theorem 1.2.1, the statement of this result does not involve a

sequence {δz}z∈Z of scale parameters.

Let Hi denote the ith persistent homology functor (the definition is given in

Section 3.1.2). From our stability result for the weak interleaving distance, Theo-

rem 3.3.10, we immediately obtain the following corollary, which is Corollary 4.4.3.

Corollary.

(i) If (γ,E) satisfies A1 then

dI(Hi(R(0,∞)(F
SČe
z )), Hi(R(0,∞)(F

SO)))
P−→ 0.
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(ii) If (γ,E) satisfies A2 for a kernel K then

dI(Hi(R(0,∞)(F
SČe
z ))), Hi(R(0,∞)(F

SO
K )))

P−→ 0.

Theorem 2.6.4, our extrinsic characterization of (J1, J2)-interleaved pairs of mod-

ules, offers a concrete interpretation of Corollary 4.4.3 as a statement about the

similarity between presentations of persistent homology modules.

Theorem 4.4.2 and Corollary 4.4.3 also immediately give us corresponding results

about Rips filtrations, in two special cases. First, it is easy to check that for any

T ⊂ Rm, and any scale parameter a ≥ 0, Rips(T, d∞, a) = Čech(T,Rm, d∞, a). Thus

F SČe(Tz,Rm, d∞,−E(Tz)) = F SR(Tz, d
∞,−E(Tz))

and so when p = ∞, we may replace the filtrations F SČe
z with the filtrations F SR

z

everywhere in the statements of the above theorems.

Second, since the superlevelset-Rips filtrations and superlevelset-Čech filtrations

always have equal 1-skeletons,

H0(R(0,∞)(F
SČe
z )) = H0(R(0,∞)(F

SR
z ))

in the the statement of Corollary 4.4.3, and so the corollary gives us in particular a

consistency result for the the 0th persistent homology of superlevelset-Rips filtrations.

1.5.3 An Inferential Interpretation of Superlevelset-Rips Bi-

filtrations

Our second main inference result, Theorem 4.4.4, is an analogue of our first main

inference result for the random superlevelset-Rips bifiltrations F SR
z . The result is

formulated directly in terms of weak interleavings, rather than in terms of dWI . Be-

cause of this, the precise statement of the result is technical and not readily presented

before giving a careful treatment of weak (J1, J2)-interleavings. Thus we will describe

the result here but defer its statement to Section 4.4.4.



CHAPTER 1. INTRODUCTION 21

The result quantifies the sense in which F SR
z is topologically similar to F SO in the

asymptotic limit as z →∞, under the same assumptions as in our first main inference

result. Roughly, the result says that in the limit as z →∞, F SR
z and F SO satisfy in

the weak sense the same interleaving relationship that F SR
z and F SČe

z satisfy in the

strong sense for all z (with probability 1).

The result is not, in any reasonable sense, a consistency result. Indeed, F SČe
z and

F SR
z exhibit topological differences that do not become negligible with high proba-

bility as z →∞. Thus, given that under the assumptions of our first main inference

result, the bifiltrations F SČe
z are (in a topological sense) consistent estimators of F SO,

we do not expect that under the same assumptions the bifiltrations F SR
z would also be

consistent estimators of F SO. On the other hand, the topological differences between

F SČe
z and F SR

z are controlled by the well known inclusion relationships between Čech

complexes and Rips complexes: Recall that for any metric space (Y, d), X ⊂ Y and

any scale parameter r ≥ 0, we have that

Čech(X, Y, d, r) ⊂ Rips(X, d, r) ⊂ Čech(X, Y, d, 2r). (1.1)

Using the language of weak (J1, J2)-interleavings, we can encode the relationship

between F SČe
z and F SR

z induced by these inclusions. Then, via a simple triangle in-

equality type lemma for interleavings, we can quantify how that relationship, taken

together with our first main inference result, controls the topological differences be-

tween F SR
z and F SO in the asymtoptic limit. Our second main inference result does

exactly this.

As in the case of our first main inference result, via the stability theorem 3.3.10 we

obtain an analogue of our second main inference result for persistent homology mod-

ules, Corollary 4.4.5. Corollary 4.4.5 is formulated in terms of (J1, J2)-interleavings

of persistence modules. As is the case for Corollary 4.4.3, Theorem 2.6.4 offers a

concrete interpretation of Corollary 4.4.5 as a statement about the similarity between

presentations of persistent homology modules.
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1.5.4 Deterministic Approximation Results

In proving our main inference results, we follow a strategy analogous to that used

by Chazal et. al to prove the inference result [11, Theorem 5.1]–namely we first

prove deterministic approximation results which assume that the domain of the func-

tions we consider is well sampled, and then use these deterministic results to obtain

probabilistic results.

In specific, we first prove Theorem 4.2.3, a bound on the weak interleaving dis-

tance between the sublevelset-offset filtration of a function γ and the sublevelset-Čech

filtration of an approximation of γ defined on a finite subset of the domain of γ. This

bound implies an analogous result, Theorem 4.2.7, for sublevelset-Rips filtrations,

formulated in terms of weak (J1, J2)-interleavings. These results are the content of

Sections 4.2.2 and 4.2.3; they are analogues of [12, Theorem 3.1], and its extension

[11, Theorem 4.5], but in the multidimensional setting and for filtrations rather than

for persistent homology modules. In fact, our results treat the general situation that

γ is an Rn-valued function, n ≥ 1, and that only a sublevelset of the domain of γ is

well sampled.

The result [11, Theorem 4.5] for ordinary persistence is interesting and useful, in-

dependent of its application to statistical inference—see, for example, the application

presented in [44]. We imagine that the deterministic bounds we present here may

similarly be of independent interest.

Deterministic Approximation of Multidimensional Sublevelset Persistent

Homology

Using the interleaving distance on multidimensional persistence modules, it also is

possible to adapt the deterministic result [11, Theorem 4.5] to the multidimensional

setting in a different—and more straightforward—way than that of Theorems 4.2.3

and 4.2.7: Our Theorem 4.2.10 generalizes the result [11, Theorem 4.5] to Rn-valued

functions, using sublevelset multifiltrations (as defined e.g. in Section 2.7.4), and

sublevelset-Rips multifiltrations with a fixed scale parameter. The proof is essentially

same as that of [11, Theorem 4.5] in the case of R-valued functions.
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This result does not lift to the level of filtrations, but an analogue of it for

sublevelset-Čech filtrations rather than sublevelset-Rips filtrations does in fact lift

to the level of filtrations. This is our Theorem 4.2.11.

1.5.5 An Inference Result for 1-D Filtrations

In addition to our main inference results, described above, in Section 4.5 we ap-

ply the weak interleaving distance and Theorem 4.2.11 to obtain an inference result,

Theorem 4.5.2, for the superlevelset filtration of a probability density function. This

is a variant of Theorem 1.2.1, the analogue of the weak law of large numbers for

persistent homology of Chazal et al., holding at the level of filtrations. In general,

the result holds only for filtered Čech complexes, not for filtered Rips complexes—

Theorem 1.2.1, as stated above for filtered Rips complexes, does not lift to the level

of filtrations. However, as for our main inference result for Čech bifiltrations, Theo-

rem 4.5.2 can be interpreted as a result about Rips filtrations in the special case that

we construct our filtrations using L∞ metrics on Rm.

1.6 Why Formulate Theory of Topological Infer-

ence Directly at the Level of Filtrations?

To close this introduction, we explain our choice to develop inferential theory directly

at the level of filtrations rather than only at the level of persistent homology modules.

Our aim is to understand as deeply as possible the connection between the topo-

logical structure of discrete filtrations built on randomly sampled point cloud data

and that of filtrations built directly from the probability distribution generating the

random data; as we’ll now argue, to do this, it is more natural to develop the in-

ferential theory (and, in particular, the requisite notions of similarity of filtrations)

directly at the level of filtrations than at the homology level.

We note first the trivial fact that singular homology induces an equivalence re-

lation on topological spaces—namely, we can say that two topological spaces X an
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Y are homology equivalent4 if Hi(X) and Hi(Y ) are isomorphic for all i. However,

such a notion of equivalence between topological spaces is not often adopted as a

fundamental object of interest in algebraic topology. The reason is that there are

stronger, more easily defined, and more geometrically transparent notions of equiva-

lence of topological spaces, such as those of homotopy equivalence and weak homotopy

equivalence, which exhibit the kinds of invariance properties one wants a notion of

equivalence on spaces to have in algebraic topology and homotopy theory.5 Thus

homotopy equivalence and weak homotopy equivalence are generally regarded as the

fundamental notions of equivalence of topological spaces in algebraic topology, and

homology serves primarily as a computational tool to understand spaces up to these

notions of equivalence; homology is usually not taken as means of defining a notion

of equivalence of topological spaces in of itself.

Now, for filtrations the analogue of homology is persistent homology, and we can

define a notion of persistent homology equivalence of filtrations in a way analogous to

the way in which we just defined homology equivalence of topological spaces. In fact,

for ordinary persistence the bottleneck distance dB on persistence modules affords us

an approximate notion of persistent homology equivalence between two 1-D filtrations:

we can interpret the statement that

∀ i ∈ Z≥0, dB(Hi(X), Hi(Y )) ≤ ε

for two filtrations X and Y as saying that X and Y are approximately persistent

homology equivalent, up to an error of ε. More generally, the interleaving distance

studied in this thesis affords us in the same way an approximate notion of persistent

homology equivalence between two multidimensional filtrations.

Given that for topological spaces it turns out to be most natural to regard ho-

motopy equivalence, rather than homology equivalence, as the fundamental notion of

4Note: This not standard terminology; we are introducing it here only in the service of the present
discussion and only for use in this subsection.

5When we say that homotopy equivalence is a geometrically transparent notion of equivalence
of topological spaces we are alluding specifically to the theorem which says that two spaces are
homotopy equivalent if and only if they are each deformation retracts of some third space [30,
Corollary 0.21].
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equivalence between topological spaces, by analogy it is reasonable for us to ask for a

notion of approximate homotopy equivalence of filtrations which has good invariance

properties and which enjoys the same advantages over approximate homology equiv-

alence that homotopy equivalence enjoys over homology equivalence for topological

spaces. Further, if we were to have such a notion, then in light of its good properties

and by analogy to classical algebraic topology, it would be natural for us to formulate

persistence theory and in particular theory of topological inference directly at the

level of filtrations in terms of that notion.

The weak interleaving distance affords us precisely such a well behaved notion

of approximate homotopy equivalence of multidimensional filtrations, except that, as

we noted in Section 1.4.2, it is not yet clear to what extent the weak interleaving

distance is in fact geometrically transparent.

Thus, the present unavailability of a geometric characterization of the weak inter-

leaving distance aside, it is natural to formulate our main inference results directly

at the level of filtrations, in terms of the weak interleaving distance and the closely

related notion of weak interleavings.



Chapter 2

Interleavings on Multidimensional

Persistence Modules

In this chapter we introduce and study interleavings and interleaving distance on

multidimensional persistence modules. See Section 1.3 for an overview of the chapter.

2.1 Algebraic Preliminaries

In this section we define persistence modules and review some (primarily) algebraic

facts and definitions which we will need throughout the thesis.

2.1.1 First Definitions and Notation

Basic Notation

Let k be a field. Let N denote the natural numbers and let Z≥0 denote the non-

negative integers. Let R̂ = (−∞,∞].

We view Rn as a partially ordered set, with (a1, ..., an) ≤ (b1, ..., bn) iff ai ≤ bi for

all i. Let ei denote the ith standard basis vector in Rn.

For A ⊂ R any subset, let Ā = A ∪ {−∞,∞}.
For a = (a1, ..., an) ∈ R̂n and b ∈ R̂, let (a, b) = (a1, ..., an, b) ∈ R̂n+1.

26
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For f : X → Rn, a ∈ Rn, let fa = {x ∈ X|f(x) ≤ a}. We call fa the a-sublevelset

of f and we call (−f)a the a-superlevelset of f .

For ε ∈ R̂, let ~εn ∈ Rn denote the vector whose components are each ε. We’ll also

often write ~εn simply as ~ε when n is understood. As a notational convenience, for

u ∈ Rn and ε ∈ R, let u+ ε denote u+ ~ε.

Notation Related to Categories

For a category C, let obj(C) denote the objects of C and let obj∗(C) denote the

isomorphism classes of objects of C. Let hom(C) denote the morphisms in C, and

for X, Y ∈ obj(C) let homC(X, Y ) denote the morphisms from X to Y . When C is

understood, we’ll often write homC(X, Y ) simply as hom(X, Y ).

Metrics and Pseudometrics

Recall that a pseudometric on a set X is a function d : X × X → [0,∞] with the

following three properties:

1. d(x, x) = 0 for all x ∈ X.

2. d(x, y) = d(y, x) for all x, y ∈ X.

3. d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

We’ll often use the term distance in this thesis as a synonym for pseudometric.

A metric is a pseudometric d with the additional property that d(x, y) 6= 0 when-

ever x 6= y.

Metrics on Categories

In this thesis we’ll often have the occasion to define a pseudometric on obj∗(C),

for C some category. For d such a pseudometric, M,N ∈ obj(C), and [M ], [N ]

the isomorphism classes of M and N , we’ll always write d(M,N) as shorthand for

d([M ], [N ]).
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2.1.2 Commutative Monoids and Monoid Rings

Monoid rings are generalizations of polynomial rings.

A commutative monoid is a pair (G,+G), where G is a set and +G is an associative,

commutative binary operation on G with an identity element. Abelian groups are by

definition commutative monoids with the additional property that each element has

an inverse. We’ll often denote the monoid (G,+G) simply as G. A submonoid of a

monoid is defined in the obvious way, as is an isomorphism between two monoids.

Given a set S, let k[S] denote the vector space of formal linear combinations of el-

ements of S. If Ḡ = (G,+G) is a monoid, then the operation +G induces a ring struc-

ture on k[G], where multiplication is characterized by the property (k1g1)(k2g2) =

k1k2(g1 +G g2) for k1, k2 ∈ k, g1, g2 ∈ G. We call the resulting ring the monoid ring

generated by Ḡ, and we denote it k[Ḡ].

Let An denote k[x1, ..., xn], the polynomial ring in n variables with coefficients in

k. For n > 0, Zn≥0 is a monoid under the usual addition of vectors. It’s easy to see

that k[Zn≥0] is isomorphic to An.

Similarly, Rn
≥0 is a monoid under the usual addition of vectors. Let Bn denote the

monoid ring k[Rn
≥0]. We may think of Bn as an analogue of the usual polynomial ring

in n-variables where exponents of the indeterminates are allowed to take on arbitrary

non-negative real values rather than only non-negative integer values. With this

interpretation in mind, we’ll often write (r1, ..., rn) as xr11 x
r2
2 · · ·xrnn , for (r1, ..., rn) ∈

Rn
≥0.

2.1.3 Multidimensional Persistence Modules

We first review the definition of a multidimensional persistence module given in [7].

We then define analogues of these over the ring Bn.

In what follows, we’ll often refer to multidimensional persistence modules simply

as “persistence modules.”
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An-Persistence Modules

Fix n ∈ N. An An-persistence module is an An-module M with a direct sum

decomposition as a k-vector space M ∼=
⊕

a∈Zn Ma such that the action of An on M

satisfies xi(Ma) ⊂Ma+ei for all a ∈ Zn. In other words, an An-persistence module is

simply an An-module endowed with an n-graded structure.

For M and N An-persistence modules, we define hom(M,N) to be the set of

module homomorphisms f : M → N such that f(Ma) ⊂ Na for all a ∈ Zn. This

defines a category whose objects are the An-persistence modules. Let An-mod denote

this category.

Bn-persistence modules

In close analogy with the definition of an n-graded An-module, we define a Bn-

persistence module to be a Bn-module M with a direct sum decomposition as a

k-vector space M ∼=
⊕

a∈RnMa such that the action of Bn on M satisfies xαi (Ma) ⊂
Ma+αei for all a ∈ Rn, α ≥ 0.

For M and N Bn-persistence modules, we define hom(M,N) to consist of module

homomorphisms f : M → N such that f(Ma) ⊂ Na for all a ∈ Rn. This defines

a category whose objects are the Bn-persistence modules. Let Bn-mod denote this

category.

Our notational convention will be to use boldface to denote An-persistence mod-

ules and italics to denote Bn-persistence modules. We’ll often refer to A1-persistence

modules and B1-persistence modules as ordinary persistence modules.

On the Relationship Between An-persistence Modules and Bn-persistence

Modules

Since An is a subring of Bn, we can view Bn as an An-module. If M is an An-

persistence module then M ⊗An Bn is a Bn-module. Further, M ⊗An Bn inherits

an n-grading from those on Bn and M which gives M ⊗An Bn the structure of a

Bn-persistence module.

In fact, (·)⊗An Bn defines a functor from An-mod to Bn-mod. It can be checked
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that this functor is fully faithful and descends to an injection on isomorphism classes

of objects. Thus the functor induces an identification of An-mod with a subcategory

of Bn-mod.

In light of this, we can think of Bn-persistence modules as generalizations of An-

persistence modules. Finitely presented Bn-persistence modules arise naturally in

applications, as discussed in Section 2.7.4. In a sense that can be made precise using

machinery mentioned in Remark 2.3.3, it is possible to view them as An-persistence

modules endowed with some additional data. However, this is awkward from the

standpoint of constructing pseudometrics between Bn-persistence modules. We thus

regard Bn-persistence modules as the fundamental objects of interest here, and use

An-persistence modules in this thesis only in the case n = 1 to translate results about

A1-persistence modules into analogous results about B1-persistence modules.

In the remainder of Section 2.1.3, we present some basic definitions related to

Bn-persistence modules. All of these definitions have obvious analogues for An-

persistence modules; we’ll use these analogues where needed without further com-

ment.

Homogeneity

Let M be a Bn-persistence module. For u ∈ Rn, we say that Mu is a homogeneous

summand of M . We refer to an element v ∈ Mu as a homogeneous element of grade

u, and write gr(v) = u. A homogeneous submodule of a Bn-persistence module is

a submodule generated by a set of homogeneous elements. The quotient of a Bn-

persistence module M by a homogeneous submodule of M is itself a Bn-persistence

module; the n-graded structure on the quotient is induced by that of M .

Tameness

Following [8] we’ll call a Bn-persistence module tame if each homogeneous summand

of the module is finite dimensional. Note that this is a more general notion of tameness

than that which appears in the original paper on the stability of persistence [14].
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Transition Maps

For M a Bn-persistence module and any u ≤ v ∈ Rn, the restriction to Mu of

the action on M of the monomial xv1−u11 xv2−u22 · · ·xvn−unn defines a linear map with

codomain Mv, which we call a transition map. Denote this map by ϕM(u, v).

2.1.4 Shift Functors and Transition Morphisms

Shift Functors and Related Notation

For v ∈ Rn, we define the shift functor (·)(v) as follows: For M a Bn-persistence

module we let M(v) be the Bn-persistence module such that for all a ∈ Rn, M(v)a =

Ma+v. For a ≤ b ∈ Rn, we take ϕM(v)(a, b) = ϕM(a+v, b+v). For f ∈ hom(Bn-mod)

we let f(v)a = fa+v.

For v ∈ Rn and f ∈ hom(Bn-mod), we’ll sometimes abuse notation and write f(v)

simply as f .

For ε ∈ R, let M(ε) denote M(~ε). More generally, for any subset Q ⊂ M , let

Q(ε) ⊂M(ε) denote the image of Q under the bijection between M and M(ε) induced

by the identification of each summand M(ε)u with Mu+ε.

Transition Homomorphisms

For a Bn-persistence module M and ε ∈ R≥0 let S(M, ε) : M →M(ε), the (diagonal)

ε-transition homomorphism, be the homomorphism whose restriction to Mu is the

linear map ϕM(u, u+ ε) for all u ∈ Rn.

2.1.5 ε-interleavings and the Interleaving Distance

For ε ≥ 0, we say that two Bn-persistence modules M and N are ε-interleaved if

there exist homomorphisms f : M → N(ε) and g : N →M(ε) such that

g(ε) ◦ f = S(M, 2ε) and

f(ε) ◦ g = S(N, 2ε);
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we refer to such f and g as ε-interleaving homomorphisms.

The definition of ε-interleaving homomorphisms was introduced for B1-persistence

modules in [8].

Remark 2.1.1. It’s easy to see that if 0 ≤ ε1 ≤ ε2 and M and N are ε1-interleaved,

then M and N are ε2-interleaved.

In Section 2.6.1 we will observe that the definition of ε-interleavings generalizes

considerably, but for now we will not concern ourselves with the generalized form of

the definition.

The Interleaving Distance on Bn-persistence modules

We define dI : obj∗(Bn-mod)× obj∗(Bn-mod)→ [0,∞], the interleaving distance,

by taking

dI(M,N) = inf{ε ∈ R≥0|M and N are ε-interleaved}.

Note that dI is pseudometric. However, the following example shows that dI is

not a metric.

Example 2.1.2. Let M be the B1-persistence module with M0 = k and Ma = 0

if a 6= 0. Let N be the trivial B1-persistence module. Then M and N are not

isomorphic, and so are not 0-interleaved, but it is easy to check that M and N are

ε-interleaved for any ε > 0. Thus dI(M,N) = 0.

2.1.6 Free Bn-persistence Modules, Presentations, and Re-

lated Algebraic Basics

In our study of Bn-persistence modules, we will make substantial use of free Bn-

persistence modules and presentations of Bn-persistence modules; we define these

objects here and present some basic results about them. We begin with some foun-

dational definitions.
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n-graded Sets

Define an n-graded set to be a pair G = (Ḡ, ιG) where Ḡ is a set and ιG : G→ Rn is

any function. When ιG is clear from context, as it will usually be, we’ll write ιG(y)

as gr(y) for y ∈ Ḡ. We’ll sometimes abuse notation and write G to mean the set Ḡ

when no confusion is likely. The union of disjoint graded sets is defined in the obvious

way. For ε ≥ 0 and G = (Ḡ, ιG) an n-graded set, let G(ε) be the n-graded set (Ḡ, ι′G),

where ι′G(y) = ι(y)− ε.
For G an n-graded set, define gr(G) : Rn → Z≥0 ∪ {∞} by taking gr(G)(u)

to be the number of elements y ∈ G such that gr(y) = u. Note that for any Bn-

persistence module M , a set Y ⊂M of homogeneous elements inherits the structure

of an n-graded set from the graded structure on M , so that gr(Y ) is well defined.

Free Bn-persistence modules

The usual notion of a free module extends to the setting of Bn-persistence modules

as follows: For G an n-graded set, let 〈G〉 = ⊕y∈ḠBn(−gr(y)). A free Bn-persistence

module F is a Bn-persistence module such that for some n-graded set G, F ∼= 〈G〉.
Equivalently, we can define a free Bn-persistence module as a Bn-persistence mod-

ule which satisfies a certain universal property. Free An-persistence modules are de-

fined via a universal property e.g. in [7, Section 4.2]. The definition for Bn-persistence

modules is analogous; we refer the reader to [7] for details.

A basis for a free module F is a minimal set of homogeneous generators for F .

For G any graded set, identifying y ∈ G with the copy of 1(−gr(y)) in the summand

Bn(−gr(y)) of 〈G〉 corresponding to y gives an identification of G with a basis for

〈G〉. It can be checked that if B and B′ are two bases for a free Bn-persistence module

F then gr(B) = gr(B′). Clearly then, gr(B) of an arbitrarily chosen basis B for F is

an isomorphism invariant of F and determines F up to isomorphism.

For R a homogeneous subset of a free Bn-persistence module F , 〈R〉 will always de-

note the submodule of F generated by R. Since, as noted above, R can be viewed as an

n-graded set, we emphasize that for such R, 〈R〉 does not denote ⊕y∈RBn(−gr(y)).
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Free Covers and Lifts

For M a Bn-persistence module, define a free cover of M be a pair (FM , ρM), where

FM is a free Bn-persistence module and ρM : FM → M a surjective morphism of

Bn-persistence modules.

For M,N Bn-persistence modules, (FM , ρM) and (FN , ρN) free covers of M and

N , and f : M → N a morphism, define a lift of f to be a morphism f̃ : FM → FN

such that the following diagram commutes.

FM
f̃−−−→ FNyρM yρN

M
f−−−→ N

Lemma 2.1.3 (Existence and Uniqueness up to Homotopy of Lifts). For any Bn-

persistence modules M and N , free covers (FM , ρM), (FN , ρN) of M,N , and a mor-

phism f : M → N , there exists a lift f̃ : FM → FN of f . If f̃ ′ : FM → FN is another

lift of f , then im(f̃ − f̃ ′) ⊂ ker(ρN).

Proof. This is just a specialization of the standard result on the existence and ho-

motopy uniqueness of free resolutions [26, Eisenbud A3.13] to the 0th modules in free

resolutions for M and N . The proof is straightforward.

Presentations of Bn-persistence Modules

A presentation of a Bn-persistence moduleM is a pair (G,R) whereG is an n-graded

set and R ⊂ 〈G〉 is a set of homogeneous elements such that M ∼= 〈G〉/〈R〉. We denote

the presentation (G,R) as 〈G|R〉. For n-graded sets G1, ..., Gl and sets R1, ..., Rm ⊂
〈G1 ∪ ... ∪Gl〉, we’ll let 〈G1, ..., Gl|R1, ..., Rm〉 denote 〈G1 ∪ ... ∪Gl|R1 ∪ ... ∪Rm〉.

If M is a Bn-persistence module such that there exists a presentation 〈G|R〉 for

M with G and R finite, then we say M is finitely presented.
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Minimal Presentations of Bn-persistence Modules

Let M be a Bn-persistence module. Define a presentation 〈G|R〉 of M to be minimal

if

1. the quotient 〈G〉 → 〈G〉/〈R〉maps G to a minimal set of generators for 〈G〉/〈R〉.
2. R is a minimal set of generators for 〈R〉.

It’s clear that a minimal presentation for M exists.

Theorem 2.1.4. If M is a finitely presented Bn-persistence module and 〈G|R〉 is a

minimal presentation of M , then for any other presentation 〈G′|R′〉 of M , gr(G) ≤
gr(G′) and gr(R) ≤ gr(R′).

Note that the theorem implies in particular that if 〈G|R〉 and 〈G′|R′〉 are two

minimal presentations of M then gr(G) = gr(G′) and gr(R) = gr(R′).

We defer the proof of the theorem to Appendix A.2. The proof is an adaptation to

our setting of a standard result [26, Theorem 20.2] about free resolutions of modules

over a local ring. The main effort required in carrying out the adaptation is to prove

that the ring Bn has a property known as coherence; we define coherence and prove

that Bn is coherent in Appendix A.1.

2.2 Algebraic Preliminaries for 1-D Persistence

In this section, we review algebraic preliminaries and establish notation specific to

1-D persistent homology. This material will be used in Sections 2.3 and 2.4 to develop

the machinery needed to prove Theorem 2.4.2.

Basic Notation

For S any subset of R̄2, let S+ = {(a, b) ∈ S|a < b}. For S a set and f : S → R a

function, let supp(f) = {s ∈ S|f(s) 6= 0}.
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2.2.1 Structure Theorems For Tame A1-Persistence Modules

The structure theorem for finitely generated A1 persistence modules [47] is well known

in the applied topology community. In fact, this theorem generalizes to tame A1-

modules. The existence portion of the generalized theorem is given e.g. in [46]; the

uniqueness is not mentioned there but is very easy to show; we do so below. To our

knowledge, this generalization has not previously been discussed in the computational

topology literature. We will use the more general theorem to show that the bottleneck

distance is equal to the interleaving distance for ordinary persistence.

Before stating the results, we establish some notation. For a < b ∈ Z, Let C(a, b)

denote the module (k[x]/(xb−a))(−a). Let C(a,∞) = k[x](−a). Note that for fixed b

(possibly infinite), the set of modules {C(a, b)}a∈(−∞,b) has a natural directed system

structure; let C(−∞, b) denote the colimit of this directed system.

For M a module and m ∈ Z≥0, let Mm denote the direct sum of m copies of M .

Theorem 2.2.1 (Structure Theorem for finitely generated A1-persistence modules

[47]). Let M be a finitely generated A1-module. Then there is a unique function

DM : (Z× Z̄)+ → Z≥0 with finite support such that

M ∼= ⊕(a,b)∈supp(DM)C(a, b)DM(a,b).

Theorem 2.2.2 (Structure Theorem for tame A1-persistence modules [46]). Let M

be a tame A1-module. Then there is a unique function DM : Z̄2
+ → Z≥0 such that

M ∼= ⊕(a,b)∈supp(DM)C(a, b)DM(a,b).

The uniqueness part of Theorem 2.2.2 is an immediate consequence of the following

lemma, upon noting that the right hand sides of the equations in the statement of

the lemma do not depend on DM.

Lemma 2.2.3. Let M be a tame A1-module, and let DM : Z̄2
+ → Z≥0 be a function

such that M ∼= ⊕(a,b)∈supp(DM)C(a, b)DM(a,b). Then
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(i) For (a, b) ∈ Z2
+,

DM(a, b) = rank(ϕM(a, b− 1))− rank(ϕM(a, b))

− rank(ϕM(a− 1, b− 1)) + rank(ϕM(a− 1, b)).

(ii) For b ∈ Z, DM(−∞, b) = lima→−∞ rank(ϕM(a, b−1))−lima→−∞ rank(ϕM(a, b)).

(iii) For a ∈ Z, DM(a,∞) = limb→∞ rank(ϕM(a, b))− limb→∞ rank(ϕM(a− 1, b)).

(iv) DM(−∞,∞) = lima→−∞ limb→∞ rank(ϕM(a, b)).

Proof. This is trivial.

We call DM the (discrete) persistence diagram of M.

In Section 2.3, we prove a structure theorem analogous to Theorem 2.2.2 for a

subset of the tame B1-persistence modules which contains the finitely presented B1-

persistence modules. We do not address the problem of generalizing this structure

theorem to the full set of tame B1-persistence modules, but to echo a sentiment

expressed in [8], it would be nice to have such a result.

2.2.2 Discrete Persistence Modules.

In order to define persistence diagrams of B1-persistence modules, we need a mild

generalization of A1-persistence modules.

Let S ⊂ R be a countably infinite set with no accumulation point. The authors

of [8] define a discrete persistence module MS to be a collection of vector spaces

{Ms}s∈S indexed by S together with linear maps {ϕMS
(s1, s2)}s1≤s2∈S.

Define a grid function t : Z → R to be a strictly increasing function with no

accumulation point.

Remark 2.2.4. Discrete persistence modules are of course closely related to A1-

persistence modules. A countably infinite subset of S ⊂ R with no accumulation

point can be indexed by a grid function t with image S, and such a grid function is

uniquely determined by the value of t(0). Thus, pairs (MS, s), where MS is a discrete

persistence module and s is an element of S, are equivalent to pairs (M′, t), where M′
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is an A1-persistence module and t is a grid function; there is an equivalence sending

each pair (MS, s) to the pair (M′, t), where t is a grid function with im(t) = S,

t(0) = s, and M′ is the A1-persistence module such that for z ∈ Z,M′
z = Mt(z) and

ϕM′(z1, z2) = ϕMS
(t(z1), t(z2)).

As a matter of expository convenience, from now on we’ll define discrete modules

to be pairs (M, t) where M is an A1-persistence module and t is a grid function. This

in effect means we are carrying around the extra data of an element of S in our discrete

persistent modules relative to those defined in [8], but this won’t present a problem–in

particular, the definition of the persistence diagram of a discrete persistence module

that we present below is independent of the choice of this element, and is equivalent

to that of [8].

2.2.3 Persistence Diagrams and the Bottleneck Distance

The definition of a persistence diagram that we present here differs in some cosmetic

respects from that in [8]. Our choice in this regard is a matter of notational conve-

nience; the reader may check that our definition of the bottleneck distance between

tame B1-persistence modules is equivalent to that of [8].

For a grid function t, define t̄ : Z̄→ R̄ as

t̄(z) =


t(z) if z ∈ Z,

−∞ if z = −∞,

∞ if z =∞.

Let t̄× t̄ : Z̄2
+ → R̄2

+ be defined by t̄× t̄(a, b) = (t̄(a), t̄(b)).

We define a persistence diagram to be a function D : R̄2
+ → Z≥0.

For (M, t) a discrete persistence module, define D(M,t), the persistence diagram

of (M, t), to be the persistence diagram for which supp(D(M,t)) = t̄ × t̄(supp(DM))

and so that D(M,t)(t̄(a), t̄(b)) = DM(a, b) for all (a, b) ∈ Z̄2
+.
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Bottleneck Metric

For x ∈ R, define x +∞ = ∞ and x −∞ = −∞. Then the usual definition of l∞

norm on the plane extends to R̄2; we denote it by ‖ · ‖∞.

Now define a multibijection between two persistence diagrams D1,D2 to be a

function γ : supp(D1)× supp(D2)→ Z≥0 such that

1. For each x ∈ supp(D1), the set {y ∈ supp(D2)|(x, y) ∈ supp(γ)} is finite and

D1(x) =
∑

y∈supp(D2)

γ(x, y),

2. For each y ∈ supp(D2), the set {x ∈ supp(D1)|(x, y) ∈ supp(γ)} is finite and

D2(y) =
∑

x∈supp(D1)

γ(x, y).

For persistence diagrams D1,D2, let L(D1,D2) denote the triples (D′1,D′2, γ),

where D′1, and D′2 are persistence diagrams with D′1 ≤ D1,D′2 ≤ D2, and γ is a

multibijection between D′1 and D′2.

We define the bottleneck metric dB between two persistence diagrams D1,D2

as

dB(D1,D2) = inf
(D′1,D′2,γ)
∈L(D1,D2)

max

 sup
(a,b)∈supp(D1−D′1)
∪ supp(D2−D′2)

1

2
(b− a), sup

(x,y)∈supp(γ)

‖y − x‖∞

 .

Discretizations of B1-modules

Let t be a grid function. For M a B1-persistence module, we define the t-discretization

of M to be the discrete persistence module (Pt(M), t) with Pt(M) defined as follows:

1. For z ∈ Z, Pt(M)z = Mt(z); let IM,t,z : Pt(M)z → Mt(z) denote this identifica-

tion.

