The First International Workshop on

Coexisting Radio and Optical Wireless Deployments (CROWD)

In Conjunction with the IEEE WCNC 2019

April 15-18, 2019, Marrakech, Morocco


Workshop Discription

The proliferation of wireless devices and the surge of wireless traffic due to the increasing data demand from novel services and applications will have a profound impact on the communications industry. The next generation network evolution considers higher frequencies with new spectrum including the millimeter-wave and the optical range of the spectrum. The vast majority of research efforts so far have been dedicated to individual deployments of radio and optical networks. Toward providing high quality of service and experience over a diverse spectrum, there is a rapidly growing interest in coexisting radio and optical wireless technologies. The development of a radio-optical paradigm can significantly enhance data rates, communication range, reliability and operation under interference and congestion. According to the distance between the transmitter and receiver, such radio-optical systems can be classified into long-range systems for outdoor deployments and short-range systems for both outdoor and indoor environments. For the design of such systems, indoor and outdoor propagation environments are inherently different from each other and pose unique challenges which need to be carefully considered.

There is one major challenge for outdoor optical wireless and that is the atmospheric attenuation. The attenuation occurs due to many factors such as: (1) Absorption, (2) Scattering, and (3) Shimmer. The effect of all these factors on the received signal power and the availability of the link is uncontrollable in an outdoor environment. A practical solution to this problem would be a hybrid free space optical (FSO) communication/RF system; to back up the FSO link with a lower data rate RF link. Indoors, high data rate capabilities coupled with the directionality of the optical medium allow visible light communications (VLC) small cells to provide very high bandwidth density (b/s/m2). Accordingly, densely distributed optical wireless small cells have the potential to provide additional wireless capacity in the indoor environments where it is needed most (e.g., office spaces, conference halls, urban apartments, coffee shops, etc.). Compared to traditional RF networks; these optical wireless deployments can provide very high aggregate capacity; however, densely distributed optical wireless small cells are challenged to accommodate highly dynamic environments. Specifically, the optical channel is susceptible to blocking conditions and the smaller coverage region of each cell implies that devices with high mobility will change connections frequently. In order to mitigate the impact of these limitations, heterogeneous networks (HetNets) have been proposed where optical wireless networks supplement traditional RF small cell networks – combining the aggregate capacity gains of the former with the coverage and reliability of the later.

Topics of Interest

The intent of this workshop is to bring together researchers who are exploring analysis and implementation techniques for integration of diverse wireless communication networks through a coexistence HetNets framework. The primary focus of this workshop is related to integration of radio and optical wireless networks; but broader coexistence topics will also be considered. Topics of interest include, but are not limited to:

RF-FSO and RF-VLC systems

Modulation and coding techniques

MIMO transmission

Load balancing

Mixed relay systems

Multiple-access techniques

Resource allocation and aggregation methods

Coverage, mobility and reliability

Interference management

Network layout and architecture

Cross-layer optimization

Quality of service and experience

Devices and hardware integration

Information theory

Experimental testbeds and characterizations

Security and privacy

Special Issue (More to be announced)

Extended version of high-quality accepted papers will be recommended to the following special issue for publication. Special Issue: “COEXISTING RADIO AND OPTICAL WIRELESS DEPLOYMENTS” with the IEEE Transactions on Cognitive Communications and Networking.


Keynote and Invited Speakers


Keynote Speaker


Mohamed-Slim Alouini

King Abdullah Univesity of Science and Technology, Saudi Arabia

Mohamed-Slim Alouini was born in Tunis, Tunisia. He received the Ph.D. degree in Electrical Engineering from the California Institute of Technology (Caltech), Pasadena, CA, USA, in 1998. He served as a faculty member in the University of Minnesota, Minneapolis, MN, USA, then in the Texas A&M University at Qatar, Education City, Doha, Qatar before joining King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah Province, Saudi Arabia as a Professor of Electrical Engineering in 2009.

Invited Speakers


Marcos Katz

University of Oulu, Finland

Marcos Katz is a Professor at the Centre for Wireless Communications, University of Oulu, Finland. He received his B.S. degree from Universidad de Tucumán, Argentina in 1987 and M.S. and doctoral degrees from the University of Oulu, Finland, in 1995 and 2002, respectively. He held different R&D positions at Nokia, Finland in 1987-2001. He was a Principal Engineer at Samsung Electronics, Korea, in 2003-2005 and Chief Research Scientist at VTT, the Technical Research Centre of Finland, in 2006-2009. His current research interests include theoretical and practical aspects of cooperative and cognitive networking as well as visible light communications. Prof. Katz has written and edited six books in different areas of mobile and wireless communications. He has written more than 160 publications and holds more than 50 patents.




Author Information


Submission Information

WCNC 2019 only accepts original and unpublished papers with no longer than 6 pages, including all content and references. The manuscripts should be formatted in standard IEEE camera-ready format (double column, 10 pt font) and be submitted as PDF files (formatted for 8.5 x 11 inch paper). Prospective authors should submit their papers though EDAS; submit here . All submitted manuscripts will be peer-reviewed by the program committee members. At least one author of all the accepted paper should register and give a presentation in the workshop. The accepted and presented papers will be published in the IEEE WCNC 2019 workshop proceedings and appear in IEEE Xplore.

Important Dates

  • Paper Submission Deadline: January 10, 2019

  • Acceptance Notification: February 15, 2019

  • Final Manuscript: March 1, 2019

  • Workshop: Monday, April 15, 2019


Workshop Program


Detailed program coming soon!

Invited Talks


Title: Talk 1: Addressing spectrum scarcity through hybrid optical and radio-frequency wireless networks

Speaker: Mohamed-Slim Alouini, King Abdullah University of Science and Technology, Saudi Arabia

Abstract: Rapid increase in the use of wireless services over the last two decades has led the problem of the radio-frequency (RF) spectrum exhaustion. More specifically, due to this RF spectrum scarcity, additional RF bandwidth allocation, as utilized in the recent past, is not anymore a viable solution to fulfill the demand for more wireless applications and higher data rates. The talk goes first over the potential offered by optical wireless (OW) communication systems to relieve spectrum scarcity. It then summarizes some of the challenges that need to be surpassed before such kind of systems can be deployed. Finally, the talk offers two recent studies illustrating how supplementing OW networks with RF backup access points increases these networks reliability and coverage while maintaining their high capacity.


Program Committee


Organizing Committee


Moussa Ayyash

Chicago State University, USA

Hany Elgala

University at Albany, USA

Abdallah Khreishah

New Jersey Institute of Technology, USA

Thomas D.C. Little

Boston University, USA

Michael Rahaim

University of Massachusetts, Boston, USA

Technical Program Committee





Contact Information

For questions regarding the workshop, please contact Hany Elgala at: helgala (at) albany (dot) edu