gm.academic@gmail.com +44 (0) 795 113 2344 12 Elberton Rd, Bristol, UK Google Scholar

GAURAV MALHOTRA

PROFILE INFO

I am a postdoctoral Research Fellow at University of Bristol, interested in human vision and decision-making. My work lies at the intersection of psychology, neuroscience and artificial intelligence. It combines computational models with behavioural experiments to understand how our environment and biology shape our cognition.

EDUCATION -

PhD (Dorothy Hodgkin Scholar) -University of Edinburgh

> Psychology 2004 - 2009

Thesis: Dynamics of syntactic priming

MSc (Distinction) -University of Edinburgh

> Informatics 2002 - 2003

1996 - 2000

BEng (First class) -Thapar University, India Computer Science

WORK HISTORY

University of Bristol

United Kinadom 2018 — now

Research Fellow

Senior researcher and co-lead on large ERC grant testing the ability of AI models to

capture human cognition.

University of Bristol

United Kingdom

2012 - 2018

Senior Research Associate

Senior postdoc and mentor on EPSRC grant bringing together psychologists, mathematicians and economists to research decision-making in an unstable world.

Aix-Marseille Uni

France

2009 - 2011

Postdoctoral Researcher

Integrated behavioural and neuroscience research to propose a new model for how people generate temporal expectations.

Hughes Software

India

2000 — 2002

Software Engineer

Designed, implemented and tested software for telecom systems that enabled analog voice networks (AT&T) to interface with digital networks (Voice over IP).

FUNDING & AWARDS

EPSRC Impact Acceleration Award (Co-I) | 2014 — 2015

Strategic award to apply research to challenges in society. Worked with industrial partner to improve recommendation system based on Bayesian sampling methods.

EBI Health Research Grant (named postdoc) | 2015 — 2016

Worked with consultants in Bristol Royal Infirmary to examine how adaptive nudges can be used to improve decisions made by doctors in the Intensive Care Units.

EPSRC Platform Grant (named postdoc) | 2015 — 2020

Joint project with engineering, investigating how insights from perceptual decision-making can be used to improve image and video de-noising algorithms.

Dorothy Hodgkin Postgraduate Award | 2005 — 2009

Highly competitive RCUK and industrial studentship for talented international students

PUBLICATIONS

submitted -o-

Obstacles to inferring mechanistic similarity using representation similarity analysis.

Dujmović, Bowers, Adolfi & Malhotra*

bioR\(\chi\)iv (pre-print)

in which we show that RSA can be a misleading method of measuring whether two cognitive systems encode the world in the same way.

in press -

Human shape representations are not an emergent property

of learning to classify objects. Malhotra, Dujmović, Hummel & Bowers

Journal of Experimental Psychology: General we show that humans are sensitive to relations between object features a property that does **not** emerge when CNNs learn to classify objects.

in press =

Reinforcement learning under uncertainty: expected versus unexpected uncertainty and state versus reward uncertainty.

Ez-zizi, Farrell, Leslie, Malhotra & Ludwig

Computational Brain & Behavior

where we explore how people update their beliefs when their perceptual system is noisy and the environment is stochastic and unstable.

2023 -

Deep Problems with Neural Network Models of Human Vision.

Bowers, Malhotra, Dujmović, Montero, Tsvetkov, Biscione, Puebla, Adolfi, Hummel, Heaton, Evans, Mitchell & Blything

Behavioral & Brain Sciences

where we identify gaps between Deep Neural Networks and human vision and argue for controlled experiments for correctly comparing the two.

2023 -

The role of capacity constraints in Convolutional Neural Networks for learning random versus natural data.

Tsvetkov, Malhotra, Evans & Bowers

Neural Networks

we show that CNNs exhibit a super-human capacity to learn visual inputs, which can be partially remedied by introducing internal noise in activations.

2022 -

Lost in latent space: Examining failures of disentangled models at combinatorial generalisation.

స్థా

Montero, Bowers, Ludwig, Ponte-Costa & Malhotra*

NeurIPS†

in which we show that latent representations of generative models are unlikely to be compositional and fail at combinatorial generalisation.

2022 - -

Feature blindness: a challenge for understanding and modelling visual object recognition.

Malhotra, Dujmović & Bowers

PLOS Computational Biology

we find that humans ignore highly predictive non-shape features in novel objects, a behaviour that contrasts with Deep Neural Networks and demonstrates the inflexibility of human shape-bias.

2021 -0-

Biological convolutions improve DNN generalisation.

Evans, Malhotra & Bowers

Neural Networks

in which we show that adding a layer of Gabor and centre-surround filters to CNNs helps them generalise to out-of-distribution stimuli.