2. For y, z ∈ Z, y ≤ z, ϕPt(M)(y, z) = I−1
M,t,z ◦ ϕM(t(y), t(z)) ◦ IM,t,y.
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Persistence diagrams of B1-persistence modules

We’ll say a grid function t is an ε-cover if for any a ∈ R, there exists b ∈ im(t) with

|a − b| ≤ ε. Now fix α ∈ R and let {ti}∞i=1 be a sequence of grid functions with ti a

1/2i-cover.

It is asserted in [8] that for any tame B1-persistence module M the persistence

diagrams D(Pti (M),ti) converge in the bottleneck metric to a limiting persistence di-

agram DM and that DM is independent of the choice of the sequence {ti}. We call

DM the persistence diagram of M . For M and N tame B1-persistence modules, we

define dB(M,N) = dB(DM ,DN).

Remark 2.2.5. Two non-isomorphic tame B1-persistence modules can have identical

persistence diagrams. For example, take M and N to be the B1-persistence modules

of Example 2.1.2. M and N are not isomorphic but it is easy to check that they have

the same persistence diagram. Thus dB defines a pseudometric (but not a metric) on

isomorphism classes of tame B1-persistence modules.

2.3 A Structure Theorem for Well Behaved B1-

persistence modules

In this section we prove an analogue of Theorem 2.2.2 for a certain subset of the tame

B1-persistence modules which we call the well behaved persistence modules. The set of

well behaved persistence modules contains the set of finitely presented B1-persistence

modules. These modules are in a sense “essentially discrete.” Indeed, they are exactly

the B1-persistence modules that are the images of tame A1-persistence modules under

a certain family of functors from A1-mod to B1-mod.

Our strategy for proving the structure theorem for well behaved persistence mod-

ules is to exploit Theorem 2.2.2, taking advantage of the functorial relationship be-

tween A1-persistence modules and well behaved B1-persistence modules.
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2.3.1 Well Behaved Persistence Modules

A critical value of a B1-persistence module M is a point a ∈ R such that for no

ε ∈ R≥0 is it true that for all u ≤ v ∈ [a− ε, a+ ε], ϕM(u, v) is an isomorphism.

We’ll say a tame B1-persistence module M is well behaved if

1. The critical values of M are countable and have no accumulation point.

2. For each critical point a of M , there exists ε > 0 such that ϕM(a, y) is an

isomorphism for all y ∈ [a, a+ ε].

Proposition 2.3.1. A finitely presented B1-persistence module is well behaved.

Proof. Let M be a finitely presented B1-persistence module and let U ⊂ R be the set

of grades of the generators and relations in a minimal presentation for M . (It follows

from Theorem 2.1.4 that U is well defined). Lemma 2.5.4 below tells us that for any

a ≤ b ∈ R such that (a, b] ∩ U = ∅, ϕM(a, b) is an isomorphism. Since U is finite, the

result follows immediately.

Let t be a grid function. Define t−1 : R→ Z by t−1(y) = max{z ∈ Z|t(z) ≤ y}.
Define t̄−1 : R̄→ Z̄ by

t̄−1(u) =


t−1(u) if u ∈ R,

−∞ if u = −∞,

∞ if u =∞.

We’ll now define a functor Et : A1-mod→ B1-mod as follows:

1. Action of Et on objects: For M an A1-persistence module and u ∈ R, Et(M)u =

Mt−1(u); let JM,t,u : Et(M)u →Mt−1(u) denote this identification. For u, v ∈ R,

u ≤ v, let ϕEt(M)(u, v) = J −1
M,t,v ◦ ϕM(t−1(u), t−1(v)) ◦ JM,t,u.

2. Action of Et on morphisms: For M and N A1-persistence modules and f ∈
hom(M,N), define Et(f) : Et(M)→ Et(N) by letting Et(f)u = J −1

N,t,u ◦ft−1(u) ◦
JM,t,u for all u ∈ R.
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We leave to the reader the easy verification that Et is in fact a functor with target

B1-mod.

It’s clear that if M is a tame A1-persistence module, then for any grid function

t, Et(M) is tame. Moreover, it’s easy to check that for any grid function t and any

tame A1-persistence module M, Et(M) is well behaved.

Conversely, we have the following:

Proposition 2.3.2. If M is a well behaved B1-persistence module, then there is some

tame A1-persistence-module M and some grid function t such that M ∼= Et(M).

Proof. Let t : Z → R be a grid function whose image contains the critical points of

M . Let (M, t) denote the t-discretization of M , as defined in Section 2.2.3. M clearly

is tame. We’ll show that M ∼= Et(M).

For u ∈ R, define σu : Et(M)u → Mu by σu = ϕM(t ◦ t−1(u), u) ◦ IM,t,t−1(u) ◦
JM,t,u. By definition, JM,t,u and IM,t,t−1(u) are isomorphisms. Moreover, a simple

compactness argument shows that since M is well behaved, ϕM(t ◦ t−1(u), u) is an

isomorphism. Thus σu is an isomorphism.

We claim that the collection of maps {σu}u∈R defines an isomorphism of modules.

To see this, we need to show that for all u, v ∈ R, u ≤ v, σv ◦ϕEt(M)(u, v) = ϕM(u, v)◦
σu:

σv ◦ ϕEt(M)(u, v)

= σv ◦ J −1
M,t,v ◦ ϕM(t−1(u), t−1(v)) ◦ JM,t,u

= ϕM(t ◦ t−1(v), v) ◦ IM,t,t−1(v) ◦ JM,t,v ◦ J −1
M,t,v ◦ ϕM(t−1(u), t−1(v)) ◦ JM,t,u

= ϕM(t ◦ t−1(v), v) ◦ IM,t,t−1(v) ◦ ϕM(t−1(u), t−1(v)) ◦ JM,t,u

= ϕM(t ◦ t−1(v), v) ◦ IM,t,t−1(v) ◦ I−1
M,t,t−1(v)

◦ ϕM(t ◦ t−1(u), t ◦ t−1(v)) ◦ IM,t,t−1(u) ◦ JM,t,u

= ϕM(t ◦ t−1(v), v) ◦ ϕM(t ◦ t−1(u), t ◦ t−1(v)) ◦ IM,t,t−1(u) ◦ JM,t,u

= ϕM(t ◦ t−1(u), v) ◦ IM,t,t−1(u) ◦ JM,t,u

= ϕM(u, v) ◦ ϕM(t ◦ t−1(u), u) ◦ IM,t,t−1(u) ◦ JM,t,u

= ϕM(u, v) ◦ σu.
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Remark 2.3.3. The material above can be adapted with only minor changes to

the setting of Bn-persistence modules, where it sheds some light on the relationship

between An-persistence modules and Bn-persistence modules. Namely, the definitions

of a well behaved persistence module, grid function, and the functors Et generalize to

the multidimensional setting, and analogues of Propositions 2.3.1 and 2.3.2 hold in

that setting. It can be shown that the functor (·)⊗An Bn mentioned in Section 2.1.3

is naturally isomorphic to a generalized functor Et. The generalization of the above

material also can be used to translate algebraic results about An-persistence modules

into analogous results about Bn-persistence modules. For example, it can be used to

show that any finitely presented Bn-persistence module has a free resolution of length

at most n–that is, an analogue of the Hilbert syzygy theorem holds for Bn-persistence

modules.

However, as we have no immediate need for the generalization or its consequences

in this thesis, we omit it.

2.3.2 The Structure Theorem

First, note that for any a ∈ R≥0, k[[a,∞)] (as defined in Section 2.1.2) is an ideal of

B1.

For a < b ∈ R, let C(a, b) denote (B1/k[[b − a,∞)])(−a); let C(a,∞) denote

B1(−a). In analogy to the discrete case, for fixed b (possibly infinite), the set of

modules {C(a, b)|a ∈ R, a < b} has a natural directed system structure; let C(−∞, b)
denote the colimit of this directed system.

Lemma 2.3.4. Let M be a well-behaved persistence module and let D be a persistence

diagram such that M ∼= ⊕(a,b)∈supp(D)C(a, b)D(a,b). Then DM = D.

Proof. Let

A ={a ∈ R|(a, b) ∈ supp(D) for some b ∈ R̄}

∪{b ∈ R|(a, b) ∈ supp(D) for some a ∈ R̄}.

Let t be a grid function such that A ⊂ im(t). We claim that D(Pt(M),t) = D. Since
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supp(D) ∈ im(t̄ × t̄), this is true if and only if DPt(M)(y, z) = D(t̄(y), t̄(z)) for all

(y, z) ∈ Z̄2
+.

To show that DPt(M)(y, z) = D(t̄(y), t̄(z)) for all (y, z) ∈ Z̄2
+, we’ll need the

following analogue of Lemma 2.2.3.

Lemma 2.3.5. Let M,D, and t be as above.

(i) For (y, z) ∈ Z2
+,

D(t(y), t(z)) = rank(ϕM(t(y), t(z − 1)))− rank(ϕM(t(y), t(z)))

− rank(ϕM(t(y − 1), t(z − 1))) + rank(ϕM(t(y − 1), t(z))).

(ii) For z ∈ Z,

D(−∞, t(z)) = lim
y→−∞

rank(ϕM(t(y), t(z − 1)))− lim
y→−∞

rank(ϕM(t(y), t(z))).

(iii) For y ∈ Z,

D(t(y),∞) = lim
z→∞

rank(ϕM(t(y), t(z)))− lim
b→∞

rank(ϕM(t(y − 1), t(z))).

(iv)

D(−∞,∞) = lim
y→−∞

lim
z→∞

rank(ϕM(t(y), t(z))).

Proof. The proof is straightforward; we omit it.

For (y, z) ∈ Z2
+ we have

DPt(M)(y, z) = rank(ϕPt(M)(y, z − 1))− rank(ϕPt(M)(y, z))

− rank(ϕPt(M)(y − 1, z − 1)) + rank(ϕPt(M)(y − 1, z))

= rank(ϕM(t(y), t(z − 1)))− rank(ϕM(t(y), t(z)))

− rank(ϕM(t(y − 1), t(z − 1))) + rank(ϕM(t(y − 1), t(z)))

= D(t(y), t(z)),
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where the first equality follows from Lemma 2.2.3(i), and the last equality follows

from Lemma 2.3.5(i).

Thus we have DPt(M)(y, z) = D(t̄(y), t̄(z)) for all (y, z) ∈ Z2
+. Similar arguments

using Lemma 2.2.3(ii)-(iv) and Lemma 2.3.5(ii)-(iv) in the cases where y = −∞ or

z =∞ show that in fact this holds for (y, z) ∈ Z2
+. This proves the claim.

It follows easily from the fact that M is well behaved that A is equal to the set of

critical values of M . There thus exists a sequence of grid functions {ti}i∈N such that

ti is a 1/2i cover and A ⊂ im(ti) for each i. The lemma follows by writing DM as the

limit of the persistence diagrams D(Pti (M),ti).

Theorem 2.3.6. Let M be a well behaved B1-persistence module. Let DM be the

persistence diagram of M . Then

M ∼= ⊕(a,b)∈supp(DM )C(a, b)DM (a,b).

This decomposition of M is unique in the sense that if D is another persistence dia-

gram such that M ∼= ⊕(a,b)∈supp(D)C(a, b)D(a,b), then D = DM .

Proof. By Lemma 2.3.4, it’s enough show that there exists some persistence diagram

D such that M ∼= ⊕(a,b)∈supp(D)C(a, b)D(a,b).

By Proposition 2.3.2, there exists a grid function t and a tame A1-persistence

module M such that Et(M) ∼= M . The structure theorem for tame A1-persistence

modules gives us that there’s a persistence diagram DM supported in Z̄2
+ such that

we may take

M = ⊕(a,b)∈supp(DM)C(a, b)DM(a,b).

We’ll show that

M ∼= ⊕(a,b)∈supp(DM)Et(C(a, b))DM(a,b).

We have that Et(C(a, b)) ∼= C(t̄(a), t̄(b)) for any (a, b) ∈ Z̄2
+, so this gives the result.

To show that M ∼= ⊕(a,b)∈supp(DM)Et(C(a, b))DM(a,b), we’ll use the category theo-

retic characterization of direct sums of modules as coproducts [33]. Let A be a set.

Recall that in an arbitrary category, an object X is a coproduct of objects {Xα}α∈A
iff there exist morphisms {iα : Xα → X}α∈A, called canonical injections, with the
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following universal property: for any object Y and morphisms {fα : Xα → Y }α∈A,

there exists a unique morphism f : X → Y such that f ◦ iα = fα for each α ∈ A.

In a category of modules over a ring R, The coproduct of modules Xα is ⊕αXα; the

canonical injections are just the usual inclusions Xα ↪→ ⊕αXα. The same is thus true

for the module subcategories An-mod and Bn-mod.

Now let {Mα} denote the indecomposable summands of M in the direct sum

decomposition M = ⊕(a,b)∈supp(DM)C(a, b)DM(a,b), so that each Mα = C(a, b) for some

(a, b) ∈ Z̄2
+. Let {iα : Mα →M} denote the canonical injections.

We’ll show that the maps Et(i
α) : Et(M

α)→ Et(M) satisfy the universal property

of a coproduct, so that M ∼= Et(M) ∼= ⊕αEt(Mα) as desired.

To show that the maps Et(i
α) : Et(M

α) → Et(M) satisfy the universal property

of a coproduct, let Y be an arbitrary B1-persistence module and {fα : Et(M
α)→ Y }

be homomorphisms.

For any z ∈ Z, Mz
∼= ⊕αMα

z . It follows from the definition of Et that for any

r ∈ R,

Et(M)r ∼= ⊕αEt(Mα)r

with the maps Et(i
α)r the canonical inclusions.

For each r ∈ R, define fr : Et(M)r → Yr as ⊕αfαr (i.e. fr is the map guaranteed

to exist by the universal property of direct sums for vector spaces.) It’s easy to check

that the maps fr commute with the transition maps in Et(M) and Y , so that they

define a morphism f : Et(M) → Y . We also have that f ◦ Et(iα) = fα for each α.

By the universal property of direct sums of vector spaces, for each r fr is the unique

linear transformation from Et(M)r to Yr such that for each α, fr ◦ Et(iα)r = fαr .

Therefore f must itself satisfy the desired uniqueness property. This completes the

proof.
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2.4 The Equality of the Interleaving and Bottle-

neck distances on Tame B1-persistence Mod-

ules

We show in this section that the restriction of the interleaving distance to tame

B1-persistence modules is equal to the bottleneck distance. This shows that the

interleaving distance is in fact a generalization of the bottleneck distance, as we

want. The result is also instrumental in proving Corollary 2.5.3, our converse to the

algebraic stability result of [8].

The Algebraic Stability of Persistence

The main result of [8], generalizing considerably the earlier result of [14], is the

following:

Theorem 2.4.1 (Algebraic Stability of Persistence). Let ε > 0, and let M and N be

two tame B1-persistence modules. If M and N are ε-interleaved, then dB(M,N) ≤ ε.

A Converse to the Algebraic Stability of Persistence?

In the conclusion of [8], the authors ask whether it’s true that if M and N are

tame B1-persistence modules with dB(M,N) = ε then M and N are ε-interleaved.

Example 2.1.2 shows that this is not true. However, Corollary 2.5.3 below, which

follows immediately from Theorems 2.4.2 and 2.5.1, asserts that the result is true

provided M and N are finitely presented. More generally, Corollary 2.5.3 tells us

that if M and N are tame modules with dB(M,N) = ε then M and N are (ε + δ)-

interleaved for any δ > 0. In other words, the converse of Theorem 2.4.1 holds for

tame modules to arbitrarily small error.

Theorem 2.4.2. dB(M,N) = dI(M,N) for any tame B1-persistence modules M and

N .

Proof. Theorem 2.4.1 tells us that dB(M,N) ≤ dI(M,N), so we just need to show
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that dB(M,N) ≥ dI(M,N). It will follow from the structure theorem for well be-

haved persistence modules (Theorem 2.3.6) that dB(M ′, N ′) ≥ dI(M
′, N ′) for well

behaved persistence modules M ′ and N ′ (Lemma 2.4.4 below). To extend this result

to arbitrary tame modules, we will approximate the modules M and N up to arbi-

trarily small error in the interleaving distance by well behaved persistence modules

(Lemma 2.4.5 below). The full result will follow readily from this this approximation.

Lemma 2.4.3. If (a, b), (a′, b′) ∈ R̄2
+ with ‖(a, b) − (a′, b′)‖∞ ≤ ε, then C(a, b) and

C(a′, b′) are ε-interleaved.

Proof. This is easy to prove; we leave the details to the reader.

Lemma 2.4.4. If M and N are two well behaved persistence modules and dB(M,N) =

ε then dI(M,N) = ε.

Proof. By stability we just need to show that dI(M,N) ≤ ε. By the structure theorem

for well behaved persistence modules (Theorem 2.2.2), we have that

M ∼= ⊕(a,b)∈supp(DM )C(a, b)DM (a,b),

N ∼= ⊕(a,b)∈supp(DN )C(a, b)DN (a,b).

Since dB(M ′, N ′) = ε, for any δ > 0 there exist persistence diagrams D′M and D′N

with D′M ≤ DM , D′N ≤ DN , and a multibijection γ between D′M and D′N such that

1. For any (a, b) ∈ supp(DM −D′M) ∪ supp(DN −D′N), (b− a)/2 ≤ ε+ δ,

2. For any (x, y) ∈ supp(γ), ‖x− y‖∞ ≤ ε+ δ.

Fix such D′M , D′N , and γ. Now we can choose well behaved modules M ′,M ′′ ⊂ M

and N ′, N ′′ ⊂ N such that M = M ′ ⊕M ′′, N = N ′ ⊕ N ′′, DM ′ = D′M , DN ′ = D′N ,

DM ′′ = DM −D′M , and DN ′′ = DN −D′N .

If follows from Lemma 2.4.3 that for each (a, b), (a′, b′) ∈ supp(γ), C(a, b) and

C(a′, b′) are (ε+ δ)-interleaved. We may write

M ′ ∼= ⊕(a,b),(a′,b′)∈supp(γ)C(a, b)γ((a,b),(a′,b′)),

N ′ ∼= ⊕(a,b),(a′,b′)∈supp(γ)C(a′, b′)γ((a,b),(a′,b′)).
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It’s clear from the form of these decompositions for M ′ and N ′ that a choice of a

pair of (ε + δ)-interleaving homomorphisms between C(a, b) and C(a′, b′) for each

pair (a, b), (a′, b′) ∈ supp(γ) induces a pair of (ε + δ)-interleaving homomorphisms

f̂ : M ′ → N ′(ε+ δ) and ĝ : N ′ →M ′(ε+ δ).

Now we extend this pair to a pair of homomorphisms f : M → N(ε+ δ), g : N →
M(ε + δ) by defining f(y) = f̂(y) for y ∈ M ′, f(M ′′) = 0, g(y) = ĝ(y) for y ∈ N ′,
and g(M ′′) = 0. Obviously, f and g restrict to (ε + δ)-interleaving homomorphisms

between M ′ and N ′. Moreover, we have that S(M ′′, 2ε+δ) = 0 and S(N ′′, 2ε+δ) = 0,

so f and g restrict to (ε+δ)-interleaving homomorphisms between M ′′ and N ′′. Thus

by linearity, f and g are (ε+δ)-interleaving homomorphisms between M and N . Since

δ may be taken to be arbitrarily small, we must have dI(M,N) ≤ ε, as we wanted to

show.

Lemma 2.4.5. For any tame B1-persistence module M and δ > 0, there exists a well

behaved persistence module M ′ with dI(M,M ′) ≤ δ.

Proof. Let t be an δ/2-cover of R, as defined in Section 2.2.3. For any r ∈ R, there

exists r′ ∈ im(t), with 0 ≤ r′ − r ≤ δ. Define a function λ : R → im(t) such that

λ(r) = min{r′ ≥ r|r′ ∈ im(t)}. Then 0 ≤ λ(r)− r ≤ δ for all r ∈ R.

Let M = Pt(M) (as defined in Section 2.2.3) and let M ′ = Et(M). Then M ′ is

well-behaved. We now show that M and M ′ are δ-interleaved, which implies that

dI(M,M ′) ≤ δ.

Define f : M →M ′(δ) to be the morphism for which

fu : Mu →M ′
u+δ = ϕM ′(λ(u), u+ δ) ◦ J −1

M,t,λ(u) ◦ I
−1
M,t,t−1(λ(u)) ◦ ϕM(u, λ(u)).

Define g : M ′ →M(δ) to be the morphism for which

gu : M ′
u →Mu+δ = ϕM(λ(u), u+ δ) ◦ IM,t,t−1(λ(u)) ◦ JM,t,λ(u) ◦ ϕM ′(u, λ(u)).

We need to check that f and g thus defined are in fact morphisms. We verify this

for f ; the verification for g is similar; we omit it.
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If u ≤ v ∈ R, we have

fv ◦ ϕM(u, v) = ϕM ′(λ(v), v + δ) ◦ J −1
M,t,λ(v) ◦ I

−1
M,t,t−1(λ(v)) ◦ ϕM(v, λ(v)) ◦ ϕM(u, v).

(2.1)

By definition, for any u ≤ v ∈ R, we have

ϕM ′(u, v) = J −1
M,t,v ◦ ϕM(t−1(u), t−1(v)) ◦ JM,t,u

= J −1
M,t,v ◦ I

−1
M,t,t−1(v) ◦ ϕM(u, v) ◦ IM,t,t−1(u) ◦ JM,t,u. (2.2)

Using (2.2) to substitute for ϕM ′(λ(v), v + δ) in (2.1) and simplifying gives us:

fv ◦ ϕM(u, v) = J −1
M,t,v+δ ◦ I

−1
M,t,t−1(v+δ) ◦ ϕM(λ(v), v + δ) ◦ ϕM(v, λ(v)) ◦ ϕM(u, v)

= J −1
M,t,v+δ ◦ I

−1
M,t,t−1(v+δ) ◦ ϕM(u, v + δ).

On the other hand we have, using (2.2) again,

ϕM ′(u+ δ, v + δ) ◦ fu
= ϕM ′(u+ δ, v + δ) ◦ ϕM ′(λ(u), u+ δ) ◦ J −1

M,t,λ(u) ◦ I
−1
M,t,t−1(λ(u)) ◦ ϕM(u, λ(u))

= ϕM ′(λ(u), v + δ) ◦ J −1
M,t,λ(u) ◦ I

−1
M,t,t−1(λ(u)) ◦ ϕM(u, λ(u))

= J −1
M,t,v+δ ◦ I

−1
M,t,t−1(v+δ) ◦ ϕM(λ(u), v + δ) ◦ IM,t,t−1(λ(u))

◦ JM,t,λ(u) ◦ J −1
M,t,λ(u) ◦ I

−1
M,t,t−1(λ(u)) ◦ ϕM(u, λ(u))

= J −1
M,t,v+δ ◦ I

−1
M,t,t−1(v+δ) ◦ ϕM(λ(u), v + δ) ◦ ϕM(u, λ(u))

= J −1
M,t,v+δ ◦ I

−1
M,t,t−1(v+δ) ◦ ϕM(u, v + δ).

Thus fv ◦ ϕM(u, v) = ϕM ′(u+ δ, v + δ) ◦ fu, as we wanted to show.

Finally, we need to check that g◦f = S(M, 2δ) and f ◦g = S(M ′, 2δ). We perform

the first verification and omit the second, since the verifications are similar.
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For u ∈ R,

gu+δ ◦ fu
= ϕM(λ(u+ δ), u+ 2δ) ◦ IM,t,t−1(λ(u+δ)) ◦ JM,t,λ(u+δ)

◦ ϕM ′(u+ δ, λ(u+ δ)) ◦ ϕM ′(λ(u), u+ δ) ◦ J −1
M,t,λ(u) ◦ I

−1
M,t,t−1(λ(u)) ◦ ϕM(u, λ(u))

= ϕM(λ(u+ δ), u+ 2δ) ◦ IM,t,t−1(λ(u+δ)) ◦ JM,t,λ(u+δ)

◦ ϕM ′(λ(u), λ(u+ δ)) ◦ J −1
M,t,λ(u) ◦ I

−1
M,t,t−1(λ(u)) ◦ ϕM(u, λ(u)).

Using (2.2) once again, we have that this last expression is equal to

ϕM(λ(u+ δ), u+ 2δ) ◦ IM,t,t−1(λ(u+δ)) ◦ JM,t,λ(u+δ) ◦ J −1
M,t,λ(u+δ)

◦ I−1
M,t,t−1(λ(u+δ)) ◦ ϕM(λ(u), λ(u+ δ)) ◦ IM,t,t−1(λ(u)) ◦ JM,t,λ(u)

◦ J −1
M,t,λ(u) ◦ I

−1
M,t,t−1(λ(u)) ◦ ϕM(u, λ(u))

= ϕM(λ(u+ δ), u+ 2δ) ◦ ϕM(λ(u), λ(u+ δ)) ◦ ϕM(u, λ(u))

= ϕM(u, u+ 2δ).

Now we can complete the proof of Theorem 2.4.2. As mentioned above, by The-

orem 2.4.1 it suffices to show dI(M,N) ≤ dB(M,N). Say dB(M,N) = ε. Choose

δ > 0. By Lemma 2.4.5, there exist well behaved modules M ′, N ′ with dI(M,M ′) ≤ δ,

dI(N,N
′) ≤ δ. Then by Theorem 2.4.1, dB(M,M ′) ≤ δ, dB(N,N ′) ≤ δ, so by the

triangle inequality, dB(M ′, N ′) ≤ ε + 2δ. By Lemma 2.4.4, dI(M
′, N ′) ≤ ε + 2δ.

Applying the triangle inequality again, we get that dI(M,N) ≤ ε+ 4δ. As δ may be

taken to be arbitrarily small, we have dI(M,N) ≤ ε, which completes the proof.

2.5 If dI(M,N) = ε and M,N are Finitely Presented

then M and N are ε-interleaved

We now show that for finitely presented Bn-modules M and N , if dI(M,N) = ε then

M and N are ε-interleaved. This implies that the restriction of dI to finitely presented

persistence modules is a metric and, as noted in Section 2.4, yields a converse to
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the algebraic stability of persistence for finitely presented B1-persistence modules.

Theorem 2.5.1 will also be of some use to us in Section 2.11.

Theorem 2.5.1. If M and N are finitely presented Bn-modules and dI(M,N) = ε

then M and N are ε-interleaved.

Corollary 2.5.2. dI is a metric on finitely presented Bn-modules.

Corollary 2.5.3 (Converse to Algebraic Stability).

(i) If M and N are finitely presented B1-persistence modules and dB(M,N) = ε

then M and N are ε-interleaved.

(ii) If M and N are tame B1-persistence modules and dB(M,N) = ε then M and

N are (ε+ δ)-interleaved for any δ > 0.

Proof. (ii) follows directly from Theorem 2.4.2. (i) is immediate from that theorem

and Theorem 2.5.1.

For a finitely presented Bn-persistence module M , let UM ⊂ Rn be the set of

grades of the generators and relations in a minimal presentation for M . Let U i
M ⊂ R

be the set of ith coordinates of the elements of UM .

Proof of Theorem 2.5.1.

Lemma 2.5.4. If M is a finitely presented Bn-persistence module then for any a ≤
b ∈ Rn such that (ai, bi] ∩ U i

M = ∅ for all i, ϕM(a, b) is an isomorphism.

Proof. This is straightforward; we omit the details.

Lemma 2.5.5. If M is a finitely presented Bn-persistence module then for any y ∈
Rn, there exists r ∈ R>0 such that ϕM(y, y+ r′) is an isomorphism for all 0 ≤ r′ ≤ r.

Proof. This is an immediate consequence of Lemma 2.5.4.

For a finitely presented Bn-persistence module M , let flM : Rn → Πn
i=1Ū

i
M be

defined by flM(a1, ..., an) = (a′1, ..., a
′
n), where a′i is the largest element of U i

M such

that a′i ≤ ai, if such an element exists, and a′i = −∞ otherwise.
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Lemma 2.5.6. For any finitely presented Bn-module M and any y ∈ Rn with

flM(y) ∈ Rn, we have that ϕM(flM(y), y) is an isomorphism.

Proof. This too is an immediate consequence of Lemma 2.5.4.

Having stated these preliminary results, we proceed with the proof of Theo-

rem 2.5.1. By Lemma 2.5.5 and the finiteness of UM and UN , there exists δ > 0

such that for all z ∈ UM , ϕN(z + ε, z + ε + δ) and ϕM(z + 2ε, z + 2ε + 2δ) are iso-

morphisms, and for all z ∈ UN , ϕM(z + ε, z + ε + δ) and ϕN(z + 2ε, z + 2ε + 2δ) are

isomorphisms.

By Remark 2.1.1, since dI(M,N) = ε, M and N are (ε+ δ)-interleaved.

Theorem 2.5.1 then follows from the following lemma, which will also be the key

ingredient in the proof of Proposition 2.11.9.

Lemma 2.5.7. Let M and N be finitely presented Bn-persistence modules and let

ε ≥ 0 and δ > 0 be such that

1. M and N are ε+ δ-interleaved,

2. for all z ∈ UM , ϕN(z+ε, z+ε+δ) and ϕM(z+2ε, z+2ε+2δ) are isomorphisms,

3. for all z ∈ UN , ϕM(z+ε, z+ε+δ) and ϕN(z+2ε, z+2ε+2δ) are isomorphisms.

Then M and N are ε-interleaved.

Proof. Let f : M → N(ε+ δ) and g : N →M(ε+ δ) be interleaving homomorphisms.

We define ε-interleaving homomorphisms f̃ : M → N(ε) and g̃ : N → M(ε) via

their action on homogeneous summands. First, for z ∈ UM define f̃z = ϕ−1
N (z +

ε, z + ε + δ) ◦ fz. Then for arbitrary z ∈ Rn such that flM(z) ∈ Rn define f̃z =

ϕN(flM(z) + ε, z + ε) ◦ f̃flM (z) ◦ ϕ−1
M (flM(z), z). (Note that ϕ−1

M (flM(z), z) is well

defined by Lemma 2.5.6.) Finally, for z ∈ Rn s.t. flM(z) 6∈ Rn, define f̃z = 0. (If

flM(z) 6∈ Rn then Mz = 0, so this last part of the definition is reasonable.)

Symmetrically, for z ∈ UN define g̃z = ϕ−1
M (z+ε, z+ε+δ)◦gz. For arbitrary z ∈ Rn

such that flN(z) ∈ Rn define g̃z = ϕM(flN(z) + ε, z+ ε) ◦ g̃flN (z) ◦ϕ−1
N (flN(z), z). For

z ∈ Rn s.t. flN(z) 6∈ Rn, define g̃z = 0.

We need to check that f̃ , g̃ as thus defined are in fact morphisms. We perform

the check for f̃ ; the check for g̃ is the same.



CHAPTER 2. INTERLEAVINGS ON MULTI-D PERSISTENCE MODULES 54

If y ∈ Rn is such that flM(y) 6∈ Rn, then since My = 0, it’s clear that f̃z ◦
ϕM(y, z) = ϕN(y + ε, z + ε) ◦ f̃y.

For y ≤ z ∈ Rn such that flM(y) ∈ Rn,

f̃z ◦ ϕM(y, z) = ϕN(flM(z) + ε, z + ε) ◦ f̃flM (z) ◦ ϕ−1
M (flM(z), z) ◦ ϕM(y, z)

= ϕN(flM(z) + ε, z + ε) ◦ ϕ−1
N (flM(z) + ε, f lM(z) + ε+ δ) ◦ fflM (z)

◦ ϕ−1
M (flM(z), z) ◦ ϕM(y, z)

= ϕN(flM(z) + ε, z + ε) ◦ ϕ−1
N (flM(z) + ε, f lM(z) + ε+ δ) ◦ fflM (z)

◦ ϕM(flM(y), f lM(z)) ◦ ϕ−1
M (flM(y), y)

= ϕN(flM(z) + ε, z + ε) ◦ ϕ−1
N (flM(z) + ε, f lM(z) + ε+ δ)

◦ ϕN(flM(y) + ε+ δ, f lM(z) + ε+ δ) ◦ fflM (y) ◦ ϕ−1
M (flM(y), y)

= ϕN(y + ε, z + ε) ◦ ϕN(flM(y) + ε, y + ε)

◦ ϕ−1
N (flM(y) + ε, f lM(y) + ε+ δ) ◦ fflM (y) ◦ ϕ−1

M (flM(y), y)

= ϕN(y + ε, z + ε) ◦ f̃y

as desired.

To finish the proof, we need to check that g̃ ◦ f̃ = S(M, 2ε) and f̃ ◦ g̃ = S(N, 2ε).

We perform the first check; the second check is the same.

For z ∈ Rn, if flM(z) 6∈ Rn then since Mz = 0, g̃z+ε ◦ f̃z = 0 = ϕM(z, z + 2ε).

To show that the result also holds for z such that flM(z) ∈ Rn, we’ll begin by

verifying the result for z ∈ UM . We’ll use this special case in proving the result for

arbitrary z ∈ Rn such that flM(z) ∈ Rn.

If z ∈ UM then, by assumption, ϕM(z + 2ε, z + 2ε+ 2δ) is an isomorphism. Thus,

to show that g̃z+ε ◦ f̃z = ϕM(z, z + 2ε), it suffices to show that ϕM(z + 2ε, z + 2ε +

2δ) ◦ g̃z+ε ◦ f̃z = ϕM(z, z + 2ε+ 2δ).
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For z ∈ UM , we have

g̃z+ε ◦ f̃z = ϕM(flN(z + ε) + ε, z + 2ε) ◦ g̃flN (z+ε) ◦ ϕ−1
N (flN(z + ε), z + ε) ◦ f̃z

= ϕM(flN(z + ε) + ε, z + 2ε) ◦ ϕ−1
M (flN(z + ε) + ε, f lN(z + ε) + ε+ δ)

◦ gflN (z+ε) ◦ ϕ−1
N (flN(z + ε), z + ε) ◦ f̃z

= ϕM(flN(z + ε) + ε, z + 2ε) ◦ ϕ−1
M (flN(z + ε) + ε, f lN(z + ε) + ε+ δ)

◦ gflN (z+ε) ◦ ϕ−1
N (flN(z + ε), z + ε) ◦ ϕ−1

N (z + ε, z + ε+ δ) ◦ fz.

