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Abstract

This paper considers estimating tail properties such as high quantiles and tail con-

ditional expectations. We provide new asymptotically (quantile) unbiased estimators

that are applicable to (i) complete data; (ii) tail censored (top-coded) data with known

or unknown censoring value; and (iii) tail truncated data with known and unknown

truncation value. The new method relies on the sole assumption that the largest k

observations satisfy the extreme value theory, for a given and fixed k. This asymptot-

ics leads to excellent small sample bias and risk properties as shown by Monte Carlo

simulations, and the empirical relevance is illustrated by estimating the high quantiles

of the U.S. hurricane damage. In addition to i.i.d. data, the new method is generalized

to accommodate stochastic volatility models by proving that the residuals of fitting a

correctly specified AR-GARCH model satisfy our assumption.

Keywords: bias, extreme quantiles, tail conditional expectations, extreme value

theory, fat-tailed distribution, unbiasedness, censoring, truncation



1 Introduction

Estimating tail properties such as high quantile and tail conditional expectation (TCE) has

been an important issue in finance (Engle and Manganelli (2004), Jorion (2007), McNeil and

Frey (2000), Fissler and Ziegel (2016), and Patton, Ziegel, and Chen (2017)), physics (Barkai,

Metzler, and Klafter (2000), Meerschaert, Benson, Scheffl er, and Becker-Kern (2002)), lin-

guistics (Zipf (1936), Baek, Bernhardsson, andMinnhagen (2011)), hydrology and seismology

(Anderson and Meerschaert (1998), Benson, Wheatcraft, and Meerschaert (2000), Pacheco,

Scholtz, and Sykes (1992)), and many other fields.

When the data are complete, a large number of estimators have been developed based on

the extreme value theory and tail regularity conditions. See Embrechts, Klupperberg, and

Mikosch (1997), Reiss and Thomas (2007), Resnick (2007), and de Haan and Ferreira (2007),

Beirlant, Caeiro, and Gomes (2012), Gomes and Guillou (2015) for reviews and references.

Given the assumption that the underlying distribution F is in the domain of attraction, its

tail can be well approximated by a generalized Pareto distribution (cf. Pickands (1975)),

and then common tail properties of interest, including high quantile and TCE, are functions

of three parameters only, at least approximately. These parameters include the tail index

ξ which is the exponential component, the scale, and the location. Along this line, numer-

ous suggestions have been made about estimating these parameters, and the corresponding

estimators of high quantile and TCE can be constructed by plugging in estimators of these

parameters.

One concern of the above mentioned methods is that they rely on the "increasing-k"

asymptotics, which, however, may lead to a poor small sample approximation when the

sample size is only moderately large, say 500. More specifically, the consistent estimate of ξ

requires the asymptotics under kn →∞ and kn/n→ 0 where n is the sample size. So given

a certain sample, the choice of k can be diffi cult to keep the delicate balance that (i) k has

to be large enough for the asymptotic normality to hold on estimating ξ; and (ii) k has to

be so small relative to n that the largest k observations satisfy the extreme value theorem.

Therefore, in many empirical applications such as financial daily data collected from one

year, there could be no choice of k that results in a satisfactory small sample performance

(cf. Kuester, Mittnik, and Paolella (2006)).

In addition to the concern about choosing k, the above mentioned methods cannot be

applied to incomplete data due to censoring or truncation, which are common in empirical

applications. In particular, data censoring usually exists in surveys about earnings and
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wealth such as the Current Population Survey, and the problems subject to data truncation

can be found in finance, hydrology, fire ecology, and seismology (see, for example, Groisman,

Knight, Karl, Easterling, Sun, and Lawrimore (2004) and Malamud, Morein, and Turcotte

(1998)). Estimating tail properties with such incomplete data is even more diffi cult, since the

largest observations are very informative about tail but they are unfortunately unavailable.

Existing literature typically makes parametric assumptions on the whole distribution (cf.