	2021 -	The role of disentanglement in generalisation.
	۵ ا	Montero, <u>Malhotra</u> , Ludwig, Ponte-Costa & Bowers
	\$	we show that disentangled latent representations do not necessarily lead to better combinatorial generalisation in Variational Auto-Encoders.
	2020 -	What do adversarial images tell us about human vision?
(D)	\$ >	Dujmović, <u>Malhotra</u> & Bowers <i>eLife</i>
	0	we show that human response to adversarial images is qualitatively different from CNNs, which classify these images with high confidence.
	2020	Hiding a plane behind a pixel: shape-bias in CNNs and the benefit of building in biological constraints.
•	20	Malhotra, Evans & Bowers Vision Research
		we show that CNNs can learn highly idiosyncratic features in images. This behaviour can be ameliorated by attaching an input layer of V1-like filters.
	2019 -	Mechanistic models must link the field and the lab.
A	*	Houston & Malhotra Behavioral & Brain Sciences
		we critique a theory of animal foraging behaviour and argue that realistic theories must build in various sources of environmental uncertainties.
	2018 -	Optimal gut size of small birds and its dependence on environmental
A	₽	and physiological parameters.
7.77	M '	Ez-Zizi, McNamara, <u>Malhotra</u> & Houston
		we show that birds have an optimal gut-size which is determined by a trade-off between energetic gains and cost of digestion and foraging.
	2018 -	Time varying decision boundaries: Insights from optimality analysis
	f	<u>Malhotra</u> , Leslie, Ludwig & Bogacz
		where we use dynamic programming to show that, in many real-world situations, optimal decision thresholds can collapse with time.
	2017 -	Overcoming indecision by changing the decision criterion
(D)	1	Malhotra, Leslie, Ludwig & Bogacz Journal of Experimental Psychology: General
	_	we show that people frequently decrease their decision thresholds during perceptual decision-making but deviate from optimal decision boundaries.
	2016	Increasing compliance with low tidal volume ventilation in the ICU with two nudge-based interventions
		Bourdeaux, Thomas, Gould, <u>Malhotra</u> , Jarvstad & Gilchrist BMJ Open
		in which we investigated the impact of two nudge-based cognitive interventions on behaviour of doctors in Intensive-Care Units.
\circ	2008	On the persistence of structural priming: Mechanisms of decay and influence of word-forms.
	T	<u>Malhotra</u> , Pickering, Branigan, Bednar <i>CogSci</i>
		where we showed that the dynamics of short-term memory can explain syntactic decisions made by interlocutors during language production.

^{*} Senior Author

 $^{\ \, {}^{\}dagger} \, \textit{NeurIPS} \, (\text{Advances in Neural Information Processing}) \, \text{and} \, \textit{ICLR} \, (\text{International Conference on Information Processing}) \, \text{and} \, \text{ICLR} \, (\text{International Conference on Information Processing}) \, \text{and} \, \text{ICLR} \, (\text{International Conference on Information Processing}) \, \text{and} \, \text{ICLR} \, (\text{International Conference on Information Processing}) \, \text{Information Processing} \, \text{I$ Learning Representations) are highly prestigious, peer-reviewed conferences dedicated to Artificial Intelligence and Machine Learning research.

SKILLS & EXPERTISE

Scientific Computing

I'm a highly skilled mathematician with an in-depth knowledge of **linear algebra**, calculus and statistics. I'm also a proficient programmer with extensive experience in **Python**, **Matlab**, **C**, **C++** and **Java**.

Experiments & Data Analysis

I'm an expert at designing, conducting, and analysing human perception experiments. I'm a skilled user of **PsychoPy** & **PsychToolbox** for designing experiments and $\bf R$ and $\bf Stan$ for simulation and analysis.

Machine Learning

I have a strong background in machine learning methods, including **Bayesian statistics**, **regression models**, **reinforcement learning** and **kernel methods**. I am an accomplished user of **PyTorch** with extensive experience in building and testing **CNNs**, **VAEs**, **Transformers** and **Deep RL** systems.

Written and Verbal Communication Skills

I have delivered numerous invited lectures and talks at international conferences and authored a large number of journal articles, reports and theses. I'm a fluent speaker of **English**, **Hindi**, and **French**.

TEACHING & SUPERVISION

2022 – present

Teaching Associate | 3rd Year | Psychology | University of Bristol

- Units taught: Cognitive Neuroscience
- Prepared course material and delivered lectures on using Artificial Intelligence to understand human cognitive processing

2019 – present

Supervisor | MSc, PhD | Psychology | University of Bristol

- Co-supervised 3 PhD students on projects examining Deep Learning models of human vision and decision-making
- Co-supervised 1 MSc Research student on project related to models of human decision-making

2012 - 2017

Mentor | PhD | Psychology | University of Bristol

- Mentored 4 PhD students in perceptual decision-making and vision
- Supported learning about research design, modelling, data collection, data analysis techniques and report writing

2012 - 2013

Tutor | 1st Year | School of Mathematics | University of Bristol

- Units taught: Linear Algebra, Probability, Statistics, LaTeX
- Delivered tutorials, marked reports and provided mentorship

2010 - 2011

Teaching Assistant | 1st Year | Informatics | Aix-Marseille University

- Units taught: Programming in C, C++
- Delivered tutorials, helped in designing course and marking reports

2004 - 2006

Teaching Associate | Masters | Informatics | University of Edinburgh

- Units taught: Neural Computation, Logic, Java
- Developed materials, delivered tutorials and marked reports