Thus

ϕM(z + 2ε, z + 2ε+ 2δ) ◦ g̃z+ε ◦ f̃z
= ϕM(z + 2ε, z + 2ε+ δ) ◦ ϕM(flN(z + ε) + ε, z + 2ε)

◦ ϕ−1
M (flN(z + ε) + ε, f lN(z + ε) + ε+ δ) ◦ gflN (z+ε)

◦ ϕ−1
N (flN(z + ε), z + ε) ◦ ϕ−1

N (z + ε, z + ε+ δ) ◦ fz
= ϕM(z + 2ε+ δ, z + 2ε+ 2δ) ◦ ϕM(flN(z + ε) + ε+ δ, z + 2ε+ δ)

◦ gflN (z+ε) ◦ ϕ−1
N (flN(z + ε), z + ε) ◦ ϕ−1

N (z + ε, z + ε+ δ) ◦ fz
= ϕM(z + 2ε+ δ, z + 2ε+ 2δ) ◦ gz+ε ◦ ϕN(flN(z + ε), z + ε)

◦ ϕ−1
N (flN(z + ε), z + ε) ◦ ϕ−1

N (z + ε, z + ε+ δ) ◦ fz
= gz+ε+δ ◦ ϕN(z + ε, z + ε+ δ) ◦ ϕ−1

N (z + ε, z + ε+ δ) ◦ fz
= gz+ε+δ ◦ fz
= ϕ(z, z + 2ε+ 2δ)

as desired.

Finally, for arbitrary z ∈ Rn such that flM(z) 6∈ Rn, we have, using that g̃ is a
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morphism,

g̃z+ε ◦ f̃z = ϕM(flN(z + ε) + ε, z + 2ε) ◦ g̃flN (z+ε)

◦ ϕ−1
N (flN(z + ε), z + ε) ◦ ϕN(flM(z) + ε, z + ε) ◦ f̃flM (z) ◦ ϕ−1

M (flM(z), z)

= g̃z+ε ◦ ϕN(flN(z + ε), z + ε) ◦ ϕ−1
N (flN(z + ε), z + ε)

◦ ϕN(flM(z) + ε, z + ε) ◦ f̃flM (z) ◦ ϕ−1
M (flM(z), z)

= g̃z+ε ◦ ϕN(flM(z) + ε, z + ε) ◦ f̃flM (z) ◦ ϕ−1
M (flM(z), z)

= ϕM(flM(z) + 2ε, z + 2ε) ◦ g̃flM (z)+ε ◦ f̃flM (z) ◦ ϕ−1
M (flM(z), z)

= ϕM(flM(z) + 2ε, z + 2ε) ◦ ϕM(flM(z), f lM(z) + 2ε) ◦ ϕ−1
M (flM(z), z)

= ϕM(z, z + 2ε)

as we wanted.

This completes the proof of Theorem 2.5.1.

Remark 2.5.8. As noted in Remark 2.3.3, the notion of a well behaved persis-

tence module admits a generalization to the multi-dimensional setting. An interest-

ing question is whether Theorem 2.5.1 generalizes to well behaved multidimensional

persistence modules; if it does, then we obtain corresponding generalizations of Corol-

laries 2.5.2 and 2.5.3. Our proof of Theorem 2.5.1 does not generalize directly.

2.6 An Extrinsic Characterization of Interleaved

Pairs of Multidimensonal Persistence Modules

In this section, we introduce (J1, J2)-interleavings of pairs of Bn-persistence modules,

a generalization of ε-interleavings of pairs of Bn-persistence modules. These general-

ized interleavings serve as a convenient language for expressing nuanced relationships

between Bn-persistence modules which arise in our study of topological inference

using Rips multifiltrations in Section 4.4.2.

After defining generalized interleavings, we present Theorem 2.6.4, our “extrinsic”

characterization of (J1, J2)-interleaved pairs of persistence modules; as noted in the
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introduction, this result expresses transparently the sense in which (J1, J2)-interleaved

persistence modules are algebraically similar. In particular, Theorem 2.6.4 gives an

algebraically transparent characterization of ε-interleaved pairs of modules, which

we write down as Corollary 2.6.5. This characterization induces in an obvious way

a corresponding characterization of the interleaving distance. It is also the most

important step in our proof of our main optimality result Corollary 2.10.2.

2.6.1 (J1, J2)-Interleavings

In Section 2.1.4, we introduced shift functors and transition morphisms on Bn-

persistence modules. To prepare for the definition of (J1, J2)-interleavings, we define

generalized shift functors and generalized transition morphisms.

Generalized Shift Functors

We say that a bijection J : Rn → Rn is order-preserving if ∀ a, b ∈ Rn, a ≤ b iff

J(a) ≤ J(b). For any order-preserving map J : Rn → Rn, we define the generalized

shift functor (·)(J) : Bn-mod→ Bn-mod, as follows:

1. Action of (·)(J) on objects: For M ∈ obj(Bn-mod), we define M(J) by taking

M(J)a = MJ(a) for all a ∈ Rn. For all a ≤ b ∈ Rn we take the transition map

ϕM(J)(a, b) to be the map ϕM(J(a), J(b)).

2. Action of (·)(J) on morphisms: For M,N ∈ obj(Bn-mod) and f ∈ hom(M,N),

we define f(J) : M(J) → N(J) to be the homomorphism for which f(J)a =

fJ(a) for all a ∈ Rn.

For u ∈ Rn, let Ju : Rn → Rn be the map defined by Ju(a) = a+u, and for ε ∈ R,

let Jε denote J~εn . (·)(Ju) is equal to the shift functor (·)(u) introduced in Section 2.1.4

and (·)(Jε) is equal to the shift functor (·)(ε) introduced in the same section.

As in the case of ordinary shift functors, for a morphism f and J an order-

preserving map, we will sometimes abuse notation and write f(J) simply as f .
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Note the following contravariance property of generalized shift functors: If J1 and

J2 are order-preserving, then

(·)(J2 ◦ J1) = (·)(J1) ◦ (·)(J2).

Generalized Transition Homomorphisms of Bn-persistence Modules

Say an order-preserving map J : Rn → Rn is increasing if J(a) ≥ a for all a ∈ Rn.

For a Bn-persistence module M and J an increasing map, let S(M,J) : M →M(J),

the J-transition homomorphism, be the homomorphism whose restriction to Ma is

the linear map ϕM(a, J(a)) for all a ∈ Rn. Note that for ε ∈ R≥0, S(M, ε) = S(M,Jε),

where S(M, ε) is as defined in Section 2.1.4.

The following lemma gives three easy and useful identities for generalized transi-

tion morphisms. Of particular note is Lemma 2.6.1(i).

Lemma 2.6.1.

(i) For any f : M → N ∈ hom(Bn-mod) and any J : Rn → Rn increasing,

S(N, J) ◦ f = f(J) ◦ S(M,J).

(ii) For any J, J ′ increasing and Bn-persistence module M ,

S(M,J ′)(J) ◦ S(M,J) = S(M,J ′ ◦ J).

(iii) For any J, J ′ increasing and Bn-persistence module M ,

S(M,J ′)(J) = S(M(J), J−1 ◦ J ′ ◦ J).

Proof. We’ll prove (iii) and leave the proofs of (i) and (ii) to the reader. For any
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a ∈ Rn,

S(M,J ′)(J)a = S(M,J ′)J(a)

= ϕM(J(a), J ′ ◦ J(a)) = ϕM(J(a), J ◦ J−1 ◦ J ′ ◦ J(a))

= ϕM(J)(a, J
−1 ◦ J ′ ◦ J(a)) = S(M(J), J−1 ◦ J ′ ◦ J)a.

(J1, J2)-Interleavings of Bn-Persistence Modules

For J1, J2 : Rn → Rn increasing, we say an ordered pair of Bn-persistence modules

(M,N) is (J1, J2)-interleaved if there exist homomorphisms f : M → N(J1) and

g : N →M(J2) such that

g(J1) ◦ f = S(M,J2 ◦ J1) and

f(J2) ◦ g = S(N, J1 ◦ J2);

we say that (f, g) is a pair of (J1, J2)-interleaving homomorphisms for (M,N).

Note the asymmetry of (J1, J2)-interleavings. If (M,N) is (J1, J2)-interleaved, it

needn’t be true that (M,N) is (J2, J1)-interleaved. It is however true that (N,M) is

(J2, J1)-interleaved.

Remark 2.6.2. A note on terminology: When a pair (M,N) of Bn-persistence mod-

ules is (J1, J2)-interleaved, we will often say simply that M,N are (J1, J2)-interleaved,

or that M and N are (J1, J2)-interleaved. Similarly, when (f, g) is a pair of (J1, J2)-

interleaving homomorphisms for (M,N), we will often say simply that f, g are

(J1, J2)-interleaving homomorphisms for M,N .

Note that M and N are ε-interleaved if and only if the pair (M,N) is (Jε, Jε)-

interleaved.

2.6.2 A Characterization of (J1, J2)-interleaved Pairs of Mod-

ules

We now present our characterization of pairs of (J1, J2)-interleaved Bn-persistence

modules.
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Notation

To state the theorem we need some notation.

If G = (Ḡ, ιG) an n-graded set, and J : Rn → Rn is an order-preserving map, let

G(J) denote the n-graded set (Ḡ, ι′G), where ι′G(y) = J−1(ι(y)). Note that if J1 and

J2 are order-preserving, then G(J2 ◦ J1) = (G(J2))(J1).

Similarly, if M is a Bn-persistence module and Q ⊂ M is a homogeneous subset,

let Q(J) ⊂ M(J) denote the image of Q under the bijection between M and M(J)

induced by the identification of each summand M(J)a with MJ(a). Note that if J1

and J2 are order-preserving, then Q(J2 ◦ J1) = (Q(J2))(J1).

Remark 2.6.3. For any n-graded set G and J : Rn → Rn an increasing map,

the homomorphism S(〈G(J−1)〉, J) : 〈G(J−1)〉 → 〈G〉 is injective, and so gives an

identification of 〈G(J−1)〉 with a submodule of 〈G〉. More generally, if G1 and G2 are

n-graded sets, we obtain in the obvious way an identification of 〈G1, G2(J−1)〉 with

a submodule of 〈G1, G2〉. In particular, for any ε ≥ 0, we obtain an identification

of 〈G(−ε)〉 with a submodule of 〈G〉 and, more generally, of 〈G1, G2(−ε)〉 with a

submodule of 〈G1, G2〉.

Theorem 2.6.4. Let M and N be Bn-persistence modules. For any J1, J2 : Rn →
Rn increasing, (M,N) is (J1, J2)-interleaved if and only if there exist n-graded sets

W1,W2 and homogeneous sets Y1,Y2 ⊂ 〈W1,W2〉 such that Y1 ∈ 〈W1,W2(J−1
2 )〉,

Y2 ∈ 〈W1(J−1
1 ),W2〉, and

M ∼= 〈W1,W2(J−1
2 )|Y1,Y2(J−1

2 )〉,

N ∼= 〈W1(J−1
1 ),W2|Y1(J−1

1 ),Y2〉.

If M and N are finitely presented, then W1,W2,Y1,Y2 can be taken to be finite.

The following corollary is immediate.

Corollary 2.6.5. Let M and N be Bn-persistence modules. For any ε ∈ R≥0, M and

N are ε-interleaved if and only if there exist n-graded sets W1,W2 and homogeneous
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sets Y1,Y2 ⊂ 〈W1,W2〉 such that Y1 ∈ 〈W1,W2(−ε)〉, Y2 ∈ 〈W1(−ε),W2〉,

M ∼= 〈W1,W2(−ε)|Y1,Y2(−ε)〉

N ∼= 〈W1(−ε),W2|Y1(−ε),Y2〉.

If M and N are finitely presented, then W1,W2,Y1,Y2 can be taken to be finite.

Proof of Theorem 2.6.4. It’s easy to see that if there exist n-graded sets W1,W2 and

sets Y1,Y2 ⊂ 〈W1,W2〉 as in the statement of the theorem then M,N are (J1, J2)-

interleaved.

To prove the converse, we will first express M and N as an isomorphic copies of

two quotient persistent modules which are, in a suitable sense, algebraically similar.

We will then construct the desired presentations by lifting the structure of these

quotients to free covers.

The construction by which we express M and N as quotients is a generalization to

(J1, J2)-interleaved pairs of Bn-persistence modules of one introduced for ε-interleaved

pairs of B1-persistence modules in the proof of [8, Lemma 4.6].

Let f, g be (J1, J2)-interleaving homomorphisms for M,N .

Lemma 2.6.6. Let γ1 : M(J−1
1 ◦J−1

2 )→M⊕N(J−1
2 ) be given by γ1(y) = (S(M(J−1

1 ◦
J−1

2 ), J2 ◦ J1)(y),−f(y)). Let γ2 : N(J−1
2 ) → M ⊕ N(J−1

2 ) be given by γ2(y) =

(−g(y), y). Let R ⊂ M ⊕ N(J−1
2 ) be the submodule generated by im(γ1) ∪ im(γ2).

Then

M ∼= (M ⊕N(J−1
2 ))/R.

Proof. Let ι : M → M ⊕ N(J−1
2 ) denote the inclusion, and let ζ : M ⊕ N(J−1

2 ) →
M⊕N(J−1

2 )/R denote the quotient. We’ll show that ζ ◦ ι is an isomorphism. For any

(yM , yN) ∈ M ⊕ N(J−1
2 ), (−g(yN), yN) ∈ im(γ2) ⊂ R, so ζ ◦ ι(g(yN)) = (0, yN) + R.

Therefore ζ ◦ ι(g(yN) + yM) = (yM , yN) +R. Hence ζ ◦ ι is surjective.

ζ ◦ ι is injective iff ι(M)∩R = 0. It’s clear that ι(M)∩ im(γ2) = 0. Thus to show

that ζ ◦ ι is injective it’s enough to show that im(γ1) ⊂ im(γ2). If y ∈M(J−1
1 ◦ J−1

2 ),

then since S(M(J−1
1 ◦J−1

2 ), J2◦J1)(y) = g◦f(y), (S(M(J−1
1 ◦J−1

2 ), J2◦J1)(y),−f(y)) =

(g ◦ f(y),−f(y)) = γ2(−f(y)). Thus im(γ1) ⊂ im(γ2) and so ζ ◦ ι is injective.
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Thus ζ ◦ ι is an isomorphism.

Now let 〈GM |RM〉 be a presentation for M and let 〈GN |RN〉 be a presentation for

N . Without loss of generality we may assumeM = 〈GM〉/〈RM〉 andN = 〈GN〉/〈RN〉.
Let ρM : 〈GM〉 → M , ρN : 〈GN〉 → N denote the quotient maps. Then (〈GM〉, ρM)

and (〈GN〉, ρN) are free covers for M and N .

Let f̃ : 〈GM〉 → 〈GN(J1)〉 be a lift of f and let g̃ : 〈GN〉 → 〈GM(J2)〉 be a lift of

g.

Let RM,N = {y − f̃(y)}y∈GM (J−1
1 ) and let RN,M = {y − g̃(y)}y∈GN (J−1

2 ). Note that

RM,N is a homogeneous subset of 〈GM(J−1
1 ), GN〉 and RN,M is a homogeneous subset

of 〈GM , GN(J−1
2 )〉.

Let

PM = 〈GM , GN(J−1
2 )|RM , RN(J−1

2 ), RM,N(J−1
2 ), RN,M〉,

PN = 〈GM(J−1
1 ), GN |RM(J−1

1 ), RN , RM,N , RN,M(J−1
1 )〉.

RM,N(J−1
2 ) lies in 〈GM(J−1

1 ◦J−1
2 ), GN(J−1

2 )〉. By Remark 2.6.3, the map S(GM(J−1
1 ◦

J−1
2 ), J2 ◦ J1) identifies 〈GM(J−1

1 ◦ J−1
2 )〉 with a subset of 〈GM〉. Thus PM is well

defined. By an analogous observation, PN is also well defined.

We claim that PM is a presentation for M and PN and is a presentation for N .

We’ll prove that PM is a presentation for M ; The proof that PN is a presentation for

N is identical.

Let

F = 〈GM , GN(J−1
2 )〉,

K = 〈RM , RN(J−1
2 ), RM,N(J−1

2 ), RN,M〉

K ′ = 〈RM , RN(J−1
2 )〉.

Let p : F → F/K ′ denote the quotient map. Clearly, we may identify F/K ′ with

M ⊕N(J−1
2 ) and p with (pM , pN). We’ll check that p maps 〈RM,N(J−1

2 )〉 surjectively

to im(γ1) and 〈RN,M〉 surjectively to im(γ2), so that under the identification of F/K ′

with M ⊕N(J−1
2 ), K/K ′ = R. Given this, it follows that PM is a presentation for M
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by Lemma 2.6.6 and the third isomorphism theorem for modules [18].

We first check that 〈p(RM,N(J−1
2 ))〉 = im(γ1). Viewing RM,N(J−1

2 ) as a subset of

〈GM , GN(J−1
2 )〉, RM,N(J−1

2 ) = {S(〈GM(J−1
1 ◦ J−1

2 )〉, J2 ◦ J1)(y)− f̃(y)}y∈GM (J−1
1 ◦J

−1
2 ).

S(〈GM(J−1
1 ◦ J−1

2 )〉, J2 ◦ J1) is a lift of S(M(J−1
1 ◦ J−1

2 ), J2 ◦ J1) and f̃ is a lift of f ,

so for any y ∈ GM(J−1
1 ◦ J−1

2 ),

p(S(〈GM(J−1
1 ◦ J−1

2 )〉, J2 ◦ J1)(y)− f̃(y))

= (S(M(J−1
1 ◦ J−1

2 ), J2 ◦ J1)(ρM(y)),−f(ρM(y)))

= γ1(ρM(y)).

Thus p(RM,N(J−1
2 )) ⊂ im(γ1). Since GM generates 〈GM〉 and ρM is surjective, we

have that p(〈RM,N(J−1
2 )〉) = im(γ1).

The check that 〈p(RN,M)〉 = im(γ2) is similar to the above verification that

〈p(RM,N(J−1
2 ))〉 = im(γ1), but simpler. RN,M = {y − g̃(y)}y∈GN (J−1

2 ). g̃ is a lift

of g so for any y ∈ GN(J−1
2 ),

p(y − g̃(y)) = (−g(ρN(y)), ρN(y)) = γ2(ρN(y)).

Thus p(RN,M) ⊂ im(γ2). Since GN generates 〈GN〉 and ρN is surjective, we have that

p(〈RN,M〉) = im(γ2).

This completes the verification that PM is a presentation for M .

Now, taking W1 = GM , W2 = GN , Y1 = RM ∪ RN,M , and Y2 = RN ∪ RM,N

gives the first statement of Theorem 2.6.5. If M and N are finitely presented then

GM , GN , RM , RN , RM,N , and RN,M can all be taken to be finite; the second statement

of Theorem 2.6.5 follows.

2.7 Geometric Preliminaries

In this third section of preliminaries, we present preliminaries of a geometric and

topological nature which we will need in the remainder of the thesis.
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One organizational note before proceeding: We define multidimensional filtra-

tions and multidimensional persistent homology here, in Section 2.7.3. In our study

of topological inference in Chapter 4, we will need a slightly more general defini-

tion of multidimensional filtrations and a correspondingly more general definition of

multidimensional persistent homology. However, since these more general definitions

are not needed in the remainder of this chapter, we will defer their introduction to

Section 3.1.

2.7.1 CW-complexes and Cellular homology

Our proof of the optimality of the interleaving distance in Section 2.10 will involve

the construction of CW-complexes and the computation of their cellular homology.

We now briefly review finite dimensional CW-complexes and cellular homology.

Definition of a Finite-dimensional CW-complex

A CW-complex is a topological space X together with some additional data of at-

taching maps specifying how X is assembled as the union of open disks of various

dimensions. We quote the procedural definition of a finite-dimensional CW-complex

given in [30].

Let Di denote the unit disk in Ri; for α contained in some indexing set (which

will often be implicit in our notation) let Di
α be a copy of Di. When i is clear from

context, we will sometimes denote Di
α simply as Dα.

A finite-dimensional CW-complex is a space X constructed in the following way:

1. Start with a discrete set X0, the 0-cells of X.

2. Inductively, form the i-skeleton of X i from X i−1 by attaching i-cells eiα via maps

σα : Si−1 → X i−1. This means that X i is the quotient space of X i−1qαDi
α under

the identifications x ∼ σα(x) for x ∈ δDi
α. The cell eiα is the homeomorphic

image of Di
α − δDi

α under the quotient map.

3. X = Xr for some r. We call the smallest such r the dimension of X.

The characteristic map of the cell eiα is the map Φα : Di
α → X which is the composition



CHAPTER 2. INTERLEAVINGS ON MULTI-D PERSISTENCE MODULES 65

Di
α ↪→ X i−1 qα Di

α → X i ↪→ X, where the middle map is the quotient map defining

X i.

A subcomplex of a CW-complex X is a closed subspace A of X which is a union of

the cells of X; those cells contained in A are taken to have the same attaching maps

as they do in X.

Cellular Homology

We mention only what we need about cellular homology to prove our optimality result

Theorem 2.10.1. For a more complete discussion and proofs of the results stated here,

see e.g. [30] or [2].

For i ∈ Z≥0, we’ll let Hi denote the ith singular homology functor with coefficients

in the field k.

For X a CW-complex and i ∈ N, let dXi : Hi(X
i, X i−1) → Hi−1(X i−1, X i−2)

denote the map induced by the boundary map in the long exact sequence of the pair

(X i, X i−1). It can be checked that the dXi give

· · ·
δXi+1→ Hi(X

i, X i−1)
δXi→ Hi−1(X i−1, X i−2)

δXi−1→ · · ·
δX1→ H0(X0)→ 0

the structure of a chain complex, and that the ith homology vector space of this chain

complex, denoted HCW
i (X), is isomorphic to Hi(X).

It can be shown that a choice of generator for Hi(D
i, Si−1) ∼= Z induces a choice

of basis for Hi(X
i, X i−1) whose elements correspond bijectively to the i-cells of X.

We now fix a choice of generator Hi(D
i, Si−1) for each i ∈ N.1 We can then think of

Hi(X
i, X i−1) as the k-vector space generated by the i-cells of X.

It follows from the equality HCW
0 (X) = H0(X) that in the case that X has a

single 0-cell, dX1 = 0.

For i > 1, the cellular boundary formula gives an explicit expression for dXi . To

prepare for the formula, we note first that for i ∈ N, the choice of generator for

Hi(D
i, Si−1) induces a choice of generator ai for Hi(D

i/Si−1) via the quotient map

Di → Di/Si−1. Also, the choice of generator for Hi+1(Di+1, Si) induces a choice of

1Such a choice is induced e.g. by the standard orientation on Di.
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generator bi for Hi(S
i) via the boundary map in the long exact sequence of the pair

(Di+1, Si). For each i ∈ N, choose ρi : Di/Si−1 → Si to be any homeomorphism such

that ρi∗ : Hi(D
i/Si−1)→ Hi(S

i) sends ai to bi.

For i ∈ N and an i-cell eiβ of X, let (eiβ)c denote the compliment of eiβ in X i, and

let qβ : X i → X i/(eiβ)c denote the quotient map. ρi and Φβ induce an identification

of qβ(X i) with Si.

By a compactness argument [30, Section A.1], for any i-cell eiα the image of the

attaching map σα of eiα meets only finitely many cells.

For i > 1, the cellular boundary formula states that

δXi (eiα) =
∑

im(σα)∪ei−1
β 6=∅

deg(qβ ◦ σα)ei−1
β .

Here, for any map f : Si−1 → Si−1, deg(f) denotes the field element a ∈ k such that

f∗ : Hi−1(Si−1)→ Hi−1(Si−1) is multiplication by a.

We can endow the set of CW-complexes with the structure of a category by taking

hom(X, Y ) for CW-complexes X, Y to be the set of continuous maps f : X → Y such

that f(X i) ⊂ Y i for all i. We call maps f ∈ hom(X, Y ) cellular maps. It can be

shown that a cellular map f induces a map HCW
i (f) : HCW

i (X)→ HCW
i (Y ) in such

a way that HCW
i becomes a functor.

Further, there exists a natural isomorphism [33] κ : HCW
i → H̄i, where H̄i is the

restriction of Hi to the category of CW-complexes.

2.7.2 Multidimensional Filtrations

Fix n ∈ N.

Define an n-filtration X to be a collection of topological spaces {Xa}a∈Rn , to-

gether with a collection of continuous maps {φX(a, b) : Xa → Xb}a≤b∈Rn such that if

a ≤ b ≤ c ∈ Rn then

φX(b, c) ◦ φX(a, b) = φX(a, c).

Given two n-filtrations X and Y , we define a morphism f from X to Y to be a

collection of continuous functions {fa}a∈Rn : Xa → Ya such that for all a ≤ b ∈ Rn,
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fb ◦ φX(a, b) = φY (a, b) ◦ fa. This definition of morphism gives the n-filtrations the

structure of a category. Let n-filt denote this category.

Said differently, n-filt is the category of diagrams of topological spaces indexed by

the poset category (Rn, <).

We can define the category of cellular n-filtrations analogously, as the category

of diagrams of CW -complexes indexed by the poset category (Rn, <). In the same

way, we can define the category of simplicial n-filtrations.

2.7.3 Multidimensional Persistent Homology

The multidimensional persistent homology functor Hi is a generalization of the or-

dinary homology functor with field coefficients to the setting where the source is an

n-filtration and the target is a Bn-persistence module.

Singular Multidimensional Persistent Homology

For a topological space X and j ∈ Z≥0, let Cj(X) denote the jth singular chain

module of X, with coefficients in k. For X, Y topological spaces and f : X → Y a

continuous map, let f# : Cj(X)→ Cj(Y ) denote the map induced by f .

For X an n-filtration, define Cj(X), the jth singular chain module of X, as the

Bn-persistence module for which Cj(X)u = Cj(Xu) for all u ∈ Rn and for which

ϕCj(X)(u, v) = φ#
X(u, v). Note that for any j ∈ Z≥0, the collection of boundary maps

{δj : Cj(Xu) → Cj−1(Xu)}u∈Rn induces a boundary map δj : Cj(X) → Cj−1(X).

These boundary maps give {Cj(X)}j≥0 the structure of a chain complex. We define

the Hj(X), the jth persistent homology module of X, to be the jth homology module

of this complex. For X and Y two n-filtrations, a morphism f ∈ hom(X, Y ) induces in

the obvious way a morphism Hj(f) : Hj(X)→ Hj(Y ), making Hj : n-filt→ Bn-mod

a functor.

Cellular Multidimensional Persistent Homology

A construction analogous to the one above, with cellular chain complexes used in

place of singular chain complexes, yields a definition of the cellular multidimensional



CHAPTER 2. INTERLEAVINGS ON MULTI-D PERSISTENCE MODULES 68

persistent homology of cellular n-filtrations. For a cellular filtration X, let CCW
j (X)

denote the jth cellular chain module of X, let δCWj : CCW
j (X)→ CCW

j−1 (X) denote the

jth cellular chain map of X, and let HCW
j (X) denote the jth cellular multidimensional

persistence module of X.

Remark 2.7.1. It follows from the naturality of the isomorphisms between singu-

lar and cellular homology that the singular and cellular multidimensional persistent

homology modules of a cellular n-filtration are isomorphic.

2.7.4 Functors from Geometric Categories to Categories of

n-filtrations

In applications of persistent homology one typically has some geometric2 category

of interest and a functor F from that category to n-filt for some n ∈ N; one then

studies and works with the functor Hi◦F . These composite functors are also generally

referred to as ith persistent homology functors. There thus are a number of different

such ith persistent homology functors with different sources, each determined by a

different choice of the functor F .

We next define several functors F : C → n-filt, where C is some geometric cat-

egory. We introduced special cases of some of the definitions presented here in Sec-

tion 1.5.1. We’ll use these functors to formulate and prove our inference results in

Chapter 4.

In Section 2.8 we will prove stability results for Hi ◦ F for each of functors F

introduced here.

In the following examples, we omit the specification of the action of these functors

on morphisms. This should be clear from context.

Recall from Section 2.1.1 that for a = (a1, ..., an) ∈ R̂n and b ∈ R̂, we let (a, b) =

(a1, ..., an, b) ∈ R̂n+1.

Example 2.7.2. Sublevelset Filtrations

Let CS be the category defined as follows:

2We are using the word “geometric” here in an informal (and rather broad) sense.
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1. Objects of CS are pairs (X, f), where X is a topological space and f : X → Rn

is a function.

2. If (X1, f 1), (X2, f 2) ∈ obj(CS), then we define homCS((X1, f 1), (X2, f 2)) to be

the set of continuous functions γ : X1 → X2 such that f 1(x) ≥ f 2(γ(x)) for all

x ∈ X1.

Define the functor F S : CS → n-filt on objects by taking

F S(X, f)a = fa

for all a ∈ Rn (and taking the map φFS(X,f)(a, b) to be the inclusion for all a ≤ b ∈
Rn.) We refer to F S as the sublevelset filtration functor, to F S(X, f) as the

sublevelset filtration of f , and to F S(X,−f) as the superlevelset filtration of

f .

Example 2.7.3. Sublevelset-Offset Filtrations

We define two variants of the sublevelset-offset filtration functor, the closed and

open variants. It is the closed variant that is of greater interest to us and that we use

in the statement of our theorems; we define the open variant purely as a technical

tool for use in the proofs of the results of Chapter 4.

Let CSO be the category defined as follows:

1. Objects of CSO are quadruples (X, Y, d, f), where (Y, d) is a metric space, X ⊂
Y , and f : X → Rn is a function.

2. If (X1, Y 1, d1, f 1), (X2, Y 2, d2, f 2) ∈ obj(CSO), then we define

homCSO((X1, Y 1, d1, f 1), (X2, Y 2, d2, f 2))

to be the set of continuous functions γ : Y 1 → Y 2 such that γ(X1) ⊂ X2,

f 1(x) ≥ f 2(γ(x)) for all x ∈ X1, and d1(y1, y2) ≥ d2(γ(y1), γ(y2)) for all y1, y2 ∈
Y 1.

For (X,X, d, f) ∈ CSO, we will often write (X, d, f) as shorthand for (X,X, d, f).



CHAPTER 2. INTERLEAVINGS ON MULTI-D PERSISTENCE MODULES 70

Define the functor F SO : CSO → (n+ 1)-filt on objects by taking

F SO(X, Y, d, f)(a,b) = {y ∈ Y |d(y, fa) ≤ b}

for all (a, b) ∈ Rn×R. We refer to F SO as the (closed) sublevelset-offset filtration

functor.

Similarly, define the functor F SO−Op : CSO → (n+ 1)-filt on objects by taking

F SO−Op(X, Y, d, f)(a,b) = {y ∈ Y |d(y, fa) < b}

for all (a, b) ∈ Rn×R. We refer to F SO−Op as the open sublevelset-offset filtration

functor.

Example 2.7.4. Sublevelset-Čech Filtrations

As we did for sublevelset-offset filtrations, we define closed and open variants of

the sublevelset-Čech filtration functor.

Let CSČe denote the full subcategory of F SO whose objects are the quadruples

(X, Y, d, f) with X finite.

Recall from Section 1.5.1 that given a metric space (Y, d), a subset X ⊂ Y , and

b ∈ R, we let Čech(X, Y, d, b), the (closed) Čech complex of (X, d) with parameter

b, be the abstract simplicial complex with vertex set X such that for l ≥ 2 and

x1, x2, .., xl ∈ X, Čech(X, Y, d, b) contains the (l − 1)-simplex [x1, ..., xl] iff there is a

point y ∈ Y such that d(y, xi) ≤ b for 1 ≤ i ≤ l.

Let Čech
◦
(X, Y, d, b), the open Čech complex of (X, d) with parameter b, be defined

the same way as the closed Čech complex, except that we specify that Čech
◦
(X, Y, d, b)

contains the (l− 1)-simplex [x1, ..., xl] iff there is a point y ∈ Y such that d(y, xi) < b

for 1 ≤ i ≤ l.

Define the functor F SČe : CSČe → (n+ 1)-filt on objects by taking

F SČe(X, Y, d, f)(a,b) = Čech(fa, Y, d, b)

for all (a, b) ∈ Rn ×R. We refer to F SČe as the (closed) sublevelset-offset filtra-

tion functor.
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Similarly, define the functor F SČe−Op : CSČe → (n+ 1)-filt on objects by taking

F SČe−Op(X, Y, d, f)(a,b) = Čech
◦
(fa, Y, d, b)

for all (a, b) ∈ Rn×R. We refer to F SČe−Op as the open sublevelset-Čech filtration

functor.

Example 2.7.5. Sublevelset-Rips Filtrations

Let CSR be the full subcategory of CSO whose objects are quadruples (X,X, d, f),

where X is a finite metric space.

Recall from Section 1.5.1 that given a finite metric space (X, d) and b ∈ R, we let

Rips(X, d, b), the Rips complex of (X, d) with parameter b, be the maximal abstract

simplicial complex with vertex set X such that for x1, x2 ∈ X, the 1-skeleton of

R(X, d, b) contains the edge [x1, x2] iff d(x1, x2) ≤ 2b.

Define the functor F SR : CSR → (n+ 1)-filt on objects by taking

F SR(X, d, f)(a,b) = Rips(fa, d, b)

for all (a, b) ∈ Rn × R.

We refer to F SR as the sublevelset-Rips filtration functor.

The functor F SR has previously been considered (in the case n = 1) in [7].

2.7.5 Metrics on Geometric Categories

We now define metrics on the isomorphism classes of objects of each of the geometric

categories we defined in the last section. We’ll use these to formulate stability results

for dI .

Of these metrics, the first will be the most important to us, since we’ll use it to

formulate our main optimality results.
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A Metric on obj∗(CS)

We define a metric dS on obj∗(CS) by taking

dS((X, fX), (Y, fY )) = inf
h∈H

sup
x∈X
‖fX(x)− fY (h(x))‖∞

where H is the set of homeomorphisms between X and Y . dS descends to a metric

on obj∗(CS), which we also write as dS. Note that dS((X, fX), (Y, fY )) =∞ if X and

Y are not homeomorphic.

When n = 1, dS is known as the natural pseudo-distance; it features prominently

in the work of Patrizio Frosini and his coauthors on persistent homology and size

theory—see [22], for example.

Remark 2.7.6. dS can be defined equivalently as an interleaving distance. To define

an interleaving distance on obj(CS), we need to define ε-interleavings in the category

CS. To do this, it is enough to define an ε-shift functor (·)(ε) : CS → CS for each

ε ∈ R, and a transition morphism S((X, fX), ε) : (X, fX) → (X, fX)(ε) for each

(X, fX) ∈ obj(CS) and each ε ∈ [0,∞).