Aban, Meerschaert, and Panorska (2006) and Jenkins, Burkhauser, Feng, and Larrimore

(2010)) but this approach may suffer severe misspecification.

To overcome the above issues, this paper develops a unified framework to accommodate

all three type of data and considers the "fixed-k" asymptotic embedding developed by Müller

andWang (2016) under the sole assumption that the k largest order statistics jointly converge

to k jointly extreme value distributed variables, for fixed and given k. This means we only

require a fixed number of tail observations are approximately stemming from a (generalized)

Pareto while leaving the main body of the underlying distribution unspecified. Consequently,

it is asymptotically equivalent to deal with a small sample problem where we are estimating

a quantity as a function of the underlying distribution based on k observations. Then, we set

up the Lagrangian problem to find the optimal estimator that minimizes a weighted average

risk criteria and satisfies some unbiased constraint, and solve it by the generic algorithm

suggested by Müller and Wang (2015). The unbiasedness is important since it is naturally

embedded in the definition of quantile and TCE. In particular, in estimating the quantile of

the underlying distribution F , it makes sense to require the estimator, Q̂ (p), to satisfy the

quantile unbiasedness: P
(
Yi > Q̂ (p)

)
= 1 − p where Yi is another independent draw from

F . For TCE, we show that the mean unbiasedness is equivalent to some average quantile

unbiasedness that measures both the size and the likelihood of tail above a certain confidence

level. This is especially important in finance as it is the exact reason why Basel III suggests

switching from value at risk (VaR) to expected shortfall (ES) for measuring financial risk.

See Basel Committee on Banking Supervision (2013) for more details.

More specifically, we focus in this paper on the construction of estimators for the 1−h/n
quantile, for given h, and the corresponding tail conditional expectation. This captures the

empirical situation where only few observations can be considered relevant for tail proper-

ties. Regarding incomplete data, we model censoring as that in the sample, the largest m

observations are unobserved, for a known m, and model truncation as that the data are

generated from a truncated F with either known or unknown truncation value. We start

with an i.i.d. sample and show by Monte Carlo simulations that the new estimators have
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excellent small sample unbiasedness and risk properties for moderately large n, such as 250.

Then, we extend the results to stochastic volatility models by establishing that the innova-

tions of fitting a GARCH model still satisfy the joint extreme value theory. We illustrate

the application of the new estimators with U.S. hurricane data.

The rest of the paper is organized as follows. Section 2 contains the details of the

new approach, including deriving the "fixed-k" asymptotics, setting up and solving the

Lagrangian problems, and extending the results to stochastic volatility models. Section 3

reports Monte Carlo simulations and explicitly derives the bias properties of the empirical

estimator. Section 5 concludes.

2 Derivation of the Estimator for Complete Data

2.1 High Quantile

We start with estimating a high quantile based a random sample Y1, Y2, ..., Yn drawn from

a certain cumulative distribution function (CDF) F . The i.i.d. setup is extended to ac-

commodate the stochastic volatility model in Section 6. To capture the fact that we only

have limited information about the tail, we focus on estimating the 1 − h/nth quantile of
F , denoted by Q(F, 1− h/n), for a given and fixed h, indicating that the object of interest

is of the same order of magnitude as the sample maximum. Typical choices of h can be 0.1,

1, 5, and 10, corresponding to the quantile at levels 99.98%, 99.8%, 99%, and 98% for a

sample of 500. Notice that there is a naturally embedded quantile unbiasedness constraint

on the estimator Q̂ such that E
[
P
(
Yi > Q̂

)]
= h/n for an independent draw Yi from F .

Hence our objective is to construct the optimal Q̂ that satisfies such quantile unbiasedness

restriction, at least asymptotically.

To avoid assuming an increasing k that may lead to a poor finite sample approximation

(see Section 5), we follow Müller and Wang (2016) to consider the fixed-k asymptotics. In

particular, we use only the largest k order statistics as our effective sample, denoted as

Y = (Yn:n, Yn:n−1, ..., Yn:n−k+1)′ where Yn:1 ≤ Yn:2 ≤ ... ≤ Yn:n denote the order statistics.

Our approach relies on the extreme value theory (see, for example, de Haan and Ferreira

(2007)) that if there exist sequences an and bn such that

Yn:n − bn
an

⇒ X1 (1)

for some nondegenerate random variable X1, then there exists constants a and b such that
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the distribution of aX1 + b has the following CDF

Gξ(x) =

{
exp[−(1 + ξx)−1/ξ], 1 + ξx ≥ 0, for ξ 6= 0

exp[−e−x], x ∈ R, ξ = 0
(2)

where ξ is referred to as the tail index, the parameter measuring the decay rate of the tail.

This distribution is referred to as the generalized extreme value distribution, and the cases

with ξ < 0, ξ = 0 and ξ > 0 correspond to Weibull, Gumbel and Fréchet type, respectively.

Without loss of generality, assume that the CDF of X1 in (1) is exactly Gξ by subsuming

a and b in an and bn. In additional to the sample maximum, the extreme value theory also

extends to the first k order statistics such that if (1) holds, then for any fixed k,
Yn:n−bn

an
...

Yn:n−k+1−bn
an

⇒ X =

 X1

...

Xk

 (3)

where the joint probability density function (PDF) of X is given by fX(x1, ..., xk) =

Gξ(xk)
∏k

i=1 gξ(xi)/Gξ(xi) on 0 ≤ xk ≤ xk−1 ≤ . . . ≤ x1, where gξ(x) = dGξ(x)/dx.

The normalizing constants an and bn depend on the underlying distribution F , and are

typically diffi cult to estimate. Suppose they were known, the limiting problem then only

involves a k-dimensional draw X whose distribution is fully characterized by the scalar

parameter ξ, and we seek to construct an estimator that satisfies the asymptotic quantile

unbiasedness whenever (3) holds. To implement this idea, we next impose some equivariance

on the estimator to avoid estimating an and bn and derive the explicit form of the limiting

problem.

First, notice that P (Yn;n > Q(F, 1 − h/n)) = (1 − h/n)n → e−h. Thus, under (3),

(Q(F, 1 − h/n) − bn)/an converges to the e−h quantile of X1, denoted as q(ξ, h) in the

following. Some calculation shows q(ξ, h) = (h−ξ − 1)/ξ for ξ 6= 0 and q(0, h) = − log(h). If

an and bn were known, the asymptotic problem then becomes estimation about q(ξ, h) based

on the k × 1 vector of observations X.

Next, we impose location and scale equivariance on the estimator Q̂ (see, for example,

Lehmann and Romano (2005)), such that for any constants a 6= 0 and b,

Q̂(aY + b) = aQ̂(Y) + b. (4)

Such equivariance can be implemented by constructing Q̂ (Y) = (Yn:n − Yn:n−k+1) Q̂ (Ys) +

Yn:n−k+1 where

Ys =

(
Yn:n − Yn:n−k+1

Yn:n − Yn:n−k+1

,
Yn:n−1 − Yn:n−k+1

Yn:n − Yn:n−k+1

, ...,
Yn:n−k+1 − Yn:n−k+1

Yn:n − Yn:n−k+1

)
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is a maximal invariant to the linear transformations. The continuous mapping theorem and

(3) imply

Ys ⇒ Xs ≡
(
X1 −Xk

X1 −Xk

,
X2 −Xk

X1 −Xk

, ...,
Xk −Xk

X1 −Xk

)
whose distribution then depends on ξ only. Therefore asymptotically, the original problem

amounts to determining Q̂ on the k− 2 dimensional subset of Rk where Xs has first element

equal to 1 and last element equal to zero.

Under the equivariance constraint, we can derive quantile bias as follows

nP
(
Yi > Q̂ (Y) |Y

)
= n

(
1− F

(
(Yn:n − Yn:n−k+1) Q̂ (Ys) + Yn:n−k+1

))
= n

(
1− F

(
an

(
Yn:n − Yn:n−k+1

an
Q̂ (Ys) +

Yn:n−k+1 − bn
an

)
+ bn

))
≈ n

(
1− F

(
an

(
(X1 −Xk) Q̂ (Xs) +Xk

)
+ bn

))
.