We define (·)(ε) on objects in CS by taking (X, fX)(ε) = (X, f ′X), where f ′X(x) =

f(x) − ε for all x ∈ X; we define (·)(ε) on morphisms in the obvious way; and we

define S((X, fX), ε) to be the identity map on X.

It is not hard to check that the interleaving distance induced by these choices is

equal to dS.

A Metric on obj∗(CSO)

We define a metric dSO on obj∗(CSO) by taking

dSO((X1, Y 1, d1, f 1), (X2, Y 2, d2, f 2))

= inf
h∈H

max{ sup
x1∈X1

inf
x2∈X2

max(d2(h(x1), x2), ‖f 1(x1)− f 2(x2)‖∞),

sup
x2∈X2

inf
x1∈X1

max(d2(h(x1), x2), ‖f 1(x1)− f 2(x2)‖∞) },
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where H is the set of isometries between (Y 1, d1) and (Y 2, d2). dSO is a sort of

“function aware” variant of the Hausdorff distance. Note that

dSO((X1, Y 1, d1, f 1), (X2, Y 2, d2, f 2)) =∞

if (Y 1, d1) and (Y 2, d2) are not isometric.

Note also that since obj(CSČe) is a full subcategory of CSO, dSO restricts to a

metric on obj∗(CSČe).

A Metric on obj∗(CSR)

Generalizing in a mild way a definition of [9], we define a metric dSR on obj∗(CSR).

For fX , fY ≡ 0, dSR((X, dX , fX), (X, dX , fY )) will be equal to the Gromov-Hausdorff

metric [9]. (In fact, the definition extends to the subcategory of CSO whose objects

are the triplets (X, dX , fX) with X compact, but we won’t need the extra generality

here.)

To define dSR, we need some preliminary definitions and notation. Define a cor-

respondence between two sets X and Y to be a subset C ∈ X × Y such that ∀x ∈ X,

∃y ∈ Y such (x, y) ∈ C, and ∀y ∈ Y , ∃x ∈ X s.t. (x, y) ∈ C. Let C(X, Y ) denote

the set of correspondences between X and Y .

For (X, dX , fX), (Y, dY , fY ) ∈ CSR, define ΓX,Y : X × Y ×X × Y → R≥0 by

ΓX,Y (x, y, x′, y′) = |dX(x, x′)− dY (y, y′)|.

For C ∈ C(X, Y ), define ΓC as sup(x,y),(x′,y′)∈C ΓX,Y (x, y, x′, y′), and define |fX − fY |C
to be sup(x,y)∈C ‖fX(x)− fY (y)‖∞. Informally, ΓC is the maximum distortion of the

metrics under the correspondence C, and |fX − fY |C is the maximum distortion of

the functions under C.

Now define we define dSR by taking

dSR((X, dX , fX), (Y, dY , fY )) = inf
C∈C(X,Y )

max(
1

2
ΓC , |fX − fY |C).
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2.7.6 Stability Results for Ordinary Persistence

There are two main geometric stability results for ordinary persistence in the litera-

ture. (Though see also the generalization [5]). Each is a consequence of the algebraic

stability of persistence [8].

Theorem 2.7.7 (1-D Stability Result for CS [8]). For any i ∈ Z≥0, topological

spaces X, Y , and functions fX : X → R, fY : Y → R such that Hi ◦ F S(X, fX) and

Hi ◦ F S(Y, fY ) are tame,

dB(Hi ◦ F S(X, fX), Hi ◦ F S(Y, fY )) ≤ dS((X, fX), (Y, fY )).

For a 2-D filtration F , let diag(F ) denote the 1-D filtration for which diag(F )a =

F(a,a).

Theorem 2.7.8 (1-D Stability Result for CSR [9]). For any finite metric spaces

(X, dX), (Y, dY ) and functions fX : X → R, fY : Y → R,

dB(Hi ◦ diag(F SR(X, dX , fX)), Hi ◦ diag(F SR(Y, dY , fY )))

≤ dSR((X, dX , fX), (Y, dY , fY )).

We’ll see in Section 2.8 that both of these results admit generalizations to the

setting of multidimensional persistence in terms of the interleaving distance.

2.8 Stability Properties of the Interleaving Dis-

tance

In this section, we observe that multidimensional persistent homology is stable with

respect to the interleaving distance in four senses analogous to those in which or-

dinary persistent homology is known to be stable. As noted in the introduction,

there is not much mathematical work to do here. Nevertheless, these observations

are significant (if not particularly surprising) not only because they show that the

interleaving distance is in several respects a well behaved distance, but also because
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stability is closely related to the optimality of distances on persistence modules as we

define it in Section 2.9; insofar as we wish to understand the optimality properties of

the interleaving distance, the stability properties of the interleaving distance are of

interest.

Each of the results here lifts readily to a stability result on the level of filtrations,

formulated in terms of interleavings on filtrations; see Sections 3.2.2 and 3.3.3.

2.8.1 Stability of Sublevelset Multi-D Persistent Homology

Theorem 2.8.1. For any T1, T2 ∈ obj(CS) and i ∈ Z≥0,

dI(Hi ◦ F S(T1), Hi ◦ F S(T2)) ≤ dS(T1, T2).

The case n = 1 is Theorem 2.7.7.

Proof. Let dS((X, fX), (X, fY )) = ε < ∞. Then for any ε′ > ε, there exists a

homeomorphism h : X → Y such that u ∈ Rn, F S(X, fX)u ⊂ F S(X, fY ◦ h)u+ε′

and F S(X, fY ◦ h)u ⊂ F S(X, fX)u+ε′ . The images of these inclusions under the ith

singular homology functor define ε′-interleaving morphisms between Hi ◦ F S(X, fX)

and Hi ◦ F S(X, fY ◦ h). (X, fY ◦ h) and (Y, fY ) are isomorphic objects of CS, so

Hi ◦ F S(X, fY ◦ h) and Hi ◦ F S(Y, fY ) are 0-interleaved. Thus Hi ◦ F S(X, fX) and

Hi ◦ F S(Y, fY ) are ε′-interleaved, and so dI(Hi ◦ F S(X, fX), Hi ◦ F S(Y, fY )) ≤ ε, as

needed.

2.8.2 Stability of Sublevelset-Offset Multi-D Persistent Ho-

mology

Theorem 2.8.2. For any T1, T2 ∈ obj(CSO) we have, for any i ∈ Z≥0,

dI(Hi ◦ F SO(T1), Hi ◦ F SO(T2)) ≤ dSO(T1, T2).

Proof. This is similar to proof of the previous result. Let dSO(T1, T2) = ε < ∞ and

write T1 = (X1, Y 1, d1, f 1), T2 = (X2, Y 2, d2, f 2). For any ε′ > ε > 0, there exists an
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isometry h : X → Y such that for any u ∈ Rn and r ∈ R,

F SO(T1)(u,r) ⊂ F SO(T3)(u+ε′,r+ε′) and

F SO(T3)(u,r) ⊂ F SO(T1)(u+ε′,r+ε′),

where T3 = (h−1(X2), Y 1, d1, f 2 ◦ h). The images of these inclusions under the ith

singular homology functor define ε′-interleaving morphisms between Hi ◦ F SO(T1)

and Hi ◦F SO(T3). T2 and T3 are isomorphic as elements of CSO so Hi ◦F SO(T2) and

Hi ◦ F SO(T3) are 0-interleaved. The result now follows in the same way as in the

previous proof.

2.8.3 Stability of Sublevelset-Čech Multi-D Persistent Ho-

mology

Theorem 2.8.3. For any T1, T2 ∈ obj(CSČe) and i ∈ Z≥0,

dI(Hi ◦ F SČe(T1), Hi ◦ F SČe(T2)) ≤ dSO(T1, T2).

Proof. Note that the definition of the action of F SČe on objects of CSČe extends

from quadruples (X, Y, d, f) ∈ obj(CSČe) to quadruples (X̃, Y, d, f), where X̃ is a

finite multiset3 with underlying set X. Further, note that for any (a, b) ∈ Rn × R
F SČe(X, Y, d, f)(a,b) is a deformation retract of F SČe(X̃, Y, d, f)(a,b), and the deforma-

tion retracts can be taken to commute with the inclusion maps in these filtrations.

Thus

Hi ◦ F SČe(X̃, Y, d, f)(a,b)
∼= Hi ◦ F SČe(X, Y, d, f)(a,b).

Let dSO(T1, T2) = ε < ∞ and write T1 = (X1, Y 1, d1, f 1), T2 = (X2, Y 2, d2, f 2).

Using an argument similar to that appearing in the proof above, it’s straightforward

to show that for all ε′ > ε there exist multisets X̃1 and X̃2 whose underlying sets are

3Informally, a multiset is a set whose elements are allowed to have multiplicity greater than or
equal to one.



CHAPTER 2. INTERLEAVINGS ON MULTI-D PERSISTENCE MODULES 77

X1 and X2 respectively and a bijection λ : X̃1 → X̃2 which induces a pair of strong ε-

interleaving morphisms between F SČe(X̃1, Y 1, d1, f 1) and F SČe(X̃2, Y 2, d2, f 2).4 From

this it follows that Hi ◦ F SČe(X̃1, Y 1, d1, f 1) and Hi ◦ F SČe(X̃2, Y 2, d2, f 2) are also

ε′-interleaved. Thus Hi ◦ F SČe(T1) and Hi ◦ F SČe(T2) are ε′-interleaved; the result

follows.

2.8.4 Stability of Sublevelset-Rips Multi-D Persistent Ho-

mology

Theorem 2.8.4. For T1, T2 ∈ obj(CSR) we have, for any i ∈ Z≥0,

dI(Hi ◦ F SR(T1), Hi ◦ F SR(T2)) ≤ dSR(T1, T2).

The proof of this is a very minor modification of the argument given in [9] to prove

Theorem 2.7.8.

Note that Theorem 2.8.4 implies Theorem 2.7.8: When n = 1, if Hi ◦ F SR(T1)

and Hi ◦ F SR(T2) are ε-interleaved, for ε ∈ R≥0, then Hi ◦ diag(F SR(T1)) and Hi ◦
diag(F SR(T2)) are ε-interleaved.

2.9 Optimal Pseudometrics

In this section we introduce a relative notion of optimality of pseudometrics. This no-

tion of optimality is rather general and specializes to a number of different definitions

of interest in the context of multidimensional persistence.

We also present some basic theory about optimal pseudometrics. We’ll make

use of this theory in Section 2.10, where we prove our main optimality result for

the interleaving distance and in Chapter 3, where we present optimality results for

pseudometrics on filtrations.

4We give the definition of strong interleavings of filtratons in Section 3.2.1.
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2.9.1 A General Definition of Optimal Pseudometrics

Let Y be a class.5 We define a relative structure on Y to be a triple R =

(W,dW , fW ), where (W,dW ) is a pseudometric space and fW : W → Y is a func-

tion.

We say a pseudometric d on Y is R-stable if for every w1, w2 ∈ W we have

d(fW (w1), fW (w2)) ≤ dW (w1, w2).

We say a pseudometric d on Y is R-optimal if d is R-stable, and for every other

R-stable pseudometric d′ on Y , we have d′(y1, y2) ≤ d(y1, y2) for all y1, y2 ∈ im(fW ).

2.9.2 Basic Results About Optimal Pseudometrics

The following lemma is immediate, but important to understanding our definition of

R-optimality.

Lemma 2.9.1. An R-stable pseudometric d is R-optimal iff for any R-stable pseu-

dometric d′ and w1, w2 ∈ W ,

|dW (w1, w2)− d(fW (w1), fW (w2))| ≤ |dW (w1, w2)− d′(fW (w1), fW (w2))|.

Our optimality proofs in this thesis will all make use of the following easy lemma.

Lemma 2.9.2. Let (Y, d) be a pseuodmetric space and let R = (W,dW , fW ) be a

relative structure on Y such that d is R-stable. Suppose that for each y1, y2 ∈ im(fW )

and δ > 0 there exists w1, w2 ∈ W such that fW (w1) = y1, fW (w2) = y2, and

dW (w1, w2) ≤ d(y1, y2) + δ. Then d is R-optimal.

Proof. This follows immediately from the definitions.

When two relative structures R and R′ are related, one might expect that there

is a relationship between R-optimality and R′-optimality. The next two lemmas offer

positive results in this direction; they will prove useful to us in Sections 2.10 and 3.2.5.

5As is common in category theoretic settings, in what follows we will sometimes work with proper
classes.
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Lemma 2.9.3. Let (X, dX), (Y, dY ), (Z, dZ) be pesudometric spaces and let fX : X →
Y , fY : Y → Z be functions. If fX is surjective, dY is (X, dX , fX)-optimal, and dZ

is (Y, dY , fY )-optimal then dZ is also (X, dX , fY ◦ fX)-optimal.

Proof. Clearly dZ is (X, dX , fY ◦ fX)-stable. Let d′Z be another (X, dX , fY ◦ fX)-

stable pseudometric on Z. d′Z induces a pseudometric d′Y on Y given by d′Y (y1, y2) =

d′Z(fZ(y1), fZ(y2)). Since d′Z is (X, dX , fY ◦fX)-stable, it follows that d′Y is (X, dX , fX)-

stable. Then, since fX is surjective, d′Y ≤ dY . This implies that d′Z is (Y, dY , fY )-

stable. Then by the (Y, dY , fY )-optimality of dZ , d′Z ≥ dZ on im(fY ) = im(fY ◦ fX)

so dZ is (X, dX , fY ◦ fX)-optimal, as desired.

Lemma 2.9.4. Let (X, dX), (Y, dY ), (Z, dZ) be metric spaces and let fX : X → Y ,

fY : Y → Z be functions. If im(fY ) = im(fY ◦ fX), dY is (X, dX , fX)-stable, dZ

is (X, dX , fY ◦ fX)-optimal, and dZ is (Y, dY , fY )-stable then dZ is also (Y, dY , fY )-

optimal.

Proof. Let d′Z be another (Y, dY , fY )-stable pseudometric on Z. Then d′Z is also

(X, dX , fY ◦ fX)-stable. By the (X, dX , fY ◦ fX)-optimality of dZ , d′Z ≤ dZ on im(fY ◦
fX) = im(fY ). Thus dZ is (Y, dY , fY )-optimal.

2.9.3 Examples

Here we give examples of classes Y and relative structures (W,dW , fW ) on Y for which

it would be interesting or useful from the standpoint of the theory and applications

of multidimensional persistent homology to have an explicit characterization of an

R-optimal pseudometric. In Section 2.10 we will focus exclusively on the relative

structures of Examples 2.9.5 and 2.9.6; we leave it to future work to investigate

in detail the optimality of pseudometrics with respect to the relative structures of

Examples 2.9.9-2.9.13.

In chapter 3 of this thesis we’ll introduce some more examples of relative structures

relevant to our study of multidimensional persistence, in connection with our study

of distances on multidimensional filtrations.

For examples 2.9.5-2.9.12, let Y = obj∗(Bn-mod).
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Example 2.9.5. For i ∈ Z≥0, let R1,i = (obj(CS), dS, Hi ◦ F S).

Example 2.9.6. Let R1 = (W,dW , fW ), where

W = {(T, i)|T ∈ obj(CS), i ∈ Z≥0},

dW ((T1, i1), (T2, i2)) =

dS(T1, T2) if i1 = i2,

∞ otherwise,

and

fW (T, i) = Hi ◦ F S(T ).

Then a pseudometric on Y is R1-stable iff it is R1,i-stable for all i ∈ Z≥0.

Remark 2.9.7. By Lemma 2.9.1, an R1-stable pseudometric d is R1-optimal iff for

any R1-stable pseudometric d′, i ∈ Z≥0, and T1, T2 ∈ obj(CS),

|dS(T1, T2)− d(Hi ◦ F S(T1), Hi ◦ F S(T2))|

≤|dS(T1, T2)− d′(Hi ◦ F S(T1), Hi ◦ F S(T2))|.

Remark 2.9.8. Since the definitions ofR1,i andR1 are similar, one might expect that

there’s a relationship between R1-optimality and R1,i-optimality. Corollary 2.10.2

shows that in the case that i ∈ N and either k = Q or k = Z/pZ for some prime p,

R1,i-optimality implies R-optimality.

Example 2.9.9. For any i ∈ Z≥0, (obj(CSO), dSO, Hi ◦F SO) defines a relative struc-

ture on Y .

Example 2.9.10. Similarly, for any i ∈ Z≥0, (obj(CSR), dSR, Hi ◦ F SR) defines a

relative structure on Y .

Example 2.9.11. For any i ∈ Z≥0, (obj(CSČe), dSČe, Hi ◦ F SČe) defines a relative

structure on Y .

Example 2.9.12. We noted above that the relative structure R1 of Example 2.9.6

is an analogue of the relative structures R1,i of Example 2.9.5 such that R1-stability
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is equivalent to R1,i-stability for all i ∈ Z≥0. In the same way that we defined R1,

we can define analogues of the relative structures of each of Examples 2.9.9, 2.9.10,

and 2.9.11 so that the same property holds.

Example 2.9.13. For any relative structure (W,dW , fW ) on obj∗(Bn-mod), set Y ,

and function ζ : obj∗(Bn-mod) → Y , let f ′ = ζ ◦ fW . Then (W,dW , f
′) is a rela-

tive structure on W . For example, we can take ζ to be the rank invariant [7] and

(W,dW , fW ) to be the relative structure of Example 2.9.6.

2.10 Optimality of the Interleaving Distance (Rel-

ative to Sublevelset Persistence)

2.10.1 Optimality of Interleaving Distance and Geometric

Lifts of Interleavings

The central result of this section is the following theorem:

Theorem 2.10.1. For k = Q or Z/pZ for some prime p, and i ∈ N, dI is R1,i-

optimal.

This theorem also yields the following weaker optimality result, which has the

aesthetic advantage of not depending in its formulation on a choice of homology

dimension.

Corollary 2.10.2. For k = Q or Z/pZ for some prime p, dI is R1-optimal.

We also present analogues of Theorems 2.10.1 and Corollary 2.10.2 for well be-

haved B1-persistence modules which hold for arbitrary fields k; these are given as

Theorem 2.10.8. Our analogue of Theorem 2.10.1 for well behaved B1-persistence

modules holds for i ∈ Z≥0.

Remark 2.10.3. I suspect that theorem 2.10.1 holds, more generally, for arbitrary

fields and for i ∈ Z≥0, though we do not prove that here. Such a generalization would

subsume both Corollary 2.10.2 and Theorem 2.10.8.
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Theorem 2.10.1 is an immediate consequence of the following proposition, by

Lemma 2.9.2.

Proposition 2.10.4. [Existence of Geometric Lifts of Interleavings] Let k = Q or

k = Z/pZ for some prime p. If i ∈ N, and M and N are ε-interleaved Bn-modules

then there exists a CW-complex X and continuous functions γM , γN : X → Rn such

that Hi ◦ F S(X, γM) ∼= M , Hi ◦ F S(X, γN) ∼= N , and ‖γM − γN‖∞ = ε.

The proposition tells us that interleavings on Bn-persistence modules lift to inter-

leavings on objects of CS, in the sense of Remark 2.7.6.

Another notable consequence of the proposition is this (compare [7, Theorem 2]):

Corollary 2.10.5. If k = Q or Z/pZ for some prime p then for every Bn-persistence

module M and i ∈ N, there exists a CW -complex X and a continuous function

γ : X → Rn such that Hi ◦ F S(X, γ) ∼= M .

Proof. This follows immediately from Proposition 2.10.4.

We’ll now deduce Corollary 2.10.2 from Theorem 2.10.1 and Corollary 2.10.5.

Proof of Corollary 2.10.2. Let R1 = (W,dW , fW ), as in Example 2.9.6. Clearly, dI is

R1-stable. To show that dI is R1-optimal we’ll apply Lemma 2.9.4.

For any i ∈ Z≥0, there is a map θi : obj(CS) → W which sends T ∈ obj(CS) to

(T, i). Then for any T ∈ obj(CS), fW ◦θi(T ) = Hi◦F S(T ). Recall from Example 2.9.5

that

R1,i = (obj(CS), dS, Hi ◦ F S) = (obj(CS), dS, fW ◦ θi).

Since the restriction of dW to im(θi) is equal to dS, dW is clearly (obj(CS), dS, θi)-

stable. Now fix some i ∈ N. By Corollary 2.10.5, im(fW ◦ θi) = im(fW ) = obj∗(Bn-

mod). Theorem 2.10.1 tells us that dI is R1,i-optimal. Thus Lemma 2.9.4 applies to

give us that dI is R1-optimal as well.

Note that the extension of Theorem 2.10.1 to the case i = 0 would follow from

Lemma 2.9.2, given the following conjectural extension of Proposition 2.10.4 to the

case i = 0.
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Conjecture 2.10.6. Let k = Q or k = Z/pZ for some prime p. Let M and N be

ε-interleaved Bn-modules such that for some topological spaces XM , XN and functions

fM : XM → Rn, fN : XN → Rn, H0 ◦ F S(XM , fM) ∼= M and H0 ◦ F S(XN , fN) ∼= N .

Then there exists a CW-complex X and continuous functions γM , γN : X → Rn such

that H0 ◦ F S(X, γM) ∼= M , H0 ◦ F S(X, γN) ∼= N , and ‖γM − γN‖∞ = ε.

Sections 2.10.3-2.10.6 are devoted to the proof of Proposition 2.10.4.

However, before proceeding with the proof of Proposition 2.10.4 we present opti-

mality results for the bottleneck distance.

2.10.2 Optimality of the Bottleneck Distance

Let Y denote the set of isomorphism classes of tame B1-persistence modules. Since the

bottleneck distance dB is only defined between elements of Y , formulating statements

about the optimality of dB requires that we consider a relative structure on Y rather

than on obj∗(B1-mod). We can (in the obvious way) define restrictions R2 and R2,i

of the relative structures R1 and R1,i to relative structures on Y .

Then given the existence of geometric lifts of interleavings, as established in Propo-

sition 2.10.4, the proofs of Theorem 2.10.1 and Corollary 2.10.2 adapt to give that

for k = Q or k = Z/pZ for p a prime, dB is R2-optimal, and for any i ∈ N, dB is also

R2,i-optimal.

Moreover, if we further restrict our attention to well behaved B1-persistence mod-

ules then we can prove an optimality result for arbitrary fields k and persistent ho-

mology of any dimension.

The key is the following variant of Proposition 2.10.4:

Proposition 2.10.7. [Existence of Geometric Lifts of Interleavings for Well Behaved

B1-persistence Modules] Let k be any field and let i ∈ Z≥0. Let M and N be well

behaved B1-persistence modules with dB(M,N) = ε. If i = 0, assume further that

for some topological spaces XM , XN and functions fM : XM → R, fN : XN → R,

H0 ◦F S(XM , fM) ∼= M and H0 ◦F S(XN , fN) ∼= N . Then for any δ > 0, there exists a

CW-complex X and continuous functions γM , γN : X → R such that Hi◦F S(X, γM) ∼=
M , Hi ◦ F S(X, γN) ∼= N , and ‖γM − γN‖∞ ≤ ε+ δ.
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Proof. An easy constructive proof, similar on a high level to our proof of Proposi-

tion 2.10.4 below but much simpler, follows from the definition of dB and the structure

theorem for well behaved persistence modules (Theorem 2.3.6). We leave the details

to the reader.

Now let Y ′ denote the set of isomorphism classes of well behaved B1-persistence

modules. Let R3 and R3,i denote the restrictions of the relative structures R1 and

R1,i to relative structures on Y ′.

Our optimality result for the bottleneck distance on well behaved persistence

modules is the following:

Theorem 2.10.8. For any field k and i ∈ Z≥0, dB is R3,i-optimal. Further, dB is

R3-optimal.

Proof. Using Proposition 2.10.7 in place of Proposition 2.10.4, the proofs of Theo-

rem 2.10.1 and Corollary 2.10.2 carry over with only minor modifications to give the

result.

Remark 2.10.9. In the case of 0-D ordinary persistence, our Theorem 2.10.8 implies

a slight weakening of the optimality result of [22]. It is easy to check that in the

geometric context considered in [22], the persistent homology modules obtained must

satisfy property 2 in the definition of a well behaved B1-persistence module, but they

needn’t satisfy property 1. To strengthen our optimality result to a full generalization

of the result of [22], we’d want a generalization of Theorem 2.3.6 to all B1-persistence

modules satisfying property 2. We presume that this can be obtained via a slight

strengthening of Theorem 2.2.2, but we do not pursue the details of this here.

2.10.3 Proof of Existence of Geometric Lifts of Interleavings,

Part 1: Constructing the CW-complex

The rest of Section 2.10 is devoted to the proof of Proposition 2.10.4.

Corollary 2.6.5 gives us n-graded sets W1,W2 and homogeneous sets Y1,Y2 ⊂
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〈W1,W2〉 such that Y1 ∈ 〈W1,W2(−ε)〉, Y2 ∈ 〈W1(−ε),W2〉, and

M ∼= 〈W1,W2(−ε)|Y1,Y2(−ε)〉,

N ∼= 〈W1(−ε),W2|Y1(−ε),Y2〉.

Given such W1,W2,Y1,Y2, we proceed with the proof of Proposition 2.10.4, be-

ginning with the construction of the CW-complex X whose existence is posited by

the proposition.

Write W =W1 ∪W2 and Y = Y1 ∪ Y2. If M = N = 0, Proposition 2.10.4 clearly

holds, so we may assume without loss of generality that M and N are not both trivial.

Under this assumption, W 6= ∅.
For an n-graded set S, let GCD(S) = (v1, ..., vn), where vi = infs∈S gr(s)i. In

general, some of the components of GCD(W) may be equal to −∞. To simplify our

exposition, we first present the remainder of the proof of Proposition 2.10.4 in the

special case that GCD(W) ∈ Rn. The adaptation of our proof to the general case is

reasonably straightforward; we outline this adaptation in Section 2.10.6.

We’ll define X so that

1. X has a single 0-cell B.

2. X has an i-cell eiw for each w ∈ W .

3. X has an (i+ 1)-cell ei+1
y for each y ∈ Y .

For such X, the attaching map for each i-cell eiw must be the constant map to B.

To define X, then, we need only to specify the attaching map σy : Si → X i for each

y ∈ Y .

We do this for k = Q, and leave to the reader the easy adaptation of the con-

struction (and its use in the remainder of the proof of Proposition 2.10.4) to the case

k = Z/pZ.

For any y ∈ Y , we may choose a finite set Wy ⊂ W such that gr(w) ≤ gr(y) for

each w ∈ Wy, and

y =
∑
w∈Wy

a′wyϕ〈W〉(gr(w), gr(y))(w) (2.3)
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for some a′wy ∈ Q. There’s an integer z such that for each a′wy in the sum, za′wy ∈ Z.

Let awy = za′wy. For w 6∈ Wy, define awy = 0.

Lemma 2.10.10. There exists a choice of attaching map σy : Si → X i for each y ∈ Y
such that the CW-complex X constructed via these attaching maps has δXi+1(ei+1

y ) =∑
w∈W awye

i
w for all y ∈ Y.

Proof. Let ρi be as defined in Section 2.7.1. For each w ∈ W , ρi and the charac-

teristic map Φw induce an identification of im(Φw) with an i-sphere Siw. We have

that (X i, B) = ∧w∈W(Siw, B). Choose a basepoint o ∈ Si and for each w ∈ Wy,

let σwy : (Si, o) → (Siw, B) be a based map of degree awy. [σwy] ∈ πi(X i, B), where

πi(X
i, B) denotes the ith homotopy group of X i with basepoint B.

Order the elements of Wy arbitrarily and call them w1, ...wl. Let σy : (Si, o) →
(X i, B) be a map in [σw1y] · [σw2y] · ... · [σwly] ∈ πi(X i, B). Then for any w ∈ W , qw ◦σy
is a map of degree awy. (See Section 2.7.1 for the definition of qw). By the definition

of δXi+1 given in Section 2.7.1, the lemma now follows.

We choose the attaching maps σy so that δXi+1 has the property specified in

Lemma 2.10.10.

2.10.4 Proof of Existence of Geometric Lifts of Interleavings,

Part 2: Defining γM and γN

Having defined the CW-complex X, we next define γM , γN : X → Rn.

Let X̃ = {B} qw∈W Di
w qy∈Y Di+1

y .

X is the quotient of X̃ under the equivalence relation generated by the attaching

maps of the cells of X. Let π : X̃ → X denote the quotient map. For a topological

space A, let C(A,Rn), denote the space of continuous functions from A to Rn. The

map ·̃ : C(X,Rn) → C(X̃,Rn) defined by f̃(x) = f(π(x)) is a bijective correspon-

dence between elements of C(X,Rn) and elements of C(X̃,Rn) which are constant on

equivalence classes.

In what follows, we’ll define γM and γN by specifying their lifts γ̃M , γ̃N .
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We’ll take each of our functions γ̃M , γ̃N to have the property that for each disk of

X̃, the restriction of the function to any radial line segment (i.e. a line segment from

the origin of the disk to the boundary of the disk) is linear. Given this assumption,

to specify each function it is enough to specify its values on the origins of each disk

of X̃. We now do this.

For any i ∈ N and any unit disk D in Ri, let O(D) denote the origin of D.

• γ̃M(B) = γ̃N(B) = GCD(W);

• For x ∈ W1 ∪ Y1, γ̃M(O(Dx)) = gr(x);

• For x ∈ W2 ∪ Y2, γ̃M(O(Dx)) = gr(x(−ε)).

• For x ∈ W1 ∪ Y1, γ̃N(O(Dx)) = gr(x(−ε));
• For x ∈ W2 ∪ Y2, γ̃N(O(Dx)) = gr(x).

Lemma 2.10.11. ‖γM − γN‖∞ = ε.

Proof. Assume that for a disk D of X̃, |γ̃M(a)− γ̃N(a)| ≤ ε for all a ∈ δD, and that

|γ̃M(O(D))− γ̃N(O(D))| = ε. We’ll show that then |γ̃M(a)− γ̃N(a)| ≤ ε for all x ∈ D.

Applying this result once gives that the lemma holds on the restriction of γM , γN to

X i. Applying the result a second time gives that the lemma holds on all of X.

To show that |γ̃M(a)− γ̃N(a)| ≤ ε, let x be a point in D and write a = tO(D) +

(1− t)b for some b ∈ δD, and 0 ≤ t ≤ 1. Since the restrictions of γ̃M and γ̃N to any

radial line segment from O(D) to δD are linear, we have that γ̃M(a) = tγ̃M(O(D)) +

(1 − t)γ̃M(b), and γ̃N(a) = tγ̃N(O(D)) + (1 − t)γ̃N(b). Thus |γ̃M(a) − γ̃N(a)| ≤
t|γ̃M(O(D))− γ̃N(O(D))|+ (1− t)|γ̃M(b)− γ̃N(b)| ≤ tε+ (1− t)ε = ε as needed.

2.10.5 Proof of Existence of Geometric Lifts of Interleav-

ings, Part 3: Showing that Hi ◦ F S(X, γM) ∼= M , Hi ◦
F S(X, γN) ∼= N

Now it remains to show that Hi ◦ F S(X, γM) ∼= M , Hi ◦ F S(X, γN) ∼= N . We’ll show

that Hi◦F S(X, γM) ∼= M ; the argument that Hi◦F S(X, γN) ∼= N is essentially same.
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For a ∈ Rn, let Fa denote the subcomplex of X consisting of only those cells e such

that γM(O(D(e))) ≤ a, where in this expression D(e) is the disk of X̃ whose interior

maps to e under π. {Fa}a∈Rn defines a cellular filtration, which we’ll denote F . Let

Xa = F S(X, γN)a. It’s easy to see that Fa is a deformation retract of Xa. Further,

the inclusions of each Fa ↪→ Xa define a morphism χ of filtrations; this morphism

of filtrations maps under Hi to a morphism Hi(χ) : Hi(F) → Hi(F
S(X, γM)) of

Bn-persistence modules whose maps Hi(χ)a : Hi(Fa) → Hi(Xa) are isomorphisms.

Any homomorphism of Bn-persistence modules whose action on each homogeneous

summand is a vector space isomorphism must be an isomorphism of Bn-persistence

modules, so Hi(χ) is an isomorphism. Thus, to prove that Hi ◦ F S(X, γM) ∼= M , it’s

enough to show that Hi(F) ∼= M .

By Remark 2.7.1, Hi(F) ∼= HCW
i (F).

Note that F has the property that each cell e of X has a unique minimal grade of

appearance grF(e) in F . Since each cell has a unique minimal grade of appearance,

for any j ∈ Z≥0, CCW
j (F) is free:

CCW
j (F) = ⊕ej⊂Xa j-cell Bn(−grF(ej)).

The usual identification of j-cells of X with a basis for CCW
j (X) extends in the obvious

way to an identification of the j-cells of X with a basis for CCW
j (F).

Moreover, the boundary homomorphism δXi+1 : CCW
i+1 (X) → CCW

i (X) and the

boundary homomorphism δFi+1 : CCW
i+1 (F)→ CCW

i (F) are related in a simple way:

Lemma 2.10.12. δFi+1(ei+1
y ) =

∑
w∈W awyϕCCWi (F)(grF(eiw), grF(ei+1

y ))(eiw).

Proof. Recall that we constructed X in such a way that for y ∈ Y , δXi+1(ei+1
y ) =∑

w∈W awye
i
w. The result follows in a routine way from this expression for δXi+1(ei+1

y )

and the definition of the boundary map δFi+1.

Now note that we have δFi = 0. If i 6= 1 this is follows from the fact that F has

no i−1 cells. If i = 1, it is still true because of the isomorphism between cellular and

singular persistent homology: we must have CCW
0 (F) ∼= Bn(−grF(B)) ∼= H0(F) ∼=

HCW
0 (F), so δ1 = 0.
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Therefore HCW
i (F) = CCW

i (F)/im(δFi+1).

The bijection which sends w ∈ W to the cell eiw induces an isomorphism Λ :

〈W1 ∪W2(−ε)〉 → CCW
i (F).

By the expression (2.3) for y in terms of a′wy given in Section 2.10.3, for y ∈
Y1 ∪ Y2(−ε),

Λ(y) =
∑
w∈W

a′wyϕCCWi (F)(grF(eiw), grF(ei+1
y ))(eiw).