Assume F is in the domain of attraction, which then implies that n(1 − F (any + bn)) →
(1 + ξy)−1/ξ for all y such that 1 + ξy > 0. Hence the above expression converges to(

1 + ξ
(

(X1 −Xk) Q̂ (Xs) +Xk

))−1/ξ

, and the quantile bias is asymptotically of the follow-

ing form

nP
(
Yi > Q̂ (Y)

)
→ Eξ

[(
1 + ξ

(
(X1 −Xk) Q̂ (Xs) +Xk

))−1/ξ
]

where the expectation is taken w.r.t. the vector (X1 −Xk, Xk,X
s) whose distribution can

be derived from the PDF of X via change of variables.

Note that ξ cannot be consistently estimated as we only have a fixed k number of obser-

vations. Alternatively, we impose the asymptotically quantile unbiasedness for all the values

of ξ in an empirically relevant set Ξ ⊂ R. The asymptotic problem then is the construction

of Q̂ that satisfies

Eξ

[(
1 + ξ

(
(X1 −Xk) Q̂ (Xs) +Xk

))−1/ξ
]

= h for all ξ ∈ Ξ. (5)

To construct the optimal Q̂ among those satisfying (5), we focus on the one that minimizes

the mean absolute deviation (MAD) criterion∫
Eξ[
∣∣∣(X1 −Xk) Q̂ (Xs) +Xk − q (ξ, h)

∣∣∣]dW (ξ) (6)
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whereW is a positive measure with support on Ξ.1 Thus combining the asymptotic versions

of the constraint (5) and the objective (6), the limiting problem can be formulated as

minQ̂(·)
∫
Eξ[
∣∣∣(X1 −Xk) Q̂ (Xs) +Xk − q (ξ, h)

∣∣∣]dW (ξ)

−ε ≤ Eξ

[(
1 + ξ

(
(X1 −Xk) Q̂ (Xs) +Xk

))−1/ξ
]
− h ≤ ε for all ξ ∈ Ξ

(7)

where ε is some small tolerance for numerical reason, say 0.01.

By writing the expectations in (7) in terms of the densities fXs|ξ ofXs, the above problem

can be written in a Lagrangian form

min
Q̂(·)

∫
Ξ

Eξ[
∣∣∣(X1 −Xk) Q̂ (Xs) +Xk − q (ξ, h)

∣∣∣ |Xs]fXs|ξ (Xs) dW (ξ) (8)

+

∫
Ξ

λ1 (ξ)Eξ

[(
1 + ξ

(
(X1 −Xk) Q̂ (Xs) +Xk

))−1/ξ

|Xs

]
fXs|ξ (Xs) dξ

−
∫

Ξ

λ2 (ξ)Eξ

[(
1 + ξ

(
(X1 −Xk) Q̂ (Xs) +Xk

))−1/ξ

|Xs

]
fXs|ξ (Xs) dξ

where the functions λ1 (ξ) and λ2 (ξ) are Lagrangian multipliers, and the expectations in

the above expression can be numerically computed by Gaussian quadrature. Therefore, the

limiting problem can be treated as estimating q (ξ, h), a function of the scalar parameter

ξ ∈ Ξ, based on a single observation Xs from a parametric distribution indexed only by ξ.

The only remaining challenge is thus to identify suitable Lagrangian multipliers. To this

end, we resort to the numerical algorithm developed in Müller and Wang (2015). Further

details are provided in the appendix.