Thus

Λ(〈Y1 ∪ Y2(−ε)〉)

= 〈{
∑
w∈W

a′wyϕCCWi (F)(grF(eiw), grF(ei+1
y ))(eiw)}y∈Y〉

= 〈{
∑
w∈W

awyϕCCWi (F)(grF(eiw), grF(ei+1
y ))(eiw)}y∈Y〉

= im(δFi+1)

by Lemma 2.10.12.

Λ therefore descends to an isomorphism between CCW
i (F)/im(δFi+1) and

〈W1,W2(−ε)〉/〈Y1,Y2(−ε)〉.

This shows that HCW
i (F) = M and thus completes the proof of Proposition 2.10.4

in the special case that GCD(W) ∈ Rn.

2.10.6 Proof of Existence of Geometric Lifts of Interleav-

ings, Part 4: Adapting the Proof to the Case That

GCD(W) 6∈ Rn

As noted above, the proof of Proposition 2.10.4 we have given for the special case

that GCD(W) ∈ Rn adapts readily to a proof for the general case. We now outline

this adaptation, leaving to the reader the straightforward details.

Let X ′ be the standard CW-complex structure on R. That is, we take each z ∈ Z
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to be a 0-cell in X ′, and for each z ∈ Z, we take the interval (z, z + 1) to be a 1-cell

in X ′.

To carry out the proof for the general case, we first present a modified version

of the construction of the CW-complex X given in Section 2.10.3. In this modified

version, we construct the CW-complex X so that

1. X ′ is a subcomplex of X.

2. X has an i-cell eiw for each w ∈ W .

3. X has an (i+ 1)-cell ei+1
y for each y ∈ Y .

4. As a set, X = X ′ q {eiw}w∈W q {ei+1
y }y∈Y .

For r = (r1, ..., rn) ∈ Rn, let brc = max{z ∈ Z|z ≤ rj for 1 ≤ j ≤ n}. For all

w ∈ W , let the attaching map of eiw be the constant map to the 0-cell bgr(w)c ⊂ X ′.

This defines X i. To complete the construction of X, it remains only to specify

the attaching map σy : Si → X i for each y ∈ Y .

Let awy be defined as in Section 2.10.3. An analogue of Lemma 2.10.10 holds in

our present setting and admits a similar proof. Invoking this result, for each y ∈ Y we

choose σy : Si → X i such that the CW-complex X constructed via these attaching

maps satisfies δXi+1(ei+1
y ) =

∑
w∈W awye

i
w for each y ∈ Y .

For r ∈ X ′ = R, we define γM(r) = γN(r) = r~1. As in the special case, we define

the values of γ̃M and γ̃N at the origin of the disks Di
w and Di+1

y as follows:

• For x ∈ W1 ∪ Y1, γ̃M(O(Dx)) = gr(x);

• For x ∈ W2 ∪ Y2, γ̃M(O(Dx)) = gr(x(−ε)).

• For x ∈ W1 ∪ Y1, γ̃N(O(Dx)) = gr(x(−ε));
• For x ∈ W2 ∪ Y2, γ̃N(O(Dx)) = gr(x).

As in the special case, we require the restriction of γ̃M and γ̃N to radial line

segments of the disks Di
w and Di+1

y to be linear. This completes the specification of

γM and γN .

The argument of Lemma 2.10.11 shows that ‖γM − γN‖∞ = ε, and the argument

of Section 2.10.5 adapts in a straightforward way to show that Hi ◦ F S(X, γM) ∼= M

and Hi ◦ F S(X, γN) ∼= N .
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2.11 Reducing the Evaluation of dI to Deciding

Solvability of Quadratics

Let MQ(k) denote the set of multivariate systems of quadratic equations over the

field k.

Fix n ∈ N and Let M and N be finitely presented Bn-persistence modules. Let

q be the total number of generators and relations in a minimal presentation for M

and in a minimal presentation for N . We show in this section that given minimal

presentations for M and N , for any ε > 0 deciding whether M and N are ε-interleaved

is equivalent to deciding the solvability of an instance ofMQ(k) with O(q2) unknowns

and O(q2) equations.

We also show that dI must be equal to one of the elements of an order O(q2)

subset of R≥0 defined in terms of the grades of generators and relations of M and N .

Thus, by searching through these values, we can compute dI by deciding whether M

and N are ε-interleaved for O(log q) values of ε. That is, we can compute dI(M,N)

by deciding the solvability of O(log q) instances of MQ(k).

If e.g. k is a field of prime order, a standard algorithm based on Gröbner bases

determines the solvability of systems in MQ(k). MQ(k) is NP-complete, however,

and this algorithm is for general instances of MQ(k) prohibitively inefficient. We

leave it to future work to investigate the complexity and tractability in practice of

deciding the solvability of systems in MQ(k) arising from our reduction.

In practice, we are interested in computing the interleaving distance between the

simplicial persistent homology modules of two simplicial n-filtrations. To apply the

reduction presented here to this problem, we need a way of computing a presenta-

tion of the multidimensional persistent homology module of a simplicial n-filtration;

strictly speaking, our reduction does not require that the presentations of our mod-

ules be minimal. However, to minimize the number and size of the quadratic systems

we need to consider in computing the interleaving distance via this reduction, we do

want the presentations we compute to be minimal.

We hope to address the problem of computing a minimal presentation of the

simplicial persistent homology module of a simplicial n-filtration in future work.
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2.11.1 Linear Algebraic Representations of Homogeneous El-

ements and Morphisms of Free Bn-persistence Mod-

ules

Representing Homogeneous Elements of Free Bn-persistence Modules as

Vectors

Given a finitely generated free Bn-persistence module F and an (ordered) basis B =

b1, ..., bl for F , we can represent a homogeneous element v ∈ F as a pair ([v,B], gr(v))

where [v,B] ∈ kl is a vector: if v =
∑

i:gr(v)≥gr(bi) aiϕF (gr(bi), gr(v))(bi), with each

ai ∈ k, then for 1 ≤ i ≤ l we define

[v,B]i =

ai if gr(v) ≥ gr(bi)

0 otherwise.

Remark 2.11.1. Note that for 1 ≤ i ≤ l, [bi, B] = ei, where ei denotes the ith

standard basis vector in kl.

If V ⊂ F is a homogeneous set, we define [V,B] = {[v,B]|v ∈ V }.

Representing Morphisms of Bn-persistence Modules as Matrices

Given finitely generated Bn-persistence modules F and F ′ and (ordered) bases B =

b1, ..., bl and B′ = b′1, ..., b
′
m for F and F ′ respectively, let Matk(B,B

′) denote the set

of m× l matrices A with entries in k such that Aij = 0 whenever gr(bj) < gr(b′i).

We can represent any f ∈ hom(F, F ′) as a matrix [f,B,B′] ∈Matk(B,B
′), where

if f(bj) =
∑

i:gr(bj)≥gr(b′i)
aijϕF ′(gr(b

′
i), gr(bj))(b

′
i), with each aij ∈ k, then

[f,B,B′]ij =

aij if gr(bj) ≥ gr(b′i)

0 otherwise.

Lemma 2.11.2. The map [·, B,B′] : hom(F, F ′)→Matk(B,B
′) is a bijection.

Proof. The proof is straightforward.
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Note also the following additional properties of these matrix representations of

morphisms between free Bn-modules:

Lemma 2.11.3. Let F, F ′, F ′′ be free Bn-persistence modules with ordered bases

B,B′, B′′.

(i) If f1, f2 ∈ hom(F, F ′) then [f1 + f2, B,B
′] = [f1, B,B

′] + [f2, B,B
′],

(ii) If f1 ∈ hom(F, F ′), f2 ∈ hom(F ′, F ′′) then [f2 ◦ f1, B,B
′′] =

[f2, B
′, B′′][f1, B,B

′],

(iii) For any ε ≥ 0, [S(F, ε), B,B(ε)] = I|B|, where for m ∈ N, Im denotes the m×m
identity matrix.

Proof. The proof of each of these results is straightforward.

For a graded set W and u ∈ Rn, let W u = {y ∈ W |gr(y) ≤ u}.

Lemma 2.11.4. If F1,F2 are free Bn-persistence modules with bases B1,B2 and W1 ⊂
F1,W2 ⊂ F2 are sets of homogeneous elements then a morphism f : F1 → F2 maps

〈W1〉 into 〈W2〉 iff [f,B1, B2][w,B1] ∈ span[W
gr(w)
2 , B2] for every w ∈ W1.

Proof. This is straightforward.

2.11.2 Deciding Whether Two Bn-persistence Modules are ε-

interleaved is Equivalent to Deciding the Solvability

of a System in MQ(k)

Let 〈GM |RM〉, 〈GN |RN〉 be presentations for finitely presented Bn-modules M and N ,

and assume the elements of each of the sets GM , GN , RM , RN are endowed with a total

order, which may be chosen arbitrarily. For a finite ordered set T and 1 ≤ i ≤ |T |,
let T,i denote the ith element of T .

We now define six matrices of variables, each with some of the variables con-

strained to be 0. Namely, we define

• A, a |GN | × |GM | matrix of variables with Aij = 0 if gr(GM,j) < gr(GN,i) + ε.

• B, a |GM | × |GN | matrix of variables with Bij = 0 if gr(GN,j) < gr(GM,i) + ε.
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• C, an |RN | × |RM | matrix of variables with Cij = 0 if gr(RM,j) < gr(RN,i) + ε.

• D, an |RM | × |RN | matrix of variables with Dij = 0 if gr(RN,j) < gr(RM,i) + ε.

• E, an |RM |×|GM | matrix of variables with Eij = 0 if gr(GM,j) < gr(RM,i)+2ε.

• F, an |RN | × |GN | matrix of variables with Fij = 0 if gr(GN,j) < gr(RN,i) + 2ε.

Let TM denote the |GM |× |RM | matrix whose ith column is [RM,i, GM ] and let TN

denote the |GN | × |RN | matrix whose ith column is [RN,i, GN ].

Theorem 2.11.5. M and N are ε-interleaved iff the multivariate system of quadratic

equations

ATM = TNC

BTN = TMD

BA− I|GM | = TME

AB− I|GN | = TNF

has a solution.

Proof. To prove the result, we proceed in three steps. First, we observe that for

any free covers (FM , ρM) and (FN , ρN) of M and N , the existence of ε-interleaving

morphisms between M and N is equivalent to the existence of a pair of morphisms

between FM and FN having certain properties. We then note that the existence of

such maps is equivalent to the existence of two matrices, one in Matk(GM , GN) and

the other in Matk(GN , GM), having certain properties. Finally, we observe that the

existence of such matrices is equivalent to the existence of a solution to the above

multivariate system of quadratics.

Let (FM , ρM) and (FN , ρN) be free covers of M and N .

Lemma 2.11.6. M and N are ε-interleaved iff there exist morphisms f̃ : FM → FN(ε)

and g̃ : FN → FM(ε) such that

1. f̃(ker(ρM)) ⊂ (ker(ρN))(ε),

2. g̃(ker(ρN)) ⊂ (ker(ρM))(ε),

3. g̃ ◦ f̃ − S(FM , 2ε) ⊂ (ker(ρM))(2ε),
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4. f̃ ◦ g̃ − S(FN , 2ε) ⊂ (ker(ρN))(2ε).

We’ll call morphisms f̃ , g̃ satisfying the above properties ε-interleaved lifts of

the free covers (FM , ρM) and (FN , ρN).

Proof. Let f : M → N(ε) and g : N → M(ε) be interleaving morphisms. Then by

Lemma 2.1.3 there exist lifts f̃ : FM → FN(ε) and g̃ : FN → FM(ε) of f and g. By

the definition of a lift, f̃ and g̃ satisfy properties 1 and 2 in the statement of the

lemma. g̃ ◦ f̃ is a lift of g ◦ f = S(M, 2ε). S(FM , 2ε) is also a lift of S(M, 2ε), so by

the uniqueness up to homotopy of lifts (Lemma 2.1.3), f̃ and g̃ satisfy property 3.

The same argument shows that f̃ and g̃ satisfy property 4.

The converse direction is straightforward; we omit the details.

Now let FM = 〈GM〉, FN = 〈GN〉, and let ρM : FM → FM/〈RM〉, ρN : FN →
FN/〈RN〉 be the quotient maps. Since the interleaving distance between two modules

is an isomorphism invariant of the modules, we may assume without loss of generality

that FM/〈RM〉 = M and FN/〈RN〉 = N . Then (FM , ρM) and (FN , ρN) are free covers

of M and N .

Lemma 2.11.7. M and N are ε-interleaved iff there exist matrices A ∈
Matk(GM , GN) and B ∈Matk(GN , GM) such that

1. A[w,GM ] ∈ span[R
gr(w)+ε
N , GN ] for all w ∈ RM ,

2. B[w,GN ] ∈ span[R
gr(w)+ε
M , GM ] for all w ∈ RN ,

3. (BA− I|GM |)(ei) ∈ span[R
gr(GM,i)+2ε
M , GM ] for 1 ≤ i ≤ |GM |,

4. (AB − I|GN |)(ei) ∈ span[R
gr(GN,i)+2ε
N , GN ] for 1 ≤ i ≤ |GN |.

Proof. By Lemma 2.11.6, M and N are ε-interleaved iff there exists ε-interleaved lifts

f̃ : FM → FN and g̃ : FN → FM of the free covers (FM , ρM) and (FN , ρN).

By Lemma 2.11.4, morphisms f̃ : FM → FN and g̃ : FN → FM , are ε-interleaved

lifts iff

1. [f̃ , GM , GN(ε)][w,GM ] ∈ span[RN(ε)gr(w), GN(ε)] for all w ∈ RM ,

2. [g̃, GN , GM(ε)][w,GN ] ∈ span[RM(ε)gw(w), GM(ε)] for all w ∈ RN ,
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3. [g̃ ◦ f̃ −S(FM , 2ε), GM , GM(2ε)][w,GM ] ∈ span[RM(2ε)gr(w), GM(2ε)] for all w ∈
GM ,

4. [f̃ ◦ g̃ − S(FN , 2ε), GN , GN(2ε)][w,GN ] ∈ span[RN(2ε)gr(w), GN(2ε)] for all w ∈
GN .

By Lemma 2.11.3,

[g̃ ◦ f̃ − S(FM , 2ε), GM , GM(2ε)] = [g̃, GN , GM(ε)][f̃ , GM , GN(ε)]− I|GM |

and

[f̃ ◦ g̃ − S(FN , 2ε), GN , GN(2ε)] = [f̃ , GM , GN(ε)][g̃, GN , GM(ε)]− I|GN |.

Also, by Remark 2.11.1, for 1 ≤ i ≤ |GM |, [GM,i, GM ] = ei, where ei is the ith

standard basis vector in k|GM |. Similarly, for 1 ≤ i ≤ |GN |, [GN,i, GN ] = ei, where ei

is the ith standard basis vector in k|GN |.

Finally, note that we have that

[RN(ε)gr(w), GN(ε)] = [R
gr(w)+ε
N , GN ] for all w ∈ RM ,

[RM(ε)gw(w), GM(ε)] = [R
gr(w)+ε
M , GM ] for all w ∈ RN ,

[RM(2ε)gr(w), GM(2ε)] = [R
gr(w)+2ε
M , GM ] for all w ∈ GM ,

[RN(2ε)gr(w), GN(2ε)] = [R
gr(w)+2ε
N , GN ] for all w ∈ GN .

Using all of these observations, Lemma 2.11.7 now follows from Lemma 2.11.2.

Finally, Theorem 2.11.5 follows from Lemma 2.11.7 by way of elementary matrix

algebra and, in particular, the basic fact that for l,m ∈ N and vectors v, v1, ..., vl in

km, v ∈ span(v1, ..., vl) iff there exists a vector w ∈ kl such that v = V w, where V is

the m× l matrix whose ith column is vi.

Remark 2.11.8. Note that the size of the system of quadratic equations in the

statement of Theorem 2.11.5 is O(q2), where q is the total number of generators and
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relations in the presentations for M and N . For any ε ≥ 0, the system of quadratics

has as few variables and equations as possible when the presentations for M and N

are minimal.

2.11.3 Determining Possible Values for dI(M,N)

Let M and N be finitely presented Bn-modules, and let U i
M , U i

N , UM , and UN be as

defined at the beginning of Section 2.5. Let

UM,N =
⋃
i

(
{|x− y|}x∈U iM ,y∈U iN ∪ {

1

2
|x− y|}x,y∈U iM ∪ {

1

2
|x− y|}x,y∈U iN

)
∪ {0,∞}.

Note that |UM,N | = O(q2), where as above q is the total number of generators and

relations in a minimal presentation for M and a minimal presentation for N .

Proposition 2.11.9. dI(M,N) ∈ UM,N .

Proof. Assume that for some ε′ > 0, ε′ 6∈ UM,N , M and N are ε′-interleaved. Let ε be

the largest element of UM,N such that ε′ > ε, and let δ = ε′ − ε.
We’ll check that M,N, ε and δ satisfy the hypotheses of Lemma 2.5.7. The lemma

then implies that M and N are ε-interleaved. The result follows.

By assumption, M and N are (ε + δ)-interleaved, so the first hypothesis of

Lemma 2.5.7 is satisfied. We’ll show that the second hypothesis is satisfied; the proof

that the third hypothesis is satisfied is the same as that for the second hypothesis.

If z ∈ UM then for no i, 1 ≤ i ≤ n, can an element of U i
N lie in (zi + ε, zi + ε+ δ];

if, to the contrary, for some i there were an element u ∈ U i
N ∩ (z + ε, z + ε+ δ], then

we would have |u − zi| ∈ UM,N , and ε < |u − zi| ≤ ε + δ, which contradicts the way

we chose ε and δ. Thus by Lemma 2.5.4, ϕN(z + ε, z + ε+ δ) is an isomorphism.

Similarly, for no i, 1 ≤ i ≤ n, can an element of U i
M lie in (zi + 2ε, zi + 2ε+ 2δ]; if,

to the contrary, for some i there were an element u ∈ U i
M ∩ (z + 2ε, z + 2ε+ 2δ], then

we would have 1
2
|u − zi| ∈ UM,N , and ε < 1

2
|u − zi| ≤ ε + δ, which again contradicts

the way we chose ε and δ. By Lemma 2.5.4, ϕM(z+2ε, z+2ε+2δ) is an isomorphism.

Thus the second hypothesis of Lemma 2.5.7 is satisfied by our M,N, ε,δ, as we

wanted to show.
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2.12 Discussion of Future Work on the Interleav-

ing Distance

Theorem 2.4.2, Corollary 2.5.2, and Corollary 2.10.2 show that the interleaving dis-

tance is a natural generalization of the bottleneck distance to the setting of multidi-

mensional persistence.

Insofar as the interleaving distance is in fact a good choice of distance on multidi-

mensional persistence modules, the question of how to compute it is interesting and,

it seems to us, potentially important from the standpoint of applications. The results

of Section 2.11 suggest a path towards the development of a theory of computation

of the interleaving distance. As noted in Section 2.11, to exploit the connection with

multivariate quadratics in the development of such a theory in practice, we need in

particular a way of computing minimal presentations of simplicial homology modules

of simplicial n-filtrations. We hope to address this problem in future work.

Corollary 2.10.2 demonstrates that the interleaving distance is optimal in the

sense of Example 2.9.6 when k = Q or Z/pZ. However, our discussion of optimality

of pseudometrics in Section 2.9 raises many more questions than it answers. Some of

the more interesting questions are:

1. Can we extend the result of Theorem 2.10.1 to arbitrary ground fields?

2. Can we extend the result of Theorem 2.10.1 to the case i = 0?

3. Can we prove that the interleaving distance is R-optimal for R any of the

relative structures on obj∗(Bn-mod) defined in Examples 2.9.9-2.9.12? The

case of Example 2.9.10 is of particular interest to us.

4. Can we obtain analogous results about the optimality of pseudometrics on more

general types of persistent homology modules? For instance, can we prove a

result analogous to Theorem 2.10.1 for levelset zigzag persistence [5]?

An interesting question related to question 4 above is whether there is a way of

algebraically reformulating the bottleneck distance for zigzag persistence modules as

an analogue of the interleaving distance in such way that the definition generalizes to

a larger classes of quiver representations [17].
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It seems quite likely that Theorem 2.4.1, the algebraic stability result of [8], gen-

eralizes to a theorem which quantifies the similarity between the persistence diagrams

of a pair of tame (J1, J2)-interleaved B1-persistence modules. It would be nice to have

a generalized algebraic stability theorem of this kind.

Finally, we mention again that it would be nice to have an extension of Theo-

rem 2.3.6 to a structure theorem for arbitrary tame B1-persistence modules, and an

extension of Corollary 2.5.2 to well behaved tame Bn-persistence modules.



Chapter 3

Strong and Weak Interleavings on

Multidimensional Filtrations

In this chapter we introduce and study weak and strong interleavings and interleaving

distances on multidimensional filtrations. See Section 1.4 for an overview of the

chapter.

3.1 u-filtrations and their Persistent Homology

In this section we define u-filtrations, a mild generalization of the n-filtrations intro-

duced in Section 2.7.2 which allows for the coordinates of points in the index set of

the spaces in a multidimensional filtration to have finite upper bounds. We also gen-

eralize the multidimensional persistent homology functor, introduced in Section 2.7.3,

to a category whose objects are u-filtrations. These generalizations will be useful in

formulating our inference results in Chapter 4.

3.1.1 u-Filtrations

Fix n ∈ N. For u ∈ Rn, we now define the category u-filt of u-filtrations.

Define a u-filtration X to be a collection of topological spaces {Xa}a<u, together

with a collection of continuous functions {φX(a, b) : Xa → Xb}a≤b<u such that if

100
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a ≤ b ≤ c < u then φX(b, c) ◦ φX(a, b) = φX(a, c). We call the functions {φX(a, b) :

Xa → Xb}a≤b<u transition maps.

Note that an ~∞n-filtration is the same as an n-filtration, as defined in Section 2.7.2.

To avoid ambiguity, we stipulate that in this thesis, whenever n ∈ N, by n-filtration

we will always mean an ~∞n-filtration, and not a u-filtration with u = n.

Given two u-filtrations X and Y , we define a morphism f from X to Y to be a

collection of continuous functions {fa}a<u : Xa → Ya such that for all a ≤ b < u,

fb ◦ φX(a, b) = φY (a, b) ◦ fa. This definition of morphism gives the u-filtrations the

structure of a category. Let u-filt denote this category.

For all u′ ≤ u, we can define the restriction functor Ru′ : u-filt → u′-filt in the

obvious way. (The dependence of Ru′ on u is implicit in our notation.) We’ll use

these functors heavily in what follows.

3.1.2 The Multidimensional Persistent Homology Functor on

u-filtrations

Here we define the multidimensional persistent homology functor Hi : u-filt → Bn-

mod for any u ∈ R̂n, extending the definition introduced in Section 2.7.3 for u =∞n.

As in Section 2.7.3, for a topological space X and i ∈ Z≥0, let Ci(X) denote the

ith singular chain module of X, with coefficients in k; for X, Y topological spaces and

f : X → Y a continuous map, let f# : Ci(X)→ Ci(Y ) denote the map induced by f .

For X a u-filtration, define Ci(X), the ith singular chain module of X, to be the

Bn-persistence module for which

• Ci(X)a = Ci(Xa) for all a < u,

• Ci(X)a = 0 for all a 6< u,

• ϕCi(X)(a, b) = φ#
X(a, b) for b < u,

• ϕCi(X)(a, b) = 0 for b 6< u.

Note that for any i ∈ Z≥0, the collection of boundary maps {δi : Ci(Xa) →
Ci−1(Xa)}a<u induces a boundary map δi : Ci(X)→ Ci−1(X). These boundary maps

give {Ci(X)}i∈Z≥0
the structure of a chain complex. We define the Hi(X), the ith
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persistent homology module of X, to be the ith homology module of this complex.

For X and Y two u-filtrations, a morphism f ∈ hom(X, Y ) induces in the obvious

way a morphism Hi(f) : Hi(X)→ Hi(Y ), making Hi : u-filt→ Bn-mod a functor.

Compatibility of Multidimensional Persistent Homology With Restriction

Functors

For all u ∈ R̂n, we define the restriction functor Ru : Bn-mod→ Bn-mod by taking

Ru(M) of a Bn-persistence module M to be such that

• Ru(M)a = Ma for all a < u,

• Ru(M)a = 0 for all a 6< u,

• ϕRu(M)(a, b) = ϕM(a, b) for b < u,

• ϕRu(M)(a, b) = 0 for b 6< u.

We define the action of Ru on morphisms in the obvious way.

Remark 3.1.1. Note that if M is a Bn-persistence module having a finite presenta-

tion 〈G|R〉 [32], then for any u ∈ R̂n, Ru(M) has a presentation consisting of at most

|G| generators and |R|+ n|G| relations.

Lemma 3.1.2 (Compatibility of persistent homology with restriction functors). For

any u′ ≤ u ∈ Rn,

Hi ◦Ru′ = Ru′ ◦Hi.

Proof. The proof is easy; we omit it.

3.2 Strong Interleavings and the Strong Interleav-

ing Distance on u-Filtrations

Overview

In this section, we introduce strong interleavings and the strong interleaving distance

on u-filtrations, and develop their basic theory; in Section 3.3 we will introduce and
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study our homotopy theoretic variants of these, weak interleavings and the weak

interleaving distance.

As we noted in the introduction, our inference results in Chapter 4 are formulated

using weak interleavings and the weak interleaving distance. In this sense, weak in-

terleavings and the weak interleaving distance are of more interest to us than strong

interleavings and the strong interleaving distance. Nevertheless, because the program

of understanding weak interleavings is related to the simpler program of understand-

ing strong interleavings, we choose to devote some effort here to writing down some

basic results about strong interleavings and the strong interleaving distance.

To begin this section, we define shift functors and transition morphisms for cat-

egories of u-filtrations. Using these, we define strong (J1, J2)-interleavings of u-

filtrations and the strong interleaving distance; the definitions are similar to those

we introduced for Bn-persistence modules in Chapter 2. Whereas we first introduced

ε-interleavings of Bn-persistence modules in Section 2.1.5 and then presented the

more general definition of strong (J1, J2)-interleavings of Bn-persistence modules in

Section 2.6.1, we proceed here directly with the general definition of strong interleav-

ings of u-filtrations.

We present a characterization result for strongly (J1, J2)-interleaved pairs of u-

filtrations, for an important class of u-filtrations. We also present two optimality

results for the strong interleaving distance. These are analogues of our optimality

result Theorem 2.10.1 for the interleaving distance on Bn-persistence modules.

3.2.1 Definitions of Strong Interleavings and the Strong In-

terleaving Distance

Shift Functors

Fix u ∈ R̂n and let J : Rn → Rn be an order-preserving map. We define the J-

shift functor (·)(J) : u-filt→ J−1(u)-filt in a way analogous to the way we did for

Bn-persistence modules:

1. Action of (·)(J) on objects: For X ∈ obj(u-filt), we define X(J) by taking
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X(J)a = XJ(a) for all a < J−1(u). We take the maps {φX(J)(a, b)}a≤b<J−1(u) to

be induced by those of X in the obvious way.

2. Action of (·)(J) on morphisms: For X, Y ∈ obj(u-filt) and f ∈ hom(X, Y ), we

define f(J) : X(J)→ Y (J) to be the morphism for which f(J)a = fJ(a) for all

a < J−1(u).

Note that the dependence of the definition of the functor (·)(J) on the choice of

u is implicit in our notation.

As in the case of Bn-persistence modules, for ε ∈ R we let (·)(ε) denote the functor

(·)(Jε).

Transition Morphisms

For a u-filtration X and J : Rn → Rn increasing, let S(X, J) : RJ−1(u)(X) → X(J),

the J-transition morphism, be the morphism whose restriction to Xa is the map

φX(a, J(a)) for all a < J−1(u).

For ε ∈ R≥0, let S(X, ε) = S(X, Jε).

The expected analogue of Lemma 2.6.1 holds, with the same proof.

Lemma 3.2.1.

(i) For any f : X → Y ∈ hom(u-filt) and any J : Rn → Rn increasing,

S(Y, J) ◦ f = f(J) ◦ S(X, J).

(ii) For any J, J ′ increasing and u-filtration X,

S(X, J ′)(J) ◦ S(X, J) = S(X, J ′ ◦ J).

(iii) For any J, J ′ increasing and u-filtration X,

S(X, J ′)(J) = S(X(J), J−1 ◦ J ′ ◦ J).
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Strong (J1, J2)-Interleavings of u-filtrations

For J1, J2 : Rn → Rn increasing, we say that a pair (X, Y ) of u-filtrations is strongly

(J1, J2)-interleaved (or, more colloquially, that X and Y are strongly (J1, J2)-

interleaved) if there exist morphisms f : RJ−1
1 (u)(X) → Y (J1) and g : RJ−1

2 (u)(Y ) →
X(J2) such that

g(J1) ◦RJ−1
1 ◦J

−1
2 (u)(f) = S(X, J2 ◦ J1) and

f(J2) ◦RJ−1
2 ◦J

−1
1 (u)(g) = S(Y, J1 ◦ J2);

we say (f, g) is a pair of strong (J1, J2)-interleaving morphisms for (X, Y ).

Remark 3.2.2. When discussing (J1, J2)-interleavings and (J1, J2)-interleaving mor-

phisms of u-filtrations, we will follow terminological conventions analogous to those

introduced for (J1, J2)-interleaved Bn-persistence modules in Remark 2.6.2.

If for ε ≥ 0, a pair of u-filtrations is strongly (Jε, Jε)-interleaved, we say that they

are strongly ε-interleaved.

Since the definition of strong (J1, J2)-interleavings is a bit complex, the reader

may find it illuminating to see the definition in the special case of ε-interleavings: For

ε ∈ [0,∞), two u-filtrations X and Y are strongly ε-interleaved if and only if there

exist morphisms f : Ru−ε(X)→ Y (ε) and g : Ru−ε(Y )→ X(ε) such that

g(ε) ◦Ru−2ε(f) = S(X, 2ε) and

f(ε) ◦Ru−2ε(g) = S(Y, 2ε).

When u = ~∞n the definition of ε-interleavings simplifies yet further to give a

definition closely analogous to that of ε-interleavings of Bn-persistence modules: For

ε ∈ [0,∞), two n-filtrations X and Y are strongly ε-interleaved if and only if there

exist morphisms f : X → Y (ε) and g : Y → X(ε) such that

g(ε) ◦ f = S(X, 2ε) and

f(ε) ◦ g = S(Y, 2ε).
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The Strong Interleaving Distance

We define dSI : obj∗(u-filt) × obj∗(u-filt) → [0,∞], the strong interleaving dis-

tance, by taking

dSI(X, Y ) = inf{ε ∈ R≥0|X and Y are strongly ε-interleaved}.

3.2.2 Stability Results for the Strong Interleaving distance

dSI satisfies stability properties with respect to the functors F S, F SO, F SČe analogous

to the stability properties Theorems 2.8.1-2.8.3 satisfied by the interleaving distance

on Bn-persistence modules with respect to the functors Hi ◦ F S, Hi ◦ F SO, and Hi ◦
F SČe. The formulation and proofs of these results are easy modifications of those of

Section 2.8.

3.2.3 First Examples of (J1, J2)-interleaved Filtrations

Example 3.2.3.

(i) For any δ > 0 and (X, Y, d, f) ∈ obj(CSO), F SO(X, Y, d, f), F SO−Op(X, Y, d, f)

are strongly δ-interleaved.

(ii) For any δ > 0 and (X, Y, d, f) ∈ obj(CSČe), F SČe(X, Y, d, f), F SCe−Op(X, Y, d, f)

are strongly δ-interleaved.

Example 3.2.4. For n ∈ N, let idn : Rn → Rn denote the identity map.

Let J1 : R→ R be given by

J1(y) =

2y if y ≥ 0,

y if y < 0.

If (Y, d) is any metric space, X ⊂ Y , FR(X, d) is the usual Rips filtration on (X, d),

and F Če(X, Y, d) is the usual Čechfiltration on (X, Y, d), then the inclusions (1.1) in

Section 1.5.3 immediately imply that FR(X, d), F Če(X, Y, d) are (J1, id1)-interleaved.
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To generalize this example, for n ∈ N, let Jn+1 : Rn+1 → Rn+1 be given by

Jn+1(y1, .., yy+1) =

(y1, .., yn, 2yy+1) if yn+1 ≥ 0,

(y1, .., yy+1) if y < 0.

Then it again follows immediately from the inclusions (1.1) in Section 1.5.3 that for

any (X, Y, d, γ) ∈ obj(CSCe), F SR(X, d, γ), F SČe(X, Y, d, γ) are (Jn+1, idn+1)-interleaved.

3.2.4 A Characterization of Strongly Interleaved Pairs of

Modules of Nested Type

We would like to have a transparent characterization of strongly (J1, J2)-interleaved

pairs of u-filtrations, as Theorem 2.6.4 gives us for (J1, J2)-interleaved pairs of Bn-

persistence modules.

It is not clear how obtain such a characterization in full generality; the obstacle

to adapting the approach of Theorem 2.6.4 is that, at least naively, in the category of

u-filt there is no reasonably behaved notion of free covers, as we have in the category

Bn-mod.

However, we present a characterization result, Theorem 3.2.7, for strongly (J1, J2)-

interleaved pairs u-filtrations, provided we restrict attention to the u-filtrations in a

full subcategory u-nest of u-filt which is large enough to contain all of the examples of

u-filtrations that we have occasion to consider in this thesis. In the special case that

u = ~∞n, this characterization is very simple and transparent (Corollary 3.2.9). For

general u, the characterization is not as transparent, but it does imply a transparent

necessary condition for the existence of a strong (J1, J2)-interleaving between two

u-filtrations of nested type, Corollary 3.2.8, similar to our necessary and sufficient

condition for n-filtrations.

u-filtrations of Nested Type

We define u-nest to be the full subcategory of u-filt whose objects are filtrations X

such that for all a ≤ b < u, the transition map φX(a, b) is injective. We refer to the
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objects of u-filt as u-filtrations of nested type.1

As we will now see, we can regard u-filtrations of nested type as an n-parameter

family of nested subspaces of an ambient topological space; our characterization of

strongly (J1, J2)-interleaved u-filtrations follows from the adoption of this viewpoint.