2.2 Tail Conditional Expectation

Now consider the problem of constructing an asymptotically valid fixed-k estimator for the

TCE: Tn = E[Yi|Yi ≥ Q(F, 1− h/n)], for given h. Assume F is in the domain of attraction

with tail index ξ < 1 (otherwise, the tail conditional expectation does not exist). We then

impose the mean unbiasedness restriction on the estimator of TCE, denoted as T̂ (Y), that

is,

E
[
T̂ (Y)

]
− Tn = 0. (9)

Recall that for a positive random variable Z with CDF FZ , E[Z] =
∫

(1−FZ(z))dz. Denote

F̂ TCE (·) as the CDF that leads to the TCE as T̂ (Y), then the constraint (9) is equivalent

1The mean squared error criterion might not be well-defined for ξ ≥ 1/2.
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to ∫ ∞
Q(F,1−h/n)

(
F̂ TCE (z)− F (z)

)
dz = 0

which can be interpreted as an average quantile unbiasedness above the true quantile. In

finance, the high quantile and tail conditional expectation can be interpreted as the VaR

and the ES, respectively. The above expression then suggests that the expected shortfall

captures the unbiasedness at all the confidence levels above a certain VaR, which, however,

measures the risk at only one particular level. As pointed out by Basel Committee on

Banking Supervision (2013): "A number of weaknesses have been identified with using VaR

for determining regulatory capital requirements, including its inability to capture “tail risk”.

For this reason, the Committee proposed in May 2012 to replace VaR with ES. ES measures

the riskiness of a position by considering both the size and the likelihood of losses above a

certain confidence level."

To impose the constraint (9), we have

a−1
n Eξ

[
T̂ (Y)− Tn

]
= Eξ

[
T̂ (Y)− bn

an
− Tn − bn

an

]
→ E

[
(X1 −Xk) T̂ (Xs) +Xk − τ (ξ, h)

]
where τ (ξ, h) = q (ξ, h) / (1− ξ) − 1/ξ (cf. page 7 of Müller and Wang (2016)). Similar as

before, we minimize a weighted average MAD criteria in estimating the TCE. After some

calculation, the fixed-k asymptotic equivariant estimation problem about the tail conditional

expectation can be written as

min
Q̂(·)

∫
Ξ

Eξ[
∣∣∣(X1 −Xk) Q̂ (Xs) +Xk − τ (ξ, h)

∣∣∣ |Xs]fXs|ξ (Xs) dW (ξ) (10)

+

∫
Ξ

λ̃1 (ξ)Eξ

[
(X1 −Xk) T̂ (Xs) +Xk − τ (ξ, h) |Xs

]
fXs|ξ (Xs) dξ

−
∫

Ξ

λ̃2 (ξ)Eξ

[
(X1 −Xk) T̂ (Xs) +Xk − τ (ξ, h) |Xs

]
fXs|ξ (Xs) dξ

where
(
λ̃1, λ̃2

)
is another set of Lagrangian multipliers to be numerically determined by the

generic algorithm developed in Müller and Wang (2015).
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3 Derivation for Censored and Truncated Data

3.1 Censoring

Now consider data censoring such that in an i.i.d. sample of n observations, the largest

m are censored with a known m. We first discuss the case in which the censoring value

is unavailable. The case with a known censoring value follows from similar derivation, and

is postponed to the Appendix. To reduce notation, we introduce estimation of the high

quantile only since the TCE follows a similar argument.

Note that for fixed m and k, the extreme value theory (1) applies to the largest m + k

order statistics. Then, to implement the previously introduced approach, we modify the

definition of Xs as

Xs
m =

(
Xm+1 −Xm+k

Xm+1 −Xm+k

,
Xm+2 −Xm+k

Xm+1 −Xm+k

, ...,
Xm+k −Xm+k

Xm+1 −Xm+k

)
which is invariant to location and scale transformation, and construct the estimator of

Q (1− h/n) as Q̂(Xm) = (Xm+1 −Xm+k) Q̂ (Xs
m) + Xm+k where Xm = (Xm+1, ..., Xm+k).