Colimits of u-filtrations

Let Top denote the category of topological spaces.

Define the diagonal functor ∆ : Top → u-filt to act on objects W in Top by

taking ∆(W )a = W for all a < u and φ∆(W )(a, b) = idW for all a ≤ b < u; we define

the action of ∆ on hom(Top) in the obvious way.

It is well known that the usual category of topological spaces has all small colimits

[33, 21]. In particular, we can define the colimit of a u-filtration X. This is a topological

space colim(X) together with a morphism sX : X → ∆(colim(X)) satisfying the

following universal property: If W is a topological space and s′ : X → ∆(W ) is a

morphism, then there is a unique map t : colim(X)→ W such that s′ = ∆(t) ◦ sX .

For a u-filtration X colim(X) is, as a set, the quotient of qa<uXa by the relation

∼ generated by taking x ∼ φX(a, b)(x), for all a ≤ b < u and x ∈ Xa. We define

sX so that for each a < u, sXa takes each element of Xa to its equivalence class in

colim(X). We take colim(X) to be endowed with the final topology. This means that

a set U ∈ colim(X) is open if and only if (sXa )−1(U) is open for all a < u.

We can, in the obvious way, also define define an action of colim(·) on hom(u-filt)

to obtain a functor colim : u-filt→ Top.

Lemma 3.2.5. If X is a u-filtration of nested type then sXa is injective for all a < u.

Proof. The proof is straightforward; we leave it to the reader.

Colimit Representations of u-Filtrations of Nested Type

Let Sub(u) = {y|y < u}. Let Au denote the set of subsets S of Sub(u) such that if

y ∈ S and y ≤ y′ < u then y′ ∈ S.

1Note that in the literature on persistent homology, filtrations of nested type are typically the
only kinds of filtrations defined and studied; there is not a huge loss of generality in restricting
attention to these.
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Let CLu denote the category whose objects are pairs (W, f), where W is a topo-

logical space and f : W → Au is a function. For (W1, f1), (W2, f2) ∈ obj(CLu),

let hom((W1, f1), (W2, f2)) denote continuous maps g : W1 → W2 such that for all

y ∈ W1, f1(y) ⊂ f2(g(y)).

We’ll define a functor A : u-filt→ CLu such that A restricts to an equivalence

between u-nest and its image under A.

First, for X a u-filtration, we define a function ROAX : colim(X)→ Au by

ROAX(x) = {y|y < u and x lies in the image of sXy }.

We say that ROAX(x) is the region of appearance of x in X. We define A by

taking A(X) = (colim(X), ROAX) for any u-filtration X and A(f) = colim(f) for

all f ∈ hom(u-filt).

We can define a functor filt : CLu → u-nest by taking filt((W, f))a = {y ∈ W |a ∈
f(y)} and endowing filt((W, f))a with the subspace topology. The action of filt on

hom(CLu) is defined in the obvious way.

Lemma 3.2.6. The restriction of A to u-nest is equivalence of categories between

u-nest and the full subcategory CL′u of CLu whose set of objects is the image of

obj(u-nest) under A; the restriction of filt to CL′u is an inverse of the restriction of

A to u-nest.

Proof. This is straightforward; we leave the details to the reader.

Characterization of Interleaved pairs of Filtrations of Nested Type

Now we are ready to offer our characterization of (J1, J2)-interleaved pairs of u-

filtrations of nested type. Roughly, it says that u-filtrations X, Y are (J1, J2)-

interleaved if and only if there is a pair of inverse homeomorphisms between “large”

subspaces of colim(X) and colim(Y ) which is compatible with the data of ROAX

and ROAY in an appropriate sense, and additionally these homeomorphisms admit

certain extensions.

Note that if u ∈ R̂n, u′ ≤ u, and X is a u-filtration, then colim(Ru′(X)) can be

identified with a subspace of colim(X).
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Theorem 3.2.7. For J1, J2 increasing, a pair (X, Y ) of u-filtrations of nested type

is (J1, J2)-interleaved if and only if there are maps

f : colim(RJ−1
1 (u)(X))→ colim(Y ) and

g : colim(RJ−1
2 (u)(Y ))→ colim(X)

such that

1. f and g restrict to inverse homeomorphisms between

colim(RJ−1
1 ◦J

−1
2 (u)(X)) ∪ g(colim(RJ−1

2 ◦J
−1
1 (u)(Y ))) and

colim(RJ−1
2 ◦J

−1
1 (u)(Y )) ∪ f(colim(RJ−1

1 ◦J
−1
2 (u)(X))),

2. J1(ROAX(y)) ⊂ ROAY (f(y)) for all y ∈ colim(RJ−1
1 (u)(X)), and

3. J2(ROAY (y)) ⊂ ROAX(g(y)) for all y ∈ colim(RJ−1
2 (u)(Y )).

Proof. The proof is a straightforward application of Lemma 3.2.6; we leave the un-

winding of definitions to the reader.

The following immediate consequence of the last theorem gives our transpar-

ent necessary condition for the existence of a (J1, J2)-interleaving between two u-

filtrations.

Corollary 3.2.8. If a pair (X, Y ) of u-filtrations of nested type is (J1, J2)-interleaved

then there are sets DX , DY with

colim(RJ−1
1 ◦J

−1
2 (u)(X)) ⊂ DX ⊂ colim(X),

colim(RJ−1
2 ◦J

−1
1 (u)(Y )) ⊂ DY ⊂ colim(Y ),

and a homeomorphism f : DX → DY such that

1. J1(ROAX(y)) ⊂ ROAY (f(y)) for all y ∈ DX , and

2. J2(ROAY (y)) ⊂ ROAX(f−1(y)) for all y ∈ DY .

When u = ~∞n, Theorem 3.2.7 reduces to the following:
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Corollary 3.2.9. A pair (X, Y ) of n-filtrations of nested type is (J1, J2)-interleaved

if and only if there is a homeomorphism f : colim(X)→ colim(Y ), such that

1. J1(ROAX(y)) ⊂ ROAY (f(y)) for all y ∈ colim(X), and

2. J2(ROAY (y)) ⊂ ROAX(f−1(y)) for all y ∈ colim(Y ).

3.2.5 Optimality Properties of the Strong Interleaving Dis-

tance

Using Corollary 3.2.9, we now observe that dSI is optimal is a sense analogous to that

in which we have proven dI to be optimal in Section 2.10. We also show that dI is

R-optimal, for R a relative structure defined in terms of dSI .

The results here, while perhaps not especially surprising in light of the optimality

results of Section 2.10, are of significance in that they show that optimality theory

for dSI behaves as one would hope, given those results.

The reader may find it helpful to now review the notation and terminology of

Section 2.9.2.

Theorem 3.2.10. Let R4 = (obj(CS), dS, F S), so that R4 is a relative structure on

obj∗(n-filt). Then dSI is R4-optimal.

Proof. We have observed above that dSI is R4-stable. By Lemma 2.9.2, to prove

the result it’s enough to show that if two n-filtrations X, Y ∈ im(F S) are strongly

ε-interleaved then there exists a topological space T and functions γX , γY : T → Rn

such that F S(T, γX) ∼= X, F S(T, γY ) ∼= Y , and supy∈T ‖f1(y) − f2(y)‖∞ ≤ ε. This

follows from Corollary 3.2.9.

Theorem 3.2.11. For i ∈ N, let R5,i = (obj∗(n-filt), dSI , Hi(X)), so that R4 is a

relative structure on obj∗(Bn-mod). If k = Q or k = Z/pZ for some prime p then dI

is R5,i-optimal.

Proof. Cleary dI is R5,i-stable. The result then follows from Theorem 2.10.1 and

Lemma 2.9.4.
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For the reader trying to understand the relationship between the various opti-

mality results presented here, it may be helpful to note that by Lemma 2.9.2, Theo-

rems 3.2.10 and 3.2.11 together imply Theorem 2.10.1.

3.3 Weak Interleavings and the Weak Interelaving

Distance on u-Filtrations

Overview

We now turn to the definition and basic theory of weak interelavings and the weak

interleaving distance.

To begin, we prepare for the definition of weak interleavings by reviewing local-

ization of categories and defining the localization of the category of u-filtrations with

respect to levelwise homotopy equivalences. We observe that the shift and restriction

functors descend to the localized category. Using the descents of these functors, we

define weak (J1, J2)-interleavings and the weak interleaving distance.

After proving some basic facts about weak interleavings, we show that persistent

homology is stable with respect to the weak (J1, J2)-interleavings on u-filtrations and

(J1, J2)-interleavings on Bn-persistence modules. This result will be very useful to

us for passing from our results about u-filtrations to corresponding results about

persistent homology modules.

We finish the section by posing some questions about the weak interleaving dis-

tance which we hope to answer in future work.

3.3.1 Localization of Categories

Definition

Let C be a category and let W ⊂ hom(C) be a class of morphisms. A localization of

C with respect to W is a category C[W−1] together with a functor Γ : C → C[W−1]

such that

(i) Γ(f) is an isomorphism for each f ∈ W .
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(ii) [universality] Whenever G : C → D is a functor carrying elements of W to

isomorphisms, there exists a unique functor G′ : C[W−1]→ D such that G′◦Γ =

G.

Condition (ii) guarantees that if Γ : C → D and Γ′ : C → D′ are two localizations of

C with respect to W , then there is a unique isomorphism of categories Θ : D → D′

such that θ ◦ Γ = Γ′. We will often denote C[W−1] as Ho(C), suppressing the

dependence of this category on W .

For an arbitrary category C and arbitrary W ⊂ hom(C), we can construct the

localization of C with respect to W—see [19, Section 42.7]. However, a localization

of a locally small category needn’t itself be locally small, and we may need to take

some care in setting up set-theoretic foundations in order to rigorously interpret a

general localization as a set-theoretic object [19, 40]. The localizations we consider

in this thesis, though, will always be locally small.

From the form of the construction of the localization of a category given in [19,

Section 42.7], we obtain the following lemma.

Lemma 3.3.1. For any category C, W ⊂ hom(C) there is a localization Γ : C →
C[W−1] such that obj(C[W−1]) = obj(C) and hom(C[W−1]) is generated under com-

position by the images under Γ of elements of hom(C) together with the inverses of

the images under Γ of elements of W .

The Connection Between Localization and Closed Model Categories

Let W ⊂ hom(Top) denote the homotopy equivalences. Then it can be shown that

Top[W−1] is isomorphic to the usual homotopy category of topological spaces (i.e.

the category having the same objects as Top and homotopy classes of continuous

maps as morphisms) [21].

In fact, there is a very general setting in which a localization can be constructed

in a homotopy theoretic fashion—this is the setting of closed model categories, as

introduced by the 1967 monograph of Daniel Quillen [37]. A closed model category

is a category together with certain extra structure that allows for the axiomatic

development of homotopy theory in that category. In more detail, a closed model
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category C is a category together with three distinguished classes of morphisms called

weak equivalences, fibrations, and cofibrations. The category is required to have the

property that all finite limits and colimits exist [21], and the weak equivalences,

fibrations, and cofibrations are required to satisfy certain conditions. Let W denote

the weak equivalences of C. Quillen showed that the closed model structure on C

allows for a homotopy theoretic construction of C[W−1] generalizing the construction

of the usual homotopy category of topological spaces. From this construction, it

follows in particular that C[W−1] is locally small. For more details, see the expository

articles [21, 19].

We won’t appeal to the theory of closed model categories in this thesis, and indeed

it is not clear that the particular localization we consider in our definition of weak

interleavings admits an interpretation in terms of closed model categories. However,

a very closely related notion of localization does admit such an interpretation; see

Remark 3.3.2 below. In any case, it may be useful for the reader to keep in mind the

connection between localization and homotopy theory provided by Quillen’s theory,

even if we do not take advantage of it here; it is quite plausible that closed model

categories and axiomatic homotopy theory will be useful in the further study of weak

interleavings and topological inference on the filtration level.

Localization of u-filt with Respect to Levelwise Homotopy Equivalences

For any u ∈ R̂n, let W ⊂ hom(u-filt) denote the levelwise homotopy equivalences, the

morphisms f for which fa is a homotopy equivalence for all a < u. In what follows,

we’ll work only with localizations of u-filt with respect to W . Thus from now on,

Ho(u-filt) will always denote u-filt[W−1], and Γ : u-filt → Ho(u-filt) will denote the

localization functor; the dependence of Γ on u will be implicit.

The category u-filt[W−1] is locally small, by a result in [20]. Thanks to Mike

Shulman for explaining this to me.

Remark 3.3.2. I am not aware of any way of endowing u-filt with the structure

of a closed model category having W the class of weak equivalences. However, let

W ′ ⊂ hom(u-filt) denote the levelwise weak homotopy equivalences, the morphisms f
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for which fa is a weak homotopy equivalence [30] for all a < u. It is known that u-filt

can be given the structure of a closed model category having W ′ as the class of weak

equivalences; see the discussion at the end of [21, Section 10] and the references given

there.

3.3.2 Definitions of Weak Interleavings and the Weak Inter-

leaving Distance

Shift Functors and Restriction Functors in the Homotopy Category

By the universal property of the localization of a category, for any u ∈ R̂n and

J : Rn → Rn order-preserving, the functor (·)(J) : u-filt → J−1(u)-filt descends to a

functor from Ho(u-filt) to Ho(J−1(u)-filt). By abuse of notation, we also write this

functor as (·)(J). Note that

Γ ◦ (·)(J) = (·)(J) ◦ Γ.

Similarly, by the universal property of the localization of a category, for any u′ ≤
u ∈ R̂n the functor Ru′ : u-filt → u′-filt descends to a functor from Ho(u-filt) to

Ho(u′-filt). By abuse of notation, we also write this functor as Ru′ . Note that

Γ ◦Ru′ = Ru′ ◦ Γ.

Commutativity in the Localized Category of Transition Morphisms with

Arbitrary Morphisms

The following is an analogue of Lemma 3.2.1(i) in the category Ho(u-filt). It is the

key step in our proofs of Lemmas 3.3.7 and 3.3.8 below.

Lemma 3.3.3. For any u ∈ R̂n, u-filtrations X and Y , f ∈ homHo(u−filt)(X, Y ), and

J increasing, we have that

f(J) ◦ Γ(S(X, J)) = Γ(S(Y, J)) ◦ f.
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Proof. By Lemma 3.3.1 we can write f = f1 ◦ ...◦fl where for each i, either fi = Γ(f̃)

for some f̃ ∈ hom(C) or fi = Γ(f̃)−1 for some f̃ ∈ W .

Note that f(J) = f1(J) ◦ ... ◦ fl(J). Thus to prove the result it’s enough to check

that for f̃ ∈ W ,

Γ(f̃)−1(J) ◦ S(X, J) = S(Y, J) ◦ Γ(f̃)−1.

From the equation

f̃(J) ◦ S(X, J) = S(Y, J) ◦ f̃ ,

we have that

Γ(f̃(J)) ◦ Γ(S(X, J)) = Γ(S(Y, J)) ◦ Γ(f̃).

Composing both sides of the equation on the left by Γ(f̃)−1(J) and on the right by

Γ(f̃)−1, we obtain that

Γ(f̃)−1(J) ◦ Γ(S(X, J)) = Γ(S(Y, J)) ◦ Γ(f̃)−1

as desired.

Weak (J1, J2)-interleavings of u-filtrations

For J1, J2 : Rn → Rn increasing, we say that an ordered pair of u-filtrations (X, Y ) is

weakly (J1, J2)-interleaved if there exist morphisms f : Γ(RJ−1
1 (u)(X))→ Γ(Y (J1))

and g : Γ(RJ−1
2 (u)(Y ))→ Γ(X(J2)) such that

g(J1) ◦RJ−1
1 ◦J

−1
2 (u)(f) = Γ(S(X, J2 ◦ J1))

f(J2) ◦RJ−1
2 ◦J

−1
1 (u)(g) = Γ(S(Y, J1 ◦ J2));

we say (f, g) is a pair of weak (J1, J2)-interleaving morphisms for (X, Y ).

For ε ≥ 0, we define weak ε-interleavings in the expected way.

Remark 3.3.4. To build on Remark 3.3.2, we could just as well work with the

category u-filt[W ′−1] rather than the category u-filt[W−1] in formulating the definition

of weak (J1, J2)-interleavings and in developing the theory of the remainder of this



CHAPTER 3. INTERLEAVINGS ON MULTI-D FILTRATIONS 117

thesis. By the universal property of localization, a weak (J1, J2)-interleaving, as

defined in terms of u-filt[W−1], induces one defined in terms of u-filt[W ′−1]; in this

sense, the definition of weak (J1, J2)-interleaving given in terms of the category u-

filt[W−1] is the stronger one. For this reason, I have have a slight preference in

formulating the theory here in terms of u-filt[W−1].

The Weak Interleaving Distance on u-filtrations

We define dWI : obj∗(u-filt)×obj∗(u-filt)→ [0,∞], the weak interleaving distance,

by taking

dWI(X, Y ) = inf{ε ∈ R≥0|X and Y are weakly ε-interleaved}.

It follows from Lemma 3.3.8(ii) below that dWI is a pseudometric on obj∗(u-filt).

It is easily checked that this pseudometric is not a metric.

3.3.3 Stability Results for the Weak Interleaving Distance

dWI satisfies stability properties with respect to the functors F S, F SO, F SR, and F SČe

analogous to the stability properties Theorems 2.8.1-2.8.4 satisfied by the interleaving

distance on Bn-persistence modules with respect to the functors Hi ◦ F S, Hi ◦ F SO,

Hi ◦ F SR, and Hi ◦ F SČe. The formulation and proofs of these results are easy

modifications of those of Theorems 2.8.1-2.8.4; analogues of Theorems 2.8.1-2.8.3

follow via Lemma 3.3.5 below from the analogues of these theorems for dSI mentioned

in Section 3.2.1. The analogue of Theorem 2.8.4 for dWI is proved in essentially the

same way as Theorem 2.8.4, but requires Proposition 4.2.1(i), a lift of the persistent

nerve theorem of [13] to the level of filtrations.

3.3.4 Basic Results about Weak Interleavings

Lemma 3.3.5. If u-filtrations X, Y are strongly (J1, J2)-interleaved then X, Y are

weakly (J1, J2)-interleaved.
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Proof. It’s easy to check that if f, g are strong (J1, J2)-interleaving morphisms for

X, Y then Γ(f),Γ(g) are weak (J1, J2)-interleaving morphisms for X, Y . We leave

the details to the reader.

Lemma 3.3.6. For any u′ ≤ u ∈ R̂n and (J1, J2) ∈ Rn, if u-filtrations X, Y are

strongly (weakly) (J1, J2)-interleaved, then Ru′(X), Ru′(Y ) are also strongly (weakly)

(J1, J2)-interleaved.

Proof. It’s easy to check that if f, g are strong (weak) (J1, J2)-interleaving morphisms

for X, Y then Ru′(f), Ru′(g) are strong (weak) (J1, J2)-interleavings for Ru′(X),

Ru′(Y ).

To prove our consistency results, we will require the following lemma.

Lemma 3.3.7. For any u′ ≤ u ∈ R̂n and ε ≥ 0, if X, Y are u-filtrations such that

Ru′(X), Ru′(Y ) are strongly (weakly) ε-interleaved then X, Y are strongly (weakly)

(Jε+u−u′ , Jε+u−u′)-interleaved.

Proof. Let f : Ru′−ε(X) → Ru′(Y )(ε) and g : Ru′−ε(Y ) → Ru′(X)(ε) be strong ε-

interleaving homomorphisms for Ru′(X), Ru′(Y ). Note that Ru′(X)(ε) = Ru′−ε(X(ε))

and Ru′(Y )(ε) = Ru′−ε(Y (ε)). Thus the homomorphisms S(Y (ε), Ju−u′) ◦ f and

S(X(ε), Ju−u′) ◦ g are well defined, and it’s easy to check that these are strong

(Jε+u−u′ , Jε+u−u′)-interleaving homomorphisms for X, Y .

Invoking Lemma 3.3.3, the same argument also gives the result for weak inter-

leavings.

The next lemma will prove very useful to us. For u = (u1, ..., un), u′ = (u′1, ..., u
′
n) ∈

R̂n, let gcd(u, u′) = (min(u1, u
′
1), ...,min(un, u

′
n)).

Lemma 3.3.8 (Triangle Inequality for (J1, J2)-interleavings).

(i) Suppose we are given J1, J2, J3, J4 : Rn → Rn each increasing, u ∈
R̂n, u1, u2 ≤ u, and u-filtrations X1, X2, X3 such that Ru1(X1), Ru1(X2)

are strongly (weakly) (J1, J2)-interleaved and Ru2(X2), Ru2(X3) are strongly

(weakly) (J3, J4)-interleaved. Then Rgcd(u1,u2)(X1), Rgcd(u1,u2)(X3) are strongly

(weakly) (J3 ◦ J1, J2 ◦ J4)-interleaved.
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(ii) In particular, if we have ε1, ε2 ≥ 0 such that X1, X2 are strongly (weakly) ε1-

interleaved and X2, X3 are strongly (weakly) ε2-interleaved, then X1, X3 are

strongly (weakly) (ε1 + ε2)-interleaved.

Proof. By Lemma 3.3.6, it suffices to assume that u1 = u2 = u. It’s easy to check

that if f1, g1 are strong (J1, J2)-interleaving homomorphisms for X1, X2 and f2, g2 are

strong (J3, J4)-interleaving homomorphisms for X2, X3 then f2(J1)◦f1, g1(J4)◦g2 are

strong (J3 ◦ J1, J2 ◦ J4)-interleaving homomorphisms for X1, X3. This gives (i) for

strong interleavings. The case of weak interleavings follows via the same argument,

using Lemma 3.3.3.

We noted in Remark 2.1.1 that if ε < ε′ ∈ R and two Bn-persistence modules are ε-

interleaved, then they are ε′-interleaved. Here is the analogous statement for (J1, J2)-

interleavings, on the level of filtrations. (The same proof gives the corresponding

result for (J1, J2)-interleaved Bn-persistence modules.)

For J, J ′ : Rn → Rn bijections, say that J ≤ J ′ if J(a) ≤ J ′(a) for all a ∈ Rn.

Lemma 3.3.9. Let J1, J
′
1, J2, J

′
2 be increasing and J1 ≤ J ′1, J2 ≤ J ′2. If u-filtrations

X, Y are strongly (weakly) (J1, J2)-interleaved then X, Y are strongly (weakly) (J ′1, J
′
2)-

interleaved.

Proof. Since J1, and J ′1 are increasing, there is an increasing map J ′′1 : Rn → Rn such

that J ′1 = J ′′1 ◦ J1. Similarly, there is an increasing map J ′′2 : Rn → Rn such that

J ′2 = J ′′2 ◦ J2. Let f, g be strong (J1, J2)-interleaving morphisms for X, Y . We show

that S(Y, J ′′1 )(J1) ◦ f, S(X, J ′′2 )(J2) ◦ g are strong (J ′1, J
′
2)-interleaving momorphisms
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for X, Y . By Lemma 3.2.1,

S(X, J ′′2 )(J2)(J ′1) ◦ g(J ′1) ◦ S(Y, J ′′1 )(J1) ◦ f

= S(X, J ′′2 )(J2 ◦ J ′1) ◦ g(J ′1) ◦ S(Y (J1), J−1
1 ◦ J ′1) ◦ f

= S(X, J ′′2 )(J2 ◦ J ′1) ◦ g(J ′1) ◦ f(J−1
1 ◦ J ′1) ◦ S(X, J−1

1 ◦ J ′1)

= S(X, J ′′2 )(J2 ◦ J ′1) ◦ S(X, J2 ◦ J1)(J−1
1 ◦ J ′1) ◦ S(X, J−1

1 ◦ J ′1)

= S(X, J ′′2 )(J2 ◦ J ′1) ◦ S(X, J2 ◦ J1 ◦ J−1
1 ◦ J ′1)

= S(X, J ′′2 ◦ J2 ◦ J ′1)

= S(X, J ′2 ◦ J ′1).

The symmetric argument shows that

S(Y, J ′′1 )(J1)(J ′2) ◦ f(J ′2) ◦ S(X, J ′′2 )(J2) ◦ g = S(Y, J ′1 ◦ J ′2).

This gives the result for strong interleavings; the result follows for weak interleavings

by the same argument, using Lemma 3.3.3.

3.3.5 Stability of Persistent Homology with Respect to In-

terleavings

In this section, we prove that persistent homology is stable with respect to weak

interleavings on u-filtrations and interleavings on Bn-persistence modules.

Theorem 3.3.10. For any i ∈ Z≥0, u ∈ R̂n, and J1, J2 : Rn → Rn increasing,

if u-filtrations X, Y are weakly (J1, J2)-interleaved then Hi(X), Hi(Y ) are (J1, J2)-

interleaved.

Corollary 3.3.11. For any i ∈ Z≥0, u ∈ R̂n, and u-filtrations X and Y ,

dI(Hi(X), Hi(Y )) ≤ dWI(X, Y ).

Proof of Theorem 3.3.10. We begin with a couple of lemmas.
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Lemma 3.3.12. For any i ∈ Z≥0 and J : Rn → Rn order-preserving,

Hi ◦ (·)(J) = (·)(J) ◦Hi.

Proof. We leave the straightforward proof to the reader.

Note that if f ∈ hom(Bn-mod) is such that fa is an isomorphism for all a ∈ Rn,

then f is an isomorphism. Thus, since the singular homology functor maps homotopy

equivalences to isomorphisms, Hi takes elements of W to isomorphisms in Bn-mod.

Then by the universal property of localizations, for any u ∈ R̂n, there’s a functor

H̃i : Ho(u-filt)→ Bn-mod such that

Hi = H̃i ◦ Γ.

Lemma 3.3.13. For any i ∈ Z≥0 and J increasing,

H̃i ◦ (·)(J) = (·)(J) ◦ H̃i.

Proof. Hi ◦ (·)(J) takes elements of W to isomorphisms in Bn-mod. Thus by the

universal property of localization there exists a unique functor G : Ho(u-filt)→ Bn-

mod such that G ◦ Γ = Hi ◦ (·)(J). We have that

H̃i ◦ (·)(J) ◦ Γ = H̃i ◦ Γ ◦ (·)(J) = Hi ◦ (·)(J) = (·)(J) ◦Hi = (·)(J) ◦ H̃i ◦ Γ.

Thus by the uniqueness property of G, H̃i ◦ (·)(J) = G = (·)(J) ◦ H̃i.

Now let f : Γ(RJ−1
1 (u)(X)) → Γ(Y (J1)) and g : Γ(RJ−1

2 (u)(Y )) → Γ(X(J2)) be

weak (J1, J2)-interleaving morphisms for X, Y .

The homomorphisms

H̃i(f) : Hi(RJ−1
1 (u)(X))→ Hi(Y )(J1),

H̃i(g) : Hi(RJ−1
2 (u)(Y ))→ Hi(X)(J2)

extend to homomorphisms fE : Hi(X)→ Hi(Y )(J1) and gE : Hi(Y )→ Hi(X)(J2) by
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taking fE to be identically zero on all homogenous summands Hi(X)a of Hi(X) such

that a 6< J−1
1 (u)), and taking gE to be identically zero on all homogenous summands

Hi(Y )a of Hi(Y ) such that a 6< J−1
2 (u).

We’ll now show that fE, gE are (J1, J2)-interleaving homomorphisms for Hi(X),

Hi(Y ). We have that

H̃i(g)(J1) ◦ H̃i(RJ−1
1 ◦J

−1
2 (u)(f)) = H̃i(g(J1)) ◦ H̃i(RJ−1

1 ◦J
−1
2 (u)(f))

= H̃i(g(J1) ◦RJ−1
1 ◦J

−1
2 (u)(f)) = H̃i ◦ Γ(S(X, J2 ◦ J1))

= Hi(S(X, J2 ◦ J1)) = S(Hi(X), J2 ◦ J1).

This implies that for a < J−1
1 ◦ J−1

2 (u),

(gE(J1) ◦ fE)a = (H̃i(g)(J1) ◦ H̃i(RJ−1
1 ◦J

−1
2 (u)(f)))a = S(Hi(X), J2 ◦ J1)a.

On the other hand, for a 6< J−1
1 ◦ J−1

2 (u),

(gE(J1) ◦ fE)a = 0 = S(Hi(X), J2 ◦ J1)a.

Thus, gE(J1) ◦ fE = S(Hi(X), J2 ◦ J1). The symmetric argument shows that fE(J2) ◦
gE = S(Hi(Y ), J1 ◦ J2). This shows that fE, gE are (J1, J2)-interleaving homomor-

phisms for Hi(X), Hi(Y ), as desired.

Example 3.3.14. By Example 3.2.4 and Theorem 3.3.10, we have that for any i ≥ 0

and (X, Y, d, γ) ∈ obj(CSCe), Hi◦FR(X, d), Hi◦F Če(X, Y, d) are (J1, id1)-interleaved,

and Hi ◦ F SR(X, d, γ), Hi ◦ F SČe(X, Y, d, γ) are (Jn+1, idn+1)-interleaved.

3.3.6 On Our Choice of Definition of Weak Interleavings

To define weak interleavings, we have considered the localization of u-filt with re-

spect to levelwise homotopy equivalences. An alternative approach, and one worth

mentioning because it is very simple, is to define weak interleavings by passing to a

category of filtrations over the homotopy category of topological spaces. We take a

moment here to explain this alternative approach to defining weak interleavings and
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the weak interleaving distance and to discuss the relationship between the distance

thus obtained and dWI .

For u ∈ R̂n, let u-filt∗ be the category whose objects are collections of topological

spaces {Xa}a<u together with morphisms {φX(a, b) ∈ homHo(Top)(Xa, Xb)}a≤b<u such

that if a ≤ b ≤ c < u then φX(b, c) ◦ φX(a, b) = φX(a, c).

Given two objects X and Y of u-filt∗, we define a morphism f ∈ homu-filt∗(X, Y ) to

be a collection of morphisms {fa ∈ homHo(Top)(Xa, Ya)}a<u such that for all a ≤ b < u,

fb ◦ φX(a, b) = φY (a, b) ◦ fa.
The usual functor Γ′ : Top → Ho(Top) induces a functor Γ′ : u-filt→ u-filt∗.

This functor takes levelwise weak equivalences to isomorphisms. Further, we can

define shift and restriction functors on the categories u-filt∗ just as we have for the

categories u-filt. Thus for any u ∈ R̂n we have all the structure we need to formulate

an alternative definition of weak (J1, J2)-interleavings of u-filtrations via the functor

Γ′ analogous to the one we have formulated via the localization functor Γ. We’ll call

the weak interleavings thus defined A-weak interleavings. The definition of A-weak

ε-interleavings induces a definition of an A-weak interleaving distance on u-filtrations

which we denote dAWI .

By the universal property of localization, we have a functor Θ : Ho(u-filt)→ u-filt∗

such that Γ′ = Θ ◦ Γ. It follows that if two filtrations are weakly (J1, J2)-interleaved,

then they are A-weakly (J1, J2)-interleaved, and in particular, dAWI ≤ dWI . This

implies that all of our inference results in this thesis which are formulated in terms of

weak interleavings are still true if instead formulated in terms of A-weak interleavings.

We would like the distance with which we develop our inferential theory to be

as sensitive as possible, subject to the conditions that it has reasonable stability

properties (such as those mentioned in Section 3.3.2) and that the distance between

filtrations X and Y is 0 whenever there exists a levelwise homotopy equivalence

f : X → Y . Thus the fact that dAWI ≤ dWI offers some justification for our working

with dWI rather than dAWI .

I do not yet know if it is in fact true that dAWI = dWI , though I suspect that this

equality does not hold in general. More generally, we can ask the following: Under

what circumstances does the existence of an A-weak (J1, J2)-interleaving between
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two u-filtrations imply the existence of a weak (J1, J2)-interleaving between the two

filtrations? This question is closely related to the problem of understanding the

relationship between a homotopy category of diagrams of topological spaces of a

given shape and the category of diagrams of the same shape over the homotopy

category of topological spaces. It is well known that these two categories are usually

not equivalent [21, Remark 10.3], and in fact there are results in the homotopy theory

literature which quantify the difference between the two categories [15]. We leave it

to the future to study how those results bear on the question of when dAWI = dWI .

3.3.7 Weak Interleavings and the Optimality of dWI: Open

Questions

To close this section, we present some questions regarding theoretical properties of

weak interleavings and the interleaving distance. Answers to these questions would,

it seems, offer us a satisfactory understanding of weak interleavings and the weak

interleaving distance.

1. Can we use homotopy colimits to give an analogue for weak interleavings of our

characterization theorem 3.2.7 for strong interleavings?

2. If u-filtrations X, Y are weakly (J1, J2)-interleaved, do there exist strongly

(J1, J2)-interleaved u-filtrations X ′, Y ′ with dWI(X,X
′) = dWI(Y, Y

′) = 0?

3. Is dWI optimal in the sense that d ≤ dWI for any pseudometric d on obj(u-filt)

such that d ≤ dSI and d(X, Y ) = 0 whenever X, Y are weakly 0-interleaved? A

positive answer to this question would provide strong justification for the use

of weak interleavings in the development of the theory of topological inference.

Note that a positive answer to the last question would imply a positive answer

to this question.

4. A question already raised in Section 3.3.6: Under what circumstances does the

existence of an A-weak (J1, J2)-interleaving for a pair of u-filtrations imply the

existence of a weak (J1, J2)-interleaving for the pair?



Chapter 4

Approximation and Inference

Results for Multidimensional

Filtrations

In this chapter we apply the interleaving machinery introduced and studied in the

previous two chapters to formulate and prove topological inference results for multi-

dimensional filtrations. See Section 1.5 for an overview of the chapter.

4.1 Inference Preliminaries

4.1.1 Basic Notation

Thoughtout this chapter, fix p ∈ [1,∞] and m ∈ N. Let dp denote the Lp metric on

Rm.

For (X, d) a metric space and X ′ ⊂ X, we’ll often abuse notation slightly and let

d also denote the restriction of d to X ′.

If (X, d) is a metric space, x ∈ X, and r ∈ R≥0, we let Bd(x, r) denote the closed

metric ball of radius r centered at x. That is, Bd(x, r) = {x′ ∈ X|d(x, x′) ≤ r}.
Let (X, d) be a metric space, and S ⊂ X. We say a set L ⊂ X is an ε-sample of

S (w.r.t d) if for any s ∈ S, there exists some l ∈ L such that d(s, l) ≤ ε.