Then the density of Xs
m as well as asymptotic quantile bias (5) and risk (6) can be adjusted

accordingly. Therefore, the asymptotic Lagrangian problem can be written as

min
Q̂(·)

∫
Eξ[
∣∣∣(Xm+1 −Xm+k) Q̂ (Xs

m) +Xm+k − q (ξ, h)
∣∣∣ |Xs

m]fXsm|ξ (Xs
m) dW (ξ) (11)

+

∫
λ1 (ξ)Eξ

[(
1 + ξ

(
(Xm+1 −Xm+k) Q̂ (Xs

m) +Xm+k

))−1/ξ

|Xs
m

]
fXsm|ξ (Xs

m) dξ

−
∫
λ2 (ξ)Eξ

[(
1 + ξ

(
(Xm+1 −Xm+k) Q̂ (Xs

m) +Xm+k

))−1/ξ

|Xs
m

]
fXsm|ξ (Xs

m) dξ.

3.2 Truncation

Truncated data exist when values outside a certain range are automatically eliminated, i.e.,

the observed data are generated from a truncated F . To capture the effect that only tail

is truncated, we assume the truncation value is Q
(

1− h̃/n
)
for some unknown h̃, and

focus on the case in which this quantity is unknown (cf. Aban, Meerschaert, and Panorska

(2006)). Similar derivation applies to the situation where the truncation value, Q
(

1− h̃/n
)
,

is observed (h̃ still unobserved). See Appendix for more details.

We still consider the largest k observations, whose limiting distribution is stated in the

following lemma.
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Lemma 1 Suppose data are i.i.d. and generated from a top truncated CDF F at q
(

1− h̃/n
)

with some unknown fixed value h̃ ≥ 0 and F belongs to some domain of attraction. Then

Yn:n − bn
an

, ...,
Yn:n−k+1 − bn

an
⇒ X̃ =

(
X̃1, ..., X̃k

)
where the PDF of X̃ is Gξ,h̃ (x̃k)

∏k
i=1 gξ,h̃ (x̃i) /Gξ,h̃ (x̃i) with Gξ,h̃ (x) = exp

(
h̃
)
Gξ (x) and

gξ,h̃ (x) = exp
(
h̃
)
gξ (x).

The density of the maximal invariant

X̃s =
X̃1 − X̃k

X̃1 − X̃k

, ...,
X̃k − X̃k

X̃1 − X̃k

can be derived with more tedious algebra, as well as the asymptotic bias (5) and risk (6). In

particular, the estimator ofQ (1− h/n) is constructed as Q̂
(
X̃
)

=
(
X̃1 − X̃k

)
Q̂
(
X̃s
)

+X̃k,

and h̃ shows up in the limiting problem as an additional nuisance parameter. Given a two-

dimensional weight W
(
ξ, h̃
)
and the set of Lagrangian multipliers λ1

(
ξ, h̃
)
and λ2

(
ξ, h̃
)

defined on Ξ×H for H =
[
0, h̄
]
with some pre-specified h̄, the Lagrangian problem can be

rewritten as

min
Q̂(·)

∫
Ξ×H

Eξ,h̃[
∣∣∣(X̃1 − X̃k

)
Q̂
(
X̃s
)

+ X̃k − q (ξ, h)
∣∣∣ |X̃s]fX̃s|ξ,h̃

(
X̃s
)
dW (ξ, h̃) (12)

+

∫
Ξ×H

λ1

(
ξ, h̃
)
Eξ,h̃

[(
1 + ξ

((
X̃1 − X̃k

)
Q̂ (Xs) + X̃k

))−1/ξ

|X̃s

]
fX̃s|ξ,h̃

(
X̃s
)
dξdh̃

−
∫

Ξ×H
λ2

(
ξ, h̃
)
Eξ,h̃

[(
1 + ξ

((
X̃1 − X̃k

)
Q̂ (Xs) + X̃k

))−1/ξ

|X̃s

]
fX̃s|ξ,h̃

(
X̃s
)
dξdh̃.