125
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If (X, dX) and (Y, dY ) are metric spaces, a function γ : X → Y is said to be

c-Lipschitz if for all x1, x2 ∈ X, dY (γ(x1), γ(x2)) ≤ c · dX(x1, x2). In this thesis, the

codomain (Y, dY ) of a Lipschitz function will always be (Rn, d∞) for some n. When

we want to make explicit the metric d on the domain of a Lipchitz function f , we will

refer to f as a c-Lipchitz function (w.r.t. d).

4.1.2 Riemannian Manifolds and Probability Density Func-

tions

In this thesis Riemannian manifolds will always be understood to be manifolds with

boundary.

Let M be a Riemannian manifold of dimension l. The Riemannian structure on M

induces a metric dM on M , the geodesic metric. In turn, the geodesic metric induces

a measure Hl
M on (M,BM), the l-dimensional Hausdorff measure [3]. (Here BM is

the Borel σ-algebra of M). From now on we’ll write Hl
M as HM ; l will be implicit in

this notation.

When M = Rm, endowed with the standard Euclidean metric, HM is the usual

Lebesgue measure on Rn.

For y ∈ M and r > 0, we say a ball B ≡ BdM (y, r) is strongly convex if for every

pair of points y′, y′′ in the closure of B, there exists a unique shortest path in M

between y′ and y′′, and the interior of this path is included in B. Define ρ(M), the

strong convexity radius of M , by

ρ(M) = inf
y∈M

sup
r>0
{r|BdM (y, r) is strongly convex}

As noted in [11], ρ(M) is positive when M is compact. When M is a Euclidean space,

ρ(M) =∞.

A density function on M is a BM -measurable function γ : M → [0,∞) such that∫
M
γ dHM = 1. A density function γ defines a probability measure Pγ on M with the

property that for any A ∈ BM , Pγ(A) =
∫
A
γ dHM .
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4.1.3 Density Estimators

As we explained in the introduction, the superlevelset-Rips filtrations we consider in

the formation of our consistency results are filtered by density estimators. We review

here some basic concepts and results related to density estimation that we will need

in what follows. Some of the material here also appeared in Section 1.2.2; we include

that material again here for readability’s sake.

Let M be a Riemannian manifold and let D(M) be the set of density functions

on M . We’ll define a density estimator E on M to be a sequence of functions {Ez :

M z → D(M)}z∈N such that for any y ∈ M , the function Ez,y : M z → R defined by

Ez,y(T ) = (Ez(T ))(y) is measurable. By slight abuse of terminology, we’ll also refer

to the individual functions Ez as density estimators.

We formulate our results in terms of pairs (E, γ) of density estimators and density

functions satisfying one of two properties. Let Tz be a random sample of Pγ of size

z. The first property is:

A1: Ez(Tz) converges uniformly in probability to γ.

In stating the second property we’ll assume that (E, γ) is defined on Rm for some

m ∈ N. The property is:

A2: Ez(Tz) converges uniformly in probability to the convolution of γ with some

kernel function K.

A1 is known to hold for kernel density estimators on Euclidean spaces, for a wide

class of kernels and density functions γ, provided the kernel width tends to 0 at an

appropriate rate as z → ∞ [28]. Further, Pelletier has shown that the notion of

kernel density estimators extends to Riemannian manifolds [36], and a recent article

by Henry and Rodriguez [31] shows that under mild assumptions on (E, γ) and a

similar condition on the rate at which the bandwidth of the kernel tends to 0 as

z →∞, assumption A1 holds for the estimators defined by Pelletier. In fact, each of

the cited results gives a.s. uniform convergence of Ez(Tz) to γ.

A2 also is known to hold for kernel density estimators E with kernel K on Eu-

clidean spaces, for a wide class of kernels K and density functions γ, when the band-

width of the estimator Ez is held fixed as z varies [38, Proposition 9].
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Let γ : M → R be a density function, γ̃ : M → R be another density function,

q ∈ (0, 1], C > 0, z ∈ N, and Ez : M z → D(M) be a density estimator. We’ll say

that Ez is a (q, C)-density estimator of γ̃ w.r.t. Pγ if for Tz a finite i.i.d. random

sample of Pγ of size z,

P (sup
l∈Tz
|Ez(Tz)(l)− γ̃(l)| > C) ≤ q.

When Ez is a (q, C)-density estimator of γ w.r.t. Pγ, we’ll say simply that Ez is

a (q, C)-density estimator of γ.

The two cases of interest to us will be where, in the above definition, γ̃ = γ and,

in the special case that M = Rm, γ̃ = γ ∗K for a kernel K.

Lemma 4.1.1.

(i) If M is a Riemannian manifold, γ : M → R is a density function, and E is

density estimator on M such that (E, γ) satisfies A1, then for any C > 0 and

q ∈ (0, 1] there exists z0 such that for all z ≥ z0, Ez is a (q, C)-density estimator

of γ.

(ii) If γ : Rm → R is a density function and E is density estimator on Rm such that

(E, γ) satisfies A2 for some kernel K, then for any C ∈ (0,∞) and q ∈ (0, 1]

there exists z0 such that for all z ≥ z0, Ez is a (q, C)-density estimator of γ ∗K
w.r.t. Pγ.

Proof. This is immediate from the definitions.

4.2 Deterministic Approximation of Multidimen-

sional Filtrations via Discrete Filtrations

Overview

In this section, we prove two theorems concerning the deterministic topological ap-

proximation of sublevelset-offset filtrations via discrete filtrations. The first theorem
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concerns approximation by sublevelset-Čech filtrations; the second theorem concerns

approximation by sublevelset-Rips filtrations.

These results are multidimensional analogues of [12, Theorem 3.1] and its exten-

sion [11, Theorem 4.5] to good samplings of sublevelsets of γ. They hold on the level

of filtrations rather than merely on the level of persistent homology modules. By

Theorem 3.3.10, we also obtain analogues of these results on the level of persistent

homology modules.

In addition to our results on the topological approximation of sublevelset-offset

filtrations, we present results on the deterministic approximation of multidimensional

sublevelset filtrations and their persistent homology via Čech and Rips complexes

with fixed scale parameter.

4.2.1 Weak 0-interleavings of Open Sublevelset-offset and

Open Sublevelset-Čech Filtrations

To prove our approximation results, we need the following proposition, which

offers some motivation for our definition of weak interleavings of u-filtrations; see

Remark 4.2.2 below.

Proposition 4.2.1.

(i) For any X ⊂ Rm and γ : X → Rn, R ~∞n+1 ◦ F SO−Op(X,Rm, dp, γ) and R ~∞n+1 ◦
F SCe−Op(X,Rm, dp, γ) are weakly 0-interleaved.

(ii) Let M be a Riemannian manifold. For any X ⊂ M and γ : X → Rn,

R( ~∞n,ρ(M)) ◦ F SO−Op(X,M, dM , γ) and R( ~∞n,ρ(M)) ◦ F SCe−Op(X,M, dM , γ) are

weakly 0-interleaved.

Note that in (ii), if ρ(M) = 0 then all spaces of each of the two filtrations are the

empty set, so in this case (ii) holds vacuously.

Proof. We give the proof for (ii); the proof of (i) is the same.

The same argument that Chazal and Oudot use to prove the persistent nerve

lemma [13] gives us that there exists an ( ~∞n, ρ(M))-filtration Z (a “Mayer-Vietoris



CHAPTER 4. APPROXIMATION AND INFERENCE RESULTS 130

blowup filtration,” to borrow the terminology of [48]) such that there are level-

wise homotopy equivalences f : Z → R( ~∞n,ρ(M)) ◦ F SO−Op(X,M, dM , γ), and g :

R( ~∞n,ρ(M))◦Z → F SCe−Op(X,M, dM , γ) in hom(( ~∞n, ρ(M))-filt). Thus Γ◦R( ~∞n,ρ(M))◦
F SO−Op(X,M, dM , γ) and Γ ◦ R( ~∞n,ρ(M)) ◦ F SCe−Op(X,M, dM , γ) are isomorphic in

Ho(( ~∞n, ρ(M))-filt), and hence are weakly 0-interleaved.

Remark 4.2.2. Note that for M,X, and γ defined as in the statement of Proposi-

tion 4.2.1(ii), it needn’t be true that R( ~∞n,ρ(M))◦F SO−Op(X,M, dM , γ) and R( ~∞n,ρ(M))◦
F SCe−Op(X,M, dM , γ) are strongly 0-interleaved. For example, Let M = [0, 1] (en-

dowed with the Euclidean metric), X = {0, 1}, and define γ : {0, 1} → R by

γ(0) = γ(1) = 0. Then ρ(M) = ∞. It’s straightforward to check that there can

be no pair of strong 0-interleaving homomorphisms between F SO−Op(X,M, dM , γ)

and F SCe−Op(X,M, dM , γ).

Nevertheless, it is natural to think of the filtrations R( ~∞n,ρ(M)) ◦
F SO−Op(X,M, dM , γ) and R( ~∞n,ρ(M)) ◦ F SCe−Op(X,M, dM , γ) as being “topo-

logically equivalent.” This motivates a choice of pseudometric on u-filtrations with

respect to which u-filtrations which are isomorphic in Ho(u-filt) are distance 0 from

one another.

4.2.2 Topological Approximation of Sublevelset-Offset Fil-

trations via Sublevelset-Čech Filtrations

We state our first approximation result, Theorem 4.2.3, in two parts. It is easily seen

that each is a special case of a more general result, but the fully general form of the

result is not particularly interesting and it seems more expedient to just state the two

special cases of interest separately.

Theorem 4.2.3(i) says that for any W ⊂ Rm, Lipchitz function γ : W → Rn,

T ⊂ W and γ̃ : T → Rn, F SČe(T,Rm, dp, γ̃) gives a good topological approximation

to F SO(W,Rm, dp, γ) when the Hausdorff distance between T and W is small and

supl∈T ‖γ̃(l)− γ(l)‖ is also small.

In fact, Theorem 4.2.3(i) says more generally that for any u ∈ R̂n, Ru,∞ ◦
F SČe(T,Rm, dp, γ̃) gives a good topological approximation to Ru,∞◦F SO(W,Rm, dp, γ)
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when the Hausdorff distance between T ∩ γu and γu is small and supl∈T ‖γ̃(l)− γ(l)‖
is also small.

Theorem 4.2.3(ii) gives a variant of this result for Riemannian manifolds.

Theorem 4.2.3.

(i) Let W be a subset of Rm, let γ : W → Rn be a c-Lipschitz function (w.r.t

dp) for some c > 0, let c′ = max(1, c), and let u ∈ R̂n. Let T ⊂ W be a ε
c′

-

sample of γu (w.r.t dp). Let C ∈ R≥0 and γ̃ : T → Rn be a function such that

‖γ̃(l)− γ(l)‖∞ ≤ C for all l ∈ T . Then

dWI(R(u,∞) ◦ F SO(W,Rm, dp, γ), R(u,∞) ◦ F SČe(T,Rm, dp, γ̃)) ≤ ε+ C.

(ii) Let M be a Riemannian manifold and let γ : M → Rn be a c-Lipschitz function

(w.r.t dM) for some c > 0, let c′ = max(1, c), and let u ∈ R̂n. Let T ⊂ M be

a ε
c′

-sample of γu (w.r.t dM). Let C ∈ R≥0 and γ̃ : T → Rn be a function such

that ‖γ̃(l)− γ(l)‖∞ ≤ C for all l ∈ T . Then,

dWI(R(u,ρ(M)) ◦ F SO(M,dM , γ), R(u,ρ(M)) ◦ F SČe(T,M, dM , γ̃)) ≤ ε+ C.

Proof. We present the proof of (i); the proof of (ii) is essentially the same as the proof

of (i), using Proposition 4.2.1(ii) in place of Proposition 4.2.1(i).

We begin with a lemma. Let γT : T → Rn denote the restriction of γ to T .

Lemma 4.2.4. R(u,∞)◦F SO(W,Rm, dp, γ) and R(u,∞)◦F SO(T,Rm, dp, γT ) are strongly

ε-interleaved.

Proof. For any (a, b) ∈ Rn×R, let γa,b denote F SO(W,Rm, dp, γ)(a,b) and let λa,b denote

F SO(T,Rm, dp, γT )(a,b). Consider some (a, b) ≤ (u,∞) and p ∈ γa,b. There is a point

p′ ∈ γa with dp(p, p′) ≤ b. Since T is an ε
c′

-sample of γa, there is a point p′′ ∈ T with

dp(p′′, p′) ≤ ε
c′

. Thus dp(p′′, p) ≤ ε
c′

+ b. Since γ is c-Lipschitz, γ(p′′) ≤ a+ cε
c′
≤ a+ ε.

Hence p ∈ λa+ε,b+ ε
c′

. Therefore γa,b ⊂ λa+ε,b+ ε
c′
⊂ λa+ε,b+ε. The inclusions thus define

a morphism f : R(u,∞) ◦ F SO(W,Rm, dp, γ)→ R(u,∞) ◦ F SO(T,Rm, dp, γT )(ε).
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Now let p ∈ λa,b. Then there is a point p′ ∈ T with dp(p, p′) ≤ b and

γ(p′) ≤ a. Thus p ∈ γa,b. Therefore λa,b ⊂ γa,b ⊂ γa+ε,b+ε. The inclusions thus

define a morphism g : R(u,∞) ◦ F SO(T,Rm, dp, γT ) → R(u,∞) ◦ F SO(W,Rm, dp, γ)(ε).

Clearly, f and g are a pair of strong interleaving ε-interleaving homomorphisms, so

R(u,∞) ◦F SO(W,Rm, dp, γ) and R(u,∞) ◦F SO(T,Rm, dp, γT ) are strongly ε-interleaved,

as desired.

We now observe that we have a chain of interleaving relationships between filtra-

tions:

• By Lemma 4.2.4, R(u,∞) ◦F SO(W,Rm, dp, γ) and R(u,∞) ◦F SO(T,Rm, dp, γT ) are

strongly ε-interleaved.

• By Example 3.2.3(i), F SO(T,Rm, dp, γT ) and F SO−Op(T,Rm, dp, γT ) are strongly

δ-interleaved for all δ > 0.

• By Proposition 4.2.1(i), F SO−Op(T,Rm, dp, γT ) and F SCe−Op(T,Rm, dp, γT ) are

weakly 0-interleaved.

• By Example 3.2.3(ii), F SCe−Op(T,Rm, dp, γT ) and F SČe(T,Rm, dp, γT ) are also

strongly δ-interleaved.

• F SČe(T,Rm, dp, γT ) and F SČe(T,Rm, dp, γ̃) are strongly C-interleaved.

Applying Lemmas 3.3.5 and 3.3.8 several times gives that R(u,∞) ◦
F SO(W,Rm, dp, γ) and R(u,∞) ◦F SČe(T,Rm, dp, γ̃) are (ε+C + 2δ)-interleaved. Since

this holds for all δ > 0,

dWI(R(u,∞) ◦ F SO(W,Rm, dp, γ), R(u,∞) ◦ F SR(T,Rm, dp, γ̃)) ≤ ε+ C,

as we wanted to show.

Remark 4.2.5. Theorem 4.2.3 can be strengthened somewhat using the language of

(J1, J2)-interleavings, but the strengthening is not especially interesting, so we choose

to frame the result using the simpler language of ε-interleavings.

Corollary 4.2.6. For any i ≥ 0,
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(i) Under the same assumptions as in Theorem 4.2.3(i),

dI(Hi ◦R(u,∞) ◦ F SO(W,Rm, dp, γ), Hi ◦R(u,∞) ◦ F SČe(T,Rm, dp, γ̃)) ≤ ε+ C.

(ii) Under the same assumptions as in Theorem 4.2.3(ii),

dI(Hi ◦R(u,ρ(M)) ◦ F SO(M,dM , γ), Hi ◦R(u,ρ(M)) ◦ F SČe(T,M, dM , γ̃)) ≤ ε+ C.

Proof. This follows immediately from Theorem 3.3.10.

4.2.3 Topological Approximation of Sublevelset-Offset Fil-

trations via Sublevelset-Rips Filtrations

Our second main result of this section, Theorem 4.2.7, is an analogue of Theorem 4.2.3

for sublevelset-Rips filtrations rather than sublevelset-Čech filtrations. We formulate

the result using weak (J1, J2)-interleavings.

For (J1, J2) increasing, we’ll say that two u-filtrations X and Y are strongly

(weakly) almost (J1, J2)-interleaved if for all ε > 0, X and Y are strongly (weakly)

(Jε ◦ J1, Jε ◦ J2)-interleaved. Similarly, we’ll say that two Bn-persistence modules M

and N are almost (J1, J2)-interleaved if for all ε > 0, M and N are (Jε ◦J1, Jε ◦J2)-

interleaved.

For the statement theorem, recall that in Example 3.2.4 we defined the map

Jn+1 : Rn+1 → Rn+1 by Jn+1((a, b)) = (a, 2b) for a ∈ Rn, b ∈ R.

Theorem 4.2.7.

(i) Under the same assumptions as in Theorem 4.2.3(i), R(u,∞) ◦F SO(W,Rm, dp, γ)

and R(u,∞) ◦ F SR(T, dp, γ̃) are almost weakly (Jε+C ,Jn+1 ◦ Jε+C)-interleaved.

(ii) Under the same assumptions as in Theorem 4.2.3(ii), R(u,ρ(M)) ◦F SO(M,dM , γ)

and R(u,ρ(M)) ◦F SR(T, dM , γ̃) are almost weakly (Jε+C ,Jn+1 ◦ Jε+C)-interleaved.

Proof. We present the proof of (i); the proof of (ii) is essentially the same as the proof

of (i), using Theorem 4.2.3(ii) in place of Theorem 4.2.3(i).
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By Theorem 4.2.3(i), for any δ > 0 R(u,∞) ◦ F SO(W,Rm, dp, γ) and R(u,∞) ◦
F SČe(T,Rm, dp, γ̃) are (ε+ C + δ)-interleaved. By Example 3.2.4, F SČe(T,Rm, dp, γ̃)

and F SR(T, dp, γ̃) are (idn+1,Jn+1)-interleaved. Thus by Lemmas 3.3.6 and 3.3.8,

R(u,∞) ◦ F SO(W,Rm, dp, γ) and R(u,∞) ◦ F SR(T, dp, γ̃) are (Jε+C+δ,Jn+1 ◦ Jε+C+δ)-

interleaved. Thus by Lemma 3.3.9 they are also (J2δ ◦ Jε+C , J2δ ◦ Jn+1 ◦ Jε+C)-

interleaved. The result follows.

Remark 4.2.8. Theorem 4.2.7 can be tightened by tightening the result of Theo-

rem 4.2.3 on which it depends; see Remark 4.2.5.

Corollary 4.2.9. For any i ≥ 0,

(i) Under the same assumptions as in Theorem 4.2.3(i), Hi ◦ R(u,∞) ◦
F SO(W,Rm, dp, γ) and Hi◦R(u,∞)◦F SR(T, dp, γ̃) are almost (Jε+C ,Jn+1◦Jε+C)-

interleaved.

(ii) Under the same assumptions as in Theorem 4.2.3(ii), Hi ◦ R(u,ρ(M)) ◦
F SO(M,dM , γ) and Hi◦R(u,ρ(M))◦F SČe(T, dM , γ̃) are almost (Jε+C ,Jn+1◦Jε+C)-

interleaved.

4.2.4 Approximating Multi-D Sublevelset Persistence via

Discrete Filtrations with Fixed Scale Parameter

We now observe that the deterministic result [12, Theorem 3.7], on the approx-

imation of sublevelset persistence of R-valued functions via filtered Rips complexes

with fixed scale parameter, admits a straightforward generalization Rn-valued func-

tions, n ≥ 1. This generalization, Theorem 4.2.10, is proven in the same way as [12,

Theorem 3.7], using the interleaving distance in place of the bottleneck distance.

Unlike the results of the previous sections, this result gives an approximation only

on the level of persistent homology and not one on the level of filtrations. However,

we prove a variant of the result, Theorem 4.2.11, formulated using filtered Čech

complexes with fixed scale parameter instead of filtered Rips complexes with fixed

scale parameter, which does hold on the level of filtrations. This latter result is new
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even for 1-D filtrations; we will use it in Section 4.5 to present a result, Theorem 4.5.2,

on the topological inference of the superlevelset filtration of a density function γ via

a filtered Čech complex with fixed scale parameter built on i.i.d. samples of Pγ.
Given a finite metric space (X, d, f) ∈ CSR, and δ > 0, let F SR(X, d, f, δ) de-

note the n-filtration obtained by fixing the last parameter in the (n + 1)-filtration

F SR(X, d, f) to be δ. For u ∈ Rn, i ∈ Z≥0, and δ2 ≥ δ1 > 0, let

Hu
i (X, d, f, δ1, δ2) ⊂ Hi ◦Ru ◦ F SR(X, d, f, δ2)

be the image of the map Hi(j), where

j : Ru ◦ F SR(X, d, f, δ1) ↪→ Ru ◦ F SR(X, d, f, δ2)

is the inclusion.

[11, Theorem 5.1] was stated for geodesic metrics on Riemannian manifolds, but

the analogous result holds for Lp metrics on Rm, 1 ≤ p ≤ ∞. Similarly, we state our

generalization for geodesic metrics on Riemannian manifolds, but an analogue holds

for Lp metrics as well.

Theorem 4.2.10. Let M be a Riemannian manifold and let γ : M → Rn be a c-

Lipschitz function (w.r.t dM). For u ∈ R̂n, let T be an ε-sample of γu (w.r.t. dM).

Let γ̃ : T → Rn be such that |γ̃(l)− γ(l)| ≤ C for all l ∈ T . If ε < ρ(M)
4

then for any

i ∈ Z≥0 and δ ∈ [2ε, ρ(M)
2

],

dI(H
u
i (T, dM , γ̃, δ, 2δ), Hi ◦Ru ◦ F S(M,γ)) ≤ 2cδ + C.

Proof. As noted above, the proof of [12, Theorem 3.7] adapts directly. The one

difference is that [12, Theorem 3.7] is formulated in terms of “open” variants of the

sublevelset filtration and the sublevelset-Rips filtration, analogous to the open variant

of the sublevelset-offset filtration presented in Section 2.7.4. Thus to adapt the proof

of [12, Theorem 3.7] to our setting we need to appeal to example 3.2.3.

We note also that using our module-theoretic definition of interleavings, the proof

of [12, Theorem 3.7] may be written down in terms of module homomorphisms rather
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than in terms of maps of vector spaces, as in [12]. This makes the proof somewhat

less cumbersome.

Now we now formulate our variant of Theorem 4.2.10 for Čech filtrations. As for

Theorem 4.2.10 we state the result for geodesic metrics on Riemannian manifolds,

but an analogue holds for the Lp metric as well.

For (X, Y, d, f) ∈ CSCe and δ > 0, let F SČe(X, Y, d, f, δ) denote the n-filtration

obtained by fixing the last parameter in the (n + 1)-filtration F SČe(X, Y, d, f) to be

δ.

Theorem 4.2.11. Let M be a compact Riemannian manifold and γ : M → Rn be a

c-Lipschitz function (w.r.t dM). For u ∈ R̂n, let T be an ε-sample of γu (w.r.t. dM).

Let γ̃ : T → Rn be such that |γ̃(l)− γ(l)| ≤ C for all l ∈ T . Then for any δ ≥ ε,

dWI(Ru ◦ F SČe(T,M, dM , γ̃, δ), Ru ◦ F S(M,γ)) ≤ cδ + C.

Proof. The proof is similar to the proof of Theorem 4.2.3. We leave the details to the

reader.

4.3 Bounds on the Probability that an I.I.D. Sam-

ple of a Manifold is an ε-sample of a Super-

levelset

Overview

[11, Section 4.2] presents a bound on the probability that an i.i.d. sample of a

Riemannian manifold M with density γ is an ε-sample (w.r.t dM) of a superlevelset

of γ.

Here we recall that bound and apply it to obtain a bound on the probability that

an i.i.d. sample of a submanifold M of Rm with density γ is an ε-sample (w.r.t dp)

of a superlevelset of γ.

In the next section, we will use these bounds to prove our main inference results.
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Definitions and Results

Let M be a Riemannian manifold. Let A be a subset of M . For r ∈ R, let

V(A, r) = inf
x∈A
H(BdM (x, r)).

Let N (A, r) ∈ N ∪ {∞} be the r-covering number of A—that is, N (A, r) is the

minimum number of closed d-balls of the same radius r needed to cover A (the balls

do not need to be centered in A).

The following lemma is [11, Lemma 4.3].

Lemma 4.3.1. Let M be a Riemannian manifold, γ : M → R be a c-Lipschitz

probability density function (w.r.t dM), and c′ = max(1, c). Let Tz be an i.i.d. sample

of Pγ of size z. Then for any ε > 0 and α > cε
c′

, Tz is an ε
c′

-sample of −γ−α (w.r.t.

to dM) with probability at least 1−N (−γ−α, ε
2c′

)e−z(α−
cε
c′ )V(−γ−α, ε2c′ ).

Remark 4.3.2. As noted in [11], Lemma 4.3.1 tells us that if N (−γ−α, ε
2c′

) is positive

and V(−γ−α, ε
2c′

) is finite for every ε > 0 then the Hausdorff distance between Tz ∩
−γ−α and −γ−α converges in probability to 0 as z →∞.

Remark 4.3.3. It is observed in [11] that N (−γ−α, ε) is positive and V(−γ−α, ε)
is finite for any α > 0 and ε > 0, provided M is compact or, more generally, the

sectional curvature of M is bounded above and below.

Now we extend Lemma 4.3.1 to the case of Lp metrics on submanifolds of Rm.

For 1 ≤ p ≤ ∞, let

K(p) =


√
m if p ∈ [1, 2),

1 if p ∈ [2,∞].

Lemma 4.3.4. Let M be a submanifold of Rm, γ : M → R be a c-Lipschitz probability

density function (w.r.t dp), let c′ = max(1, c), and let Tz be an i.i.d. sample of Pγ of

size z. Then for any ε > 0 and α > cε
c′

, Tz is an ε
c′

-sample of −γ−α (w.r.t. dp) with

probability at least 1−N (−γ−α, ε
2c′K(p)

)e
−z(α− cε

c′ )V(−γ−α, ε
2c′K(p)

)
.
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Proof. For any y1, y2 ∈M ,

dp(y1, y2) ≤ K(p) d2(y1, y2) ≤ K(p) dM(y1, y2). (4.1)

Thus a c-Lipschitz function w.r.t. dp is a cK(p)-Lipschitz density function (w.r.t dM).

Let c′′ = max(1, cK(p)). Lemma 4.3.1 tells us that for γ : M → R a cK(p)-

Lipschitz probability density function (w.r.t dM), Tz an i.i.d. sample of Pγ of size z,

ε′ > 0, and α > cK(p)ε′

c′′
, Tz is an ε′

c′′
-sample of −γ−α (w.r.t. dM) with probability at

least 1−N (−γ−α, ε′

2c′′
)e−z(α−

cK(p)ε′
c′′ )V(−γ−α, ε

′
2c′′ ).

Now substituting ε′ = c′′ε
c′K(p)

in the above statement, we obtain for any ε >

0, α > cε
c′

, Tz is an ε
c′K(p)

-sample of M (w.r.t. to dM) with probability at least

1 − N (−γ−α, ε
2c′K(p)

)e
−z(α− cε

c′ )V(−γ−α, ε
2c′K(p)

)
. Thus by (4.1), with at least the same

probability Tz is an ε
c′

-sample of M (w.r.t. dp), as we wanted to show.

Note that remark 4.3.2 adapts immediately to the setting of Lemma 4.3.4.

4.4 Inference of the Superlevelset-offset Bifiltra-

tion of a Density Function via Discrete Bifil-

trations Built on I.I.D. Samples

We’re now ready to present our results on the inference of the superlevelset-offset

filtration of a density function γ on a Riemannian manifold from an i.i.d. sample of

Pγ. These are the culmination of the theory we have developed so far in this thesis.

We first present results for inference using superlevelset-Čech filtrations. The-

orem 4.4.1 shows that with high probability, superlevelset-Čech filtrations built on

sufficiently large i.i.d. samples of Pγ (and filtered by the superlevelsets of a well

behaved density estimator) give good approximations to the superlevelset-offset fil-

tration of γ, with respect to dWI . Theorem 4.4.2, an asymptotic form of this result,

then tells us that such superlevelset-Čech filtrations are consistent estimators (w.r.t.

dWI) of the superlevelset-offset filtration of γ.
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After presenting our results for superlevelset-Čech filtraitons, we present ana-

logues of each these results for superlevelset-Rips filtrations. The main result is The-

orem 4.4.4, which shows that in the large sample limit, the superlevelset-Rips filtration

built on an i.i.d. sample of Pγ (and filtered by the superlevelsets of a well behaved

density estimator) and the superlevelset-offset filtration of γ are weakly (Jn+1, idn+1)-

interleaved. Since as observed in Example 3.2.4, superlevelset-Rips and superlevelset-

Čech filtration functors built on the same input data are always strongly (Jn+1, idn+1)-

interleaved, Theorem 4.4.4 says that in the large sample limit, the superlevelset-Rips

and superlevelset-Offset filtrations satisfy in the weak sense the same interleaving

relationship that superlevelset-Rips and superlevelset-Čech filtrations always satisfy

in the strong sense.

4.4.1 Inference Results for Superlevelset-Čech Bifiltrations

Theorem 4.4.1 (Inference of superlevelset-offset filtrations via superlevelset-Čech

filtrations (finite sample case)). Let M be a Riemannian manifold, γ : M → R be

a density function, Tz be a finite i.i.d. random sample of Pγ of size z, and Ez be a

(q, C)-density estimator of another density function γ̃ : M → R for some C > 0 and

q ∈ [0, 1].

(i) If M is an embedded submanifold of Rm, γ is c-Lipschitz w.r.t. dp for some

c > 0, and c′ = max(1, c) then for any ε > 0 and α > cε
c′

,

dWI(R(−α,∞)◦F SČe(Tz,Rm, dp,−Ez(Tz)), R(−α,∞)◦F SO(M,Rm, dp,−γ̃)) ≤ ε+C

with probability at least 1−N (−γ−α, ε
2c′K(p)

)e
−z(α−cε/c′)V(−γ−α, ε

2c′K(p)
) − q.

(ii) If γ is c-Lipschitz w.r.t. dM for some c > 0, and c′ = max(1, c), then for any

ε > 0 and α > cε
c′

,

dWI(R(−α,ρ(M))◦F SČe(Tz,M, dM ,−Ez(Tz)), R(−α,ρ(M))◦F SO(M,dM ,−γ̃)) ≤ ε+C

with probability at least 1−N (−γ−α, ε
2c′

)e−z(α−cε/c
′)V(−γ−α, ε2c′ ) − q.
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Proof. To prove (i), first note that in the event that

{sup
l∈Tz
|γ̃(l)− Ez(Tz)(l)| ≤ C} ∩ {Tz is an

ε

c′
-sample of M (w.r.t. dp)},

Theorem 4.2.3(i) applies to give that

dWI(R(−α,∞) ◦ F SČe(Tz,R, dp,−Ez(Tz)), R(−α,∞) ◦ F SO(M,Rm, dp,−γ̃)) ≤ ε+ C.

By Lemma 4.3.4, the definition of a (q, C)-density estimator, and the union bound,

the probability of this event is at least 1−N (−γ−α, ε
2c′

)e−z(α−cε/c
′)V(−γ−α, ε2c′ )−q. This

gives (i).

The proof of (ii) is the same as that of (i), using Lemma 4.3.1 in place of

Lemma 4.3.4 and Theorem 4.2.3(ii) in place of Theorem 4.2.3(i).

Theorem 4.4.2 (Consistent estimation of superlevelset-offset filtration via super-

levelset-Čech filtrations). Let M be Riemannian manifold with sectional curvature

bounded above and below, let γ : M → R be a density function, and let Tz be an i.i.d.

sample of Pγ of size z.

(i) If M is a submanifold of Rm, γ is c-Lipchitz (w.r.t. dp) for some c > 0 and E

is a density estimator on M such that (E, γ) satisfies A1 then

dWI(R(0,∞) ◦ F SČe(Tz,Rm, dp,−Ez(Tz)), R(0,∞) ◦ F SO(M,Rm, dp,−γ))
P−→ 0.

(ii) If M = Rm, γ is c-Lipchitz (w.r.t. dp) for some c > 0 and E is a density

estimator on Rm such that (E, γ) satisfies A2 for some kernel K then

dWI(R(0,∞) ◦ F SČe(Tz,Rm, dp,−Ez(Tz)), R(0,∞) ◦ F SO(Rm, dp,−γ ∗K))
P−→ 0.

(iii) If γ : M → R is c-Lipschitz (w.r.t. dM) for some c > 0 and E is a density

estimator such that (E, γ) satisfies A1 then

dWI(R(0,ρ(M)) ◦ F SČe(Tz,M, dM ,−Ez(Tz)), R(0,ρ(M)) ◦ F SO(M,dM ,−γ))
P−→ 0.
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Proof. To prove (i), we need to show that for any ε > 0 and q ∈ (0, 1], there exists

some z1 ∈ N such that for all z ≥ z1,

dWI(R(0,∞) ◦ F SČe(Tz,Rm, dp,−Ez(Tz)), R(0,∞) ◦ F SO(M,Rm, dp,−γ)) ≤ ε

with probability at least 1− q. Since (E, γ) satisfies A1, Lemma 4.1.1(i) tells us that

for any q ∈ (0, 1] and ε > 0, there exists z0 ∈ N such that for all z ≥ z0, Ez is a

( q
2
, ε

4
)-density estimator of γ.

Choose ε′ ∈ (0, ε
4
). Then ε

2
> cε′

c′
. Since M has bounded absolute sectional

curvature, it follows from Remark 4.3.3 that there exists some z1 ∈ N with z1 > z0

such that for all z ≥ z1, N (−γ− ε
2
, ε
′

2c′
)e
−z( ε

2
−cε′/c′)V(−γ− ε2 ,

ε′
2c′ ) < q

2
.

Invoking Theorem 4.4.1(i) with α = ε
2
, for all z ≥ z1

dWI(R(− ε
2
,∞)◦F SČe(Tz, ,Rm, dp,−Ez(Tz)), R(− ε

2
,∞)◦F SO(M,Rm, dp,−γ)) ≤ ε′+

ε

4
≤ ε

2

with probability at least 1− q.
Then by Lemma 3.3.7, for all z > z1,

dWI(R(0,∞) ◦ F SČe(Tz,Rm, dp,−Ez(Tz)), R(0,∞) ◦ F SO(M,Rm, dp,−γ)) ≤ ε

2
+
ε

2
= ε

with probability at least 1− q. This completes the proof of (i).

The proof of (ii) is essentially the same as that of statement (i), using

Lemma 4.1.1(ii) in place of Lemma 4.1.1(i). The proof of (iii) is also essentially the

same as that of statement (i), using Theorem 4.4.1(ii) in place of Theorem 4.4.1(i).

Corollary 4.4.3. For any i ∈ Z≥0,

(i) Under the same assumptions as in the statement of Theorem 4.4.2(i),

dI(Hi◦R(0,∞)◦F SČe(Tz,Rm, dp,−Ez(Tz)), Hi◦R(0,∞)◦F SO(M,Rm, dp,−γ))
P−→ 0.

(ii) Under the same assumptions as in the statement of Theorem 4.4.2(ii),

dI(Hi◦R(0,∞)◦F SČe(Tz,Rm, dp,−Ez(Tz)), Hi◦R(0,∞)◦F SO(Rm, dp,−γ∗K))
P−→ 0.
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(iii) Under the same assumptions as in the statement of Theorem 4.4.2(iii),

dI(Hi ◦R(0,ρ(M)) ◦ F SČe(Tz,M, dM ,−Ez(Tz)),

Hi ◦R(0,ρ(M)) ◦ F SO(M,Rm, dM ,−γ))
P−→ 0.

Proof. This follows immediately from Theorems 4.4.2 and 3.3.10.

4.4.2 Inference Results for Superlevelset-Rips Bifiltrations

Convergence in Probability up to Interleavings

To describe our asymptotic results for superlevelset-Rips filtrations it will be conve-

nient for us to introduce some terminology. Let J1, J2 : Rn → Rn be increasing maps

and let u ∈ R̂n. We say that a sequence {Xz}z∈N of random u-filtrations converges in

probability to a random u-filtration X up to weak (J1, J2)-interleaving, and we write

Xz
P,J1,J2−−−−→ X

if for all ε > 0

lim
z→∞

P (Xz and X are weakly (Jε ◦ J1, Jε ◦ J2)-interleaved) = 1.

Note that Xn
P,idn,idn−−−−−→ X if and only if dWI(Xn, X)

P−→ 0.

Similarly, we say that a sequence {Mz}z∈N of random Bn-persistence modules

converges in probability to a random Bn-persistence module M up to weak (J1, J2)-

interleaving, and we write

Mz
P,J1,J2−−−−→M

if for all ε > 0

lim
z→∞

P (Mz and M are weakly (Jε ◦ J1, Jε ◦ J2)-interleaved) = 1.

Mn
P,idn,idn−−−−−→M if and only if dI(Mz,M)

P−→ 0.
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Theorem 4.4.4 (Asymptotics of estimation of superlevelset-offset filtration via su-

perlevelset-Rips filtrations).

(i) Under the same assumptions as in Theorem 4.4.2(i),

R(0,∞) ◦ F SR(Tz, d
p,−Ez(Tz))

P,Jn+1,idn+1−−−−−−−→ R(0,∞) ◦ F SO(M,Rm, dp,−γ).

(ii) Under the same assumptions as in Theorem 4.4.2(ii),

R(0,∞) ◦ F SR(Tz, d
p,−Ez(Tz))

P,Jn+1,idn+1−−−−−−−→ R(0,∞) ◦ F SO(Rm, dp,−γ ∗K).

(iii) Under the same assumptions as in Theorem 4.4.2(iii),

R(0,ρ(M)) ◦ F SR(Tz, d
M ,−Ez(Tz))

P,Jn+1,idn+1−−−−−−−→ R(0,ρ(M)) ◦ F SO(M,dM ,−γ).

Proof. To prove (i), we need to show that under the same assumptions as in The-

orem 4.4.2(i), for any ε > 0 and q ∈ (0, 1], there exists some z′ ∈ N such that

for all z ≥ z′, R(0,∞) ◦ F SR(Tz, d
p,−Ez(Tz)) and R(0,∞) ◦ F SO(M,Rm, dp,−γ) are

(Jε ◦ Jn+1, Jε ◦ idn+1)-interleaved with probability at least 1− q.
By Example 3.2.4, F SR(T, dp, γ̃) and F SČe(T,Rm, dp, γ̃) are (Jn+1, idn+1)-

interleaved.

Theorem 4.4.2 tells us that there exists some z′′ > 0 such that for all z > z′′,

R(0,∞) ◦ F SČe(Tz,Rm, dp,−Ez(Tz)) and R(0,∞) ◦ F SO(M,Rm, dp,−γ) are ε-interleaved

with probability at least 1− q.
By Lemma 3.3.8 then, for all z > z′′, R(0,∞) ◦ F SR(Tz, d

p,−Ez(Tz)) and R(0,∞) ◦
F SO(M,Rm, dp,−γ) are (Jε ◦ Jn+1, Jε)-interleaved with probability at least 1 − q.

Thus taking z′ = z′′ gives the result.

The proofs of (ii) and (iii) are essentially the same as that of (i), using Theo-

rems 4.4.2(ii) and 4.4.2(iii) in place of Theorem 4.4.2(i).

Corollary 4.4.5. For any i ∈ Z≥0,
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(i) Under the same assumptions as in the statement of Theorem 4.4.2(i),

Hi ◦R(0,∞) ◦F SR(Tz, d
p,−Ez(Tz))

P,Jn+1,idn+1−−−−−−−→ Hi ◦R(0,∞) ◦F SO(M,Rm, dp,−γ).

(ii) Under the same assumptions as in the statement of Theorem 4.4.2(ii),

Hi ◦R(0,∞) ◦F SR(Tz, d
p,−Ez(Tz))

P,Jn+1,idn+1−−−−−−−→ Hi ◦R(0,∞) ◦F SO(Rm, dp,−γ ∗K).

(iii) Under the same assumptions as in the statement of Theorem 4.4.2(iii),

Hi ◦R(0,ρ(M)) ◦ F SR(Tz, d
M ,−Ez(Tz))

P,Jn+1,idn+1−−−−−−−→ R(0,ρ(M)) ◦ F SO(M,dM ,−γ).

Proof. This follows immediately from Theorem 4.4.4 and Theorem 3.3.10.

4.5 Inference of the Superlevelset Filtration of a

Probability Density via Filtered Čech Com-

plexes

In this section we apply Theorem 4.2.11 to obtain a version of the inference theorem

of [11, Theorem 5.1] which holds on the level of filtrations rather than only on the

level of persistent homology modules. Unlike [11, Theorem 5.1], this result holds for

only estimators defined using Čech filtrations, not for estimators defined using Rips

filtrations; the result of [11, Theorem 5.1] for estimators defined using Rips filtrations

does not in general lift to the level of filtrations.

We state the result for geodesic metrics on Riemannian manifolds; an analogous

result holds for Lp-metrics on submanifolds of Rm.

Theorem 4.5.1 (Inference of superlevelset filtrations). Let M be a Riemannian man-

ifold, let γ : M → R be a c-Lipschitz density function w.r.t. dM for some c > 0. Let

Tz be a finite i.i.d. random sample of Pγ of size z. Let Ez be a (q, C)-density estima-

tor of another density function γ̃ : Rm → R for some C > 0 and q ∈ [0, 1]. Then for
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any ε > 0, δ ≥ ε, and α > cε.

dWI(R(−α,ρ(M)) ◦ F SČe(Tz,M, dM ,−Ez(Tz), δ), R(−α,ρ(M)) ◦ F S(M,−γ̃)) ≤ cδ + C

with probability at least 1−N (−γ−α, ε2)e−z(α−cε)V(−γ−α, ε2 ) − q.

Proof. The proof is the essentially same as the proof of Theorem 4.4.1, using Theo-

rem 4.2.11 in place of Theorem 4.2.3.

Theorem 4.5.2 (convergence in probability of superlevelset-Čech filtrations with

fixed scale parameter to superlevelset filtration of density function). Let M be a

Riemannian manifold with bounded absolute sectional curvature, let γ : M → R be a

c-Lipschitz density function (w.r.t. dM) for some c > 0, and let Tz be an i.i.d. sample

of Pγ of size z.

(i) If M = Rm and E is a density estimator on Rm such that (E, γ) satisfies A1

then there exists a sequence of positive real numbers {δz}z∈N such that

dWI(R(0,∞) ◦ F SČe(Tz,Rm, dp,−Ez(Tz), δz), R(0,∞) ◦ F S(Rm,−γ))
P−→ 0.

(ii) If M = Rm and E is a density estimator on Rm such that (E, γ) satisfies A2

for some kernel K then there exists a sequence of positive real numbers {δz}z∈N
such that

dWI(R(0,∞) ◦ F SČe(Tz,Rm, dp,−Ez(Tz), δz), R(0,∞) ◦ F S(Rm,−γ ∗K))
P−→ 0.

(iii) If E is a density estimator such that (E, γ) satisfies A1 then there exists a

sequence of positive real numbers {δz}z∈N such that

dWI(R(0,ρ(M)) ◦ F SČe(Tz,M, dM ,−Ez(Tz), δz), R(0,ρ(M)) ◦ F S(M,−γ))
P−→ 0.

Proof. We’ll prove (iii). The proofs of (i) and (ii) are essentially the same, using

Lemma 4.1.1(ii) in place of Lemma 4.1.1(i) and an analogue of Theorem 4.5.1 for Lp

metrics on Rm.
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To prove (i), we need to find a sequence of positive real numbers {δz}z∈N such

that for any ε > 0 and p ∈ (0, 1], there exists some z1 ∈ N such that for all z ≥ z1,

dWI(R(0,ρ(M)) ◦ F SČe(Tz,M, dM ,−Ez(Tz), δz), R(0,ρ(M)) ◦ F S(M,−γ)) ≤ ε

with probability at least 1− p. To construct our sequence {δz}z∈N, we first choose a

monotonically decreasing sequence ξ : N → (0, 1] such that limz→∞ ξ(z) = 0. Since

(E, γ) satisfies A1, Lemma 4.1.1(i) tells us that there exists a strictly increasing

sequence of natural numbers j : N → N such that for any y ∈ N and any z ≥ j(y),

Ez is a ( ξ(y)
2
, ξ(y)

4
)-density estimator of γ.

Choose a second monotonically decreasing sequence ξ′ : N → (0, 1] such that for

each z ∈ N, ξ′(z) < ξ(z)
4

). Let c′ = max(1, c). For each z ∈ N, ξ(z)
2

> cξ′(z)
c′

. Since

M has bounded absolute sectional curvature, it follows from Remark 4.3.3 that there

exists a strictly increasing sequence of natural numbers l : N → N with l(z) ≥ j(z)

for all z ∈ N such that for y ∈ N and all z ≥ l(y),

N (−γ− ξ(y)
2

,
ξ′(y)

2c′
)e
−z( ξ(y)

2
−cξ′(y)/c′)V(−γ

− ξ(y)2

,
ξ′(y)
2c′ )

<
ξ(y)

2
.

Invoking Theorem 4.5.1, with the variables (α, ε, δ) in the statement of that The-

orem set equal to ( ξ(y)
2
, ξ
′(y)
c′
, ξ
′(y)
c′

), we obtain the following result, which we state as a

lemma.

Lemma 4.5.3. For all y ∈ N, ξ(y), ξ′(y), l(y) defined as above, and all z ≥ l(y)

dWI(R(− ξ(y)
2
,ρ(M))

◦ F SČe(Tz,M, dM ,−Ez(Tz), ξ′(y)), R
(− ξ(y)

2
,ρ(M))

◦ F S(M,−γ))

≤ ξ′(y) +
ξ(y)

4
≤ ξ(y)

2

with probability at least 1− ξ(y).
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Now define l−1 : N→ N by

l−1(z) =

max{z′ ∈ N|l(z′) ≤ z} if l(1) ≤ z,

1 otherwise.

Define {δz}z∈N by taking δz = ξ′(l−1(z)) for all z ∈ N.

Now choose ε > 0 and p ∈ (0, 1]. There’s some y ∈ N such that ξ(y) < min(ε, p).

We claim that for all z ≥ l(y),

dWI(R(− ξ(y)
2
,ρ(M))

◦ F SČe(Tz,M, dM ,−Ez(Tz), δz), R(− ξ(y)
2
,ρ(M))

◦ F SO(M,−γ)) ≤ ξ(y)

2

with probability at least 1− ξ(y).

Then, given the claim, we set z1 = l(y). By Lemma 3.3.7, for all z ≥ z1,

dWI(R(0,ρ(M)) ◦ F SČe(Tz,M, dM ,−Ez(Tz), δy), R(0,ρ(M)) ◦ F S(M,−γ))

≤ ξ(y)

2
+
ξ(y)

2
= ξ(y) ≤ ε

with probability at least 1− ξ(y) ≥ 1− p, which completes the proof of (i).

To prove the claim, we plug in y = l−1(z) into Lemma 4.5.3, writing

F = R
(− ξ(l

−1(z))
2

,ρ(M))
◦ F SČe(Tz,M, dM ,−Ez(Tz), ξ′(l−1(z)))

to obtain that

dWI(F,R(− ξ(l
−1(z))
2

,ρ(M))
◦ F S(M,−γ)) ≤ ξ′(l−1(z)) +

ξ(l−1(z))

4
≤ ξ(l−1(z))

2

with probability at least 1− ξ(l−1(z)).

Since l is strictly increasing, when z ≥ l(y), l−1(z) ≥ l−1(l(y)) = y. Since the

sequences ξ and ξ′ are monotonically decreasing, we then have that ξ(l−1(z)) ≤ ξ(y)

and ξ′(l−1(z)) ≤ ξ′(y). Thus,

dWI(F,R(− ξ(l
−1(z))
2

,ρ(M))
◦ F S(M,−γ)) ≤ ξ(y)

2
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with probability at least 1− ξ(y). Applying Lemma 3.3.6 and using the definition of

δz, we obtain that

dWI(R(− ξ(y)
2
,ρ(M))

◦ F SČe(Tz,M, dM ,−Ez(Tz), δz), R(− ξ(y)
2
,ρ(M))

◦ F S(M,−γ))

≤ ξ′(y) +
ξ(y)

4
≤ ξ(y)

2

with probability at least 1− ξ(y). This proves the claim and completes the proof of

(i).

4.6 Future Work on Persistence-Based Topological

Inference

We close this chapter with a discussion of directions for future work on the statistical

aspects of persistence-based topological inference.

Almost Sure Convergence Results

Our asymptotic results are formulated in terms of convergence in probability and a

variant of it which we have called convergence in probability up to interleavings. It

would be interesting to know whether our results can be strengthened to almost sure

convergence results.

Bootstrap Confidence Balls for Persistence

The natural next step in the development of the theory of persistence-based topologi-

cal inference is to develop a theory of confidence regions for the consistent estimators

studied in this chapter. This problem has hitherto not been addressed in any pub-

lished work, for even for 1-D persistent homology.

In the setting of Theorem 4.4.1, it seems that it should be possible to employ

the bootstrap methodology [25] to compute approximate confidence balls (in the

pseudometric space of multidimensional filtrations given by the weak interleaving
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interleaving distance) for a superlevelset-Čech estimator X of the superlevelset-offset

filtration Y of a probability density function.

For a ∈ (0, 1), to compute an approximate a-confidence ball for X, a simple

approach would be to

1. Construct bootstrap replicates X1, ..., Xl of the filtration X by taking

superlevelset-Čech filtrations of bootstrap replicates of the point cloud data

on which X was built.

2. Compute the smallest value of y such that a fraction a of the bootstrap replicates

X1, ...Xl lie within weak interleaving distance y of X.

We expect that, under mild hypotheses, the ball of radius y centered at X would then

be an approximate a-confidence ball for X, and that an analogous result would hold

on the level of persistent homology modules.

A well developed theory along these lines of bootstrap confidence balls for persis-

tent homology estimates, together with an efficient computational pipeline for com-

puting the radii of confidence balls, could add in a significant way to power of persis-

tent homology as a tool for understanding the qualitative structure of random data.

Testing Persistence-Based Hypotheses

Another important problem in topological inference is to develop a theory of hypoth-

esis testing for hypotheses formulated using the language of persistence. Given the

close relationship between hypothesis testing and computation of confidence regions,

this problem is much in the same spirit as the problem of computing approximate

confidence balls for the estimators of this thesis.

The problem of testing hypotheses formulated using persistence has hitherto not

yet been treated by the topological data analysis community, yet seems to be of basic

importance, particularly in the case of 0th persistent homology. To explain, on the

one hand 0th persistent homology offers an elegant and user-friendly language for

describing the multi-modality of functions in a way that is sensitive to the “size” of

the modes. On the other hand, mode detection of densities and regression functions

is an old and well studied problem in statistics, and one of fundamental interest—see,
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for example [41] and [45, Chapter 20]. Classical statistics has developed approaches to

testing for multi-modality based on smoothing ideas [41], but as the classical language

for describing multi-modality is impoverished relative to that offered by persistent

homology, there seems little doubt that persistent homology would have something

significant to offer to the problem of testing multi-modality hypotheses.

Inference of Persistent Homology at the Cycle Level

It is possible to geometrically represent the persistent homology module of a filtration,

at the chain level, by choosing a presentation for the persistent homology module and

then choosing representative cycles and boundaries for the generators and relations in

the presentation. There are of course many different ways to make such choices, most

of which are not geometrically interesting. However, for filtrations whose topological

spaces are equipped with a sufficient amount of geometric structure we can in principle

define notions of optimality of chain-level representations of persistence modules in

such a way that the optimal choice will be geometrically meaningful. Then, using

such notions, we can pose persistence-based inference problems directly on the chain

level. The results on clustering of [11] are loosely in this spirit, for 0th persistent

homology. It would be very interesting to understand if and how those results adapt

to higher persistent homology and to the multidimensional setting.

The problem of pursuing inference at the chain level is an extremely important

one, at least to the extent that we are interested in the use of persistent homology

for topological inference: A descriptor of a probability distribution defined only using

the isomorphism class of a persistent homology module gives us only indirect infor-

mation about the qualitative structure of the probability distribution; ultimately we

want to understand how the algebraic features of the persistent homology descriptor

correspond to specific geometric features of the probability distribution. For that we

need to consider representatives of those algebraic features on the chain level.



Chapter 5

Conclusion

In this thesis, we have introduced and studied (J1, J2)-interleavings on multidimen-

sional persistence modules and strong and weak (J1, J2)-interleavings on multidimen-

sional filtrations. We have undertaken a careful study of such interleavings and of the

interleaving distances dI , dSI , and dWI defined in terms of them. We have applied

interleavings and interleaving distances to adapt the persistence-based topological

inference result [11, Theorem 5.1] to the multidimensional setting and directly to

the level of filtrations. The culmination of our efforts is a pair of results, Theo-

rems 4.4.2 and 4.4.4, describing the topological asymptotics of random sublevelset-

Čechand sublevelset-Rips bifiltrations (filtered by the superlevelsets of a density esti-

mator) in the large sample limit. These theorems put on firm mathematical footing

the idea, first put forth in [7], that such filtrations should encode topological informa-

tion about the probability density function of a probability distribution generating

the point cloud data on which the bifiltrations are built.

One of the central themes of this thesis has been that

1. To formulate results in the theory of persistence-based topological inference,

one first needs to select notions of similarly between filtrations and persistence

modules.

2. Much of the substantive theoretical work to be done in the study of topological

persistence lies in understanding what the right choices of those notions of

similarity are.
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Indeed, we have spent the bulk of our effort in this thesis developing the theory

of interleavings and interleaving distances. The theory we have developed makes a

strong, if still incomplete, case that interleavings are natural tools with which to

frame the theory of topological inference of multifiltrations.

Our discussions of directions for future work in Sections 2.12, 3.3.7, and 4.6 make

it clear that there is much more work to be done on the theory of interleavings of

multidimensional persistence modules, on the theory of weak interleavings of multi-

dimensional filtrations, and on the statistical aspects of persistence-based topological

inference. I believe that progress in these directions, seen as a part of the larger pro-

gram of fleshing out the statistical foundations of topological data analysis, stands a

good chance of contributing something fundamental to the way scientists, engineers,

and statisticians think about and perform the qualitative analysis of data.



Appendix A

Minimal Presentations of

Multidimensional Persistence

Modules

A.1 The Coherence of Bn

A.1.1 Coherence: Basic Definitions and Results

k[x1, ..., xn] is well known to be a Noetherian ring. Finitely generated modules over

Noetherian rings have some very nice algebraic properties. Here we define a standard

weakening of the Noetherian property called coherence. Analogues of many of the

same nice algebraic properties that hold for finitely generated modules over Noethe-

rian rings hold for finitely presented modules over coherent rings. In particular, we

have Corollary A.1.4, which we will use in Appendix A.2 to prove Theorem 2.1.4.

Definition. For R a ring, we say an R-module M is coherent if M is finitely

generated and every finitely generated submodule of M is finitely presented. We say

a ring R is coherent if it is a coherent module over itself.

Coherent commutative rings and coherent modules are well studied; the following

results are standard. The reader may refer to [29] for the proofs.
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Proposition A.1.1. If R is a Noetherian ring then R is coherent.

Theorem A.1.2. If R is a coherent ring then every finitely presented R-module is

coherent.

Theorem A.1.3. If f : M → N is a morphism between coherent R-modules M and

N then ker(f), im(f), and coker(f) are coherent R-modules.

Combining these last two theorems immediately gives

Corollary A.1.4. If R is a coherent ring and f : M → N is a morphism between

fintely presented R-modules M and N , then ker(f), im(f), and coker(f) are finitely

presented.

A.1.2 The Ring Bn is Coherent

Theorem A.1.5. For any n ∈ N, Bn is coherent.

Proof. The key to the proof is the following theorem:

Theorem A.1.6 ([29, Theorem 2.3.3]). Let {Rα}α∈S be a directed system of rings

and let R = lim→Rα. Suppose that for α ≤ β, Rβ is a flat Rα module and that Rα is

coherent for every α. Then R is a coherent ring.

First, recall that R is a vector space over Q. We’ll say that a1, ..., al ∈ R≥0 are

rationally independent if they are linearly independent as vectors in R over the field

Q.

We next extend this definition to vectors in Rn
≥0: We say a finite set V ⊂ Rn

≥0 is

rationally independent if

1. V is the union of sets V1, ..., Vn, where each element of Vi has a non-zero ith

coordinate and all other coordinates are equal to zero.

2. For any i, if a1, ..., al are the non-zero coordinates of the elements of Vi (listed

with multiplicity), then a1, ..., al are rationally independent in the sense defined

above.
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We define an n-grid to be a monoid generated by some rationally independent set

V ⊂ Rn
≥0. Denote the n-grid generated by the rationally independent set V as Γ(V ).

Γ(V ) is a submonoid of Rn
≥0.

Lemma A.1.7. If V is a rationally independent set, then the n-grid generated by V

is isomorphic to Z|V |≥0 .

Proof. The proof is straightforward; we omit it.

As noted in Section 2.1.2, for any m ∈ N, k[Zm≥0] ∼= k[x1, ..., xm]. As the latter

ring is Noetherian, it is coherent by proposition A.1.1. Thus if G is an n-grid, k[G]

is coherent.

Lemma A.1.8. For any finite set A ⊂ R≥0, there’s a rationally independent set

B ⊂ R≥0 such that A lies in the monoid generated by B.

Proof. We proceed by induction on the number of elements l in the set A. The base

case is trivial. Now assume the result holds for sets of order l − 1. Write A =

{a1, ..., al}. By the induction hypothesis there exists a finite rationally independent

set A′ = {a′1, ..., a′m} such that {a1, ..., al−1} lies in Γ(A′). If A′ ∪ al is rationally

independent, take B = A′ ∪ al. Otherwise al = q1a
′
1 + ... + qm−1a

′
m−1 for some

q1, ..., ql−1 ∈ Q; we may take B = {q′1a′1, ..., q′l−1a
′
m−1}, where q′i = 1/bi for some

bi ∈ N such that qi = a/bi for some a ∈ Z≥0.

Lemma A.1.9. The set of n-grids forms a directed system under inclusion with direct

limit Rn
≥0.

Proof. To show that the set of n-grids forms a directed system, we need that given

two n-grids G1 and G2, there’s an n-grid G3 such that G1 ⊂ G3 and G2 ⊂ G3. This

follows readily from Lemma A.1.8; we leave the details to the reader. Any element of

Rn
≥0 lies in an n-grid, so Rn

≥0 must be the colimit of the directed system.

For a monoid A and a submonoid A′ ⊂ A, we have k[A′] ⊂ k[A]. This implies the

following:
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Lemma A.1.10. The set of rings {k[G]|G is an n-grid} has the structure of a directed

system induced by the directed system structure on the set of n-grids, and Bn is the

direct limit of this directed system.

Proposition A.1.11. Given two positive n-grids G′, G with G′ ⊂ G, k[G] is a free

k[G′] module.

Proof. We begin by establishing a couple of lemmas.

Lemma A.1.12. For any rationally independent set V ′ and n-grid A containing

Γ(V ′), there is a rationally independent set V such that A = Γ(V ) and such that for

each a ∈ V ′, V contains an element of the form a/b for some b ∈ N.

We call V an extension of V ′.

Proof. The proof of Lemma A.1.12 is similar to the proof of Lemma A.1.8; we omit

it.

Let S denote the set of maximal sets of the form g + G′ ≡ {g + g′|g′ ∈ G′} for

some g ∈ G.

Lemma A.1.13. The sets S form a partition of G.

Proof. It’s enough to show that if g1 +G′, g2 +G′ ∈ S and g1 +G′∩ g2 +G′ 6= ∅, then

g1 +G′ = g2 +G′.

Let V ′ be a rationally independent set with Γ(V ′) = G′, and let V be an extension

of V ′ with Γ(V ) = G. Write V ′ = {v1, ..., vl} and V = {v1/b1, ..., vl/bl, vl+1, ..., vm}
for some b1, ..., bl ∈ N.

Assume there exist g′1, g
′
2 ∈ G′ such that g1 + g′1 = g2 + g′2. We’ll show that there

then exists an element g3 ∈ G such that g1, g2 ∈ g3 +G. By the maximality of g1 +G′

and g2 +G′, this implies g1 +G′ = g2 +G′, as needed. We write

g1 = y1v1/b1 + · · ·+ ylvl/bl + yl+1vl+1 + · · ·+ ymvm,

g2 = z1v1/b1 + · · ·+ zlvl/bl + zl+1vl+1 + · · ·+ zmvm,

g′1 = y′1v1 + · · ·+ y′lvl,

g′2 = z′1v1 + · · ·+ z′lvl.
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for some y1, ..., ym, z1, ..., zm, y
′
1, ..., y

′
l, z
′
1, ..., z

′
l ∈ Z. By the rational independence of

V and the fact that g1 + g′1 = g2 + g′2, we have that yi = zi for l + 1 ≤ i ≤ m.

Define

g3 = min(y1, z1)v1/b1 + · · ·+ min(yl, zl)vl/b1 + yl+1vl+1 + · · ·+ ymvm,

g′′1 = (y1 −min(y1, z1))v1/b1 + · · ·+ (yl −min(yl, zl))vl/bl,

g′′2 = (z1 −min(y1, z1))v1/b1 + · · ·+ (zl −min(yl, zl))vl/bl.

g3 + g′′1 = g1 and g3 + g′′2 = g2, so if we can show that g′′1 , g
′′
2 ∈ G′ we are done.

By the rational independence of V and the fact that g1 +g′1 = g2 +g′2, for 1 ≤ i ≤ l

we have that min(yi, zi)/bi + max(y′i, z
′
i) = yi/bi + y′i. This implies that max(y′i, z

′
i)−

y′i = (yi −min(yi, zi))/bi. In particular, the term on the right hand side lies in Z≥0.

Thus g′′1 ∈ G′. The same argument shows g′′2 ∈ G′.

Now we are ready to complete the proof of Proposition A.1.11. It’s easy to see

that for any s ∈ S, the natural action of G′ on s extends to give k[s] the structure of

a free k[G′] module of rank 1. It follows from Lemma A.1.13 that the sets {k[s]}s∈S
have trivial intersection as k[G′]-submodules of k[G]. We then have that as a k[G′]

module, k[G] = ⊕s∈Sk[s], and so in particular k[G] is a free k[G′]-module, as we

wanted to show.

Given Lemma A.1.10 and Proposition A.1.11, Theorem A.1.6 applies to give that

Bn is coherent, since free modules are flat [26].

A.2 Minimal Presentations of Bn-persistence Mod-

ules

This section is devoted to the proof of Theorem 2.1.4.
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A.2.1 Free Hulls

We first observe that some standard results about resolutions and minimal resolutions

of modules over local rings adapt to Bn-persistence modules. We’ll only be interested

in the specialization of such results to the 0th modules in a free resolution, and for

the sake of simplicity we phrase the results only for this special case. However,

the results discussed here do extend to statements about free resolutions of finitely

presented Bn-persistence modules.

Let m denote the ideal of Bn generated by the set

{v ∈ Bn|v is homogeneous and gr(v) > 0}.

Define a free hull of M to be a free cover (FM , ρM) such that ker(ρM) ⊂ mFM .

Nakayama’s lemma [26] is a key ingredient in the proofs of the results about free

resolutions over local rings that we would like to adapt to our setting. To adapt these

proofs, we need an n-graded version of Nakayama’s lemma.

Lemma A.2.1 (Nakayama’s Lemma for Persistence Modules). Let M be a finitely

generated Bn-persistence module. If y1, ..., ym ∈ M have images in M/mM that

generate the quotient, then y1, ..., ym generate M .

Proof. The usual Proof of Nakayama’s lemma [26] carries over with only minor

changes.

Lemma A.2.2. A free cover (FM , ρM) of a finitely generated Bn-persistence module

M is a free hull iff a basis for FM maps under ρM to a minimal set of generators for

M .

Proof. Given the adaptation Lemma A.2.1 of Nakayama’s lemma to our setting, the

proof of [26, Lemma 19.4] gives the result.

It follows easily from Lemma A.2.2 that a free hull exists for any finitely generated

Bn-persistence module M . Corollary A.2.4 below gives a uniqueness result for free

hulls.
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Theorem A.2.3. If (FM , ρM) is a free hull of a finitely presented Bn-persistence

module M and (F ′M , ρ
′
M) is any free cover of M , then FM includes as a direct summand

of F ′M in such a way that F ′M
∼= FM ⊕ F ′′M for some free module F ′′M , and ker(ρ′M) =

ker(ρM)⊕ F ′′M ⊂ FM ⊕ F ′′M .

Sketch of Proof. The statement of the theorem is the specialization to 0th modules in

the free resolutions of M of an adaptation of [26, Theorem 20.2] to our Bn-persistence

setting. To modify Eisenbud’s proof of [26, Theorem 20.2] to obtain a proof of The-

orem A.2.3, one needs to invoke the coherence of Bn and use Corollary A.1.4 to

show that ker(ρM) is finitely generated. Given this, the strategy of proof adapts in a

straightforward way.

Corollary A.2.4 (Uniqueness of free hulls). If M is a finitely presented Bn-

persistence module, and (FM , ρM), (F ′M , ρ
′
M) are two free hulls of M , then there is an

isomorphism from FM to F ′M which is a lift of the identity map of M .

Proof. By Theorem A.2.3, we can identify FM with a submodule of F ′M in such a way

that F ′M = FM⊕F ′′M for some free module F ′′M and ker(ρ′M) = ker(ρ)⊕F ′′M ⊂ FM⊕F ′′M .

Since F ′M is a free hull, we must have ker(ρ′M) ∈ mF ′M , which implies F ′′M = 0. The

result follows.

Corollary A.2.5. If M is a finitely presented Bn-persistence module and B,B′ are

two minimal sets of generators for M , then gr(B) = gr(B′).

Proof. This follows from Corollary A.2.4 and Lemma A.2.2.

A.2.2 Proof of Theorem 2.1.4

Recall that a minimal presentation 〈G|R〉 of a Bn-persistence module M is one such

that

1. the quotient 〈G〉 → 〈G〉/〈R〉maps G to a minimal set of generators for 〈G〉/〈R〉.
2. R is a minimal set of generators for 〈R〉.
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Let M be a finitely presented Bn-persistence module. Let 〈G|R〉 be a minimal

presentation of M . We need to show that for any other presentation 〈G′|R′〉 of M ,

gr(G) ≤ gr(G′) and gr(R) ≤ gr(R′).

Let ψ : 〈G〉/〈R〉 → M and ψ′ : 〈G′〉/〈R′〉 → M be isomorphisms, let π : 〈G〉 →
〈G〉/〈R〉 and π′ : 〈G′〉 → 〈G′〉/〈R′〉 be the quotient homomorphisms, let ρ = ψ ◦ π,

and let ρ′ = ψ′ ◦ π′. Then by Lemma A.2.2, (〈G〉, ρ) is a free hull of M , and (〈G′〉, ρ′)
is a free cover of M .

By Theorem A.2.3, 〈G〉 includes as a direct summand of 〈G′〉. The image of G

under this inclusion can be extended to a basis for 〈G′〉. Recall that if B and B′ are

two bases for a free Bn-persistence module F , then gr(B) = gr(B′). We thus have

that gr(G) ≤ gr(G′).

Theorem A.2.3 also implies that 〈R′〉 ∼= 〈R〉 ⊕ F for some free Bn-persistence

module F . Let B be a basis for F . Then R ∪ B is a minimal set of generators for

〈R〉 ⊕F . Let R′′ denote the image of R′ under an isomorphism from 〈R′〉 to 〈R〉 ⊕F
and let p : 〈R〉 ⊕ F → 〈R〉 denote projection onto the first summand. Since p is

surjective, p(R′′) is a set of homogeneous generators for 〈R〉.
Since 〈G〉 and M are finitely presented, by Corollary A.1.4 ker(ρ) = 〈R〉 is also

finitely presented. Then by Corollary A.2.5, gr(R) ≤ gr(p(R′′)). Since gr(p(R′′)) ≤
gr(R′′) = gr(R′) we have that gr(R) ≤ gr(R′).
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