Note that our approach can be easily adapted to estimate the 1 − h/n quantile of the
truncated distribution, which equals the 1 −

(
h+ h̃

)
/n + hh̃/n2 quantile of the original

distribution. Therefore, the same asymptotic problem can be set up with h replaced by

h+ h̃ since the term hh̃/n2 is asymptotically negligible.

4 Monte Carlo Simulations

This section reports some small sample results for h = 0.5 and 5 and n = 250, corresponding

to confidence levels at 99.8% and 98%. For simplicity, we only report the results for k = 20.

We consider six data generating processes: A Pareto law with tail index equal to ξ = 0.25,
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a standard normal distribution, a standard lognormal distribution, a Student-t distribution

with 3 degrees of freedom, and the empirical distributions the GARCH(1,1) residuals of

S&P500 and Nasdaq daily returns from 02/08/1990 to 04/17/2017. For the censored data

model, the largest 5 observations are censored. For the truncated data model, we generate

the data from those distributions truncated at Q
(
F, 1− h̃/n

)
with h̃ = {0, 1, 2}, and impose

the unbiasedness for the data truncated at up to Q (F, 1− 2/n), i.e., h̄ = 2.

Tables 1 and 2 present the (quantile) bias and the mean absolute deviation of four

methods: (i) the suggested procedure in previous sections (fixed-k), (ii) the procedure im-

plemented by fitting the exceedances, Yn:n−Yn:n−k+1, ..., Yn:n−k−Yn:n−k+1 with a generalized

Pareto distribution (GPD) as described in McNeil and Frey (2000), (iii) the estimators de-

scribed in Chapter 4 of de Haan and Ferreira (2007) textbook (dH-F): Q̂dHF = Yn:n−k +

â (n/k) ((h/k)−ξ̂
M

− 1)/ξ̂
M
and T̂dHF = Yn:n−k + â (n/k) ((h/k)−ξ̂

M

− 1 + ξ̂
M

)/(ξ̂
M

(1− ξ̂M))

where â (n/k) and ξ̂
M
moment estimators of the scale and the tail index, correspond-

ingly, (see also Dekkers and de Haan (1989) and de Haan and Rootzén (1993)); and

(iv) the classic Weissman (1978) estimator (W-H): Q̂WH = Yn:n−k (h/k)−ξ̂
H

and T̂WH =

(Yn:n−k (h/k)−ξ̂
H

)/(1− ξ̂H) where ξ̂
H
denotes the classic Hill (1975) estimator. For all three

kn → ∞ methods we impose the same parameter space restriction Ξ = [−1/2, 1/2] on the

tail index that we chose in the implementation of the fixed-k method.

The bias for quantile is reported as 100
(
E
[
P
(
Yi > Q̂ (Y) |Y

)]
− h/n

)
, that is, the

probability measured in percentage that an additional random draw from F is larger than

the quantile estimator minus the target tail probability. For TCE, we report both the mean

bias E
[
T̂ (Y)− E

[
Yi|Yi > Q̂ (Y)

]]
and the bias measured in h. More precisely, the h bias

is defined as ĥ−h where ĥ is value of h that E
[
T̂ (Y)

]
corresponds to in the underlying dis-

tribution. Linear interpolation is implemented for the GARCH(1,1) residuals. We find that

the new method has much smaller risk and very accurate coverage across all h, in contrasts

to the other three methods for very small h. In particular, the quantile bias of the GPD

estimator is approximately 0.2% at h = 0.5, which means the GPD method approximately

delivers the 99.6% level quantile while the true target is 99.8%th quantile. The other two

estimators exhibit small sample biases that differ a lot across distributions, indicating that

k = 20 is still too small for their increasing-k asymptotics to perform satisfactorily. For

relatively large h such as 5, the unbiasedness restriction is much easier to impose as reflected

by substantially less MADs. This is because the quantity is more close to the central part

of the distribution and therefore more observations can be collected from the right side.
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Table 1: Small Sample Properties for the 1− h/n Quantile
Quantile h = 0.5

fixed-k GPD dH-F W-H

Bias MAD Bias MAD Bias MAD Bias MAD

Pareto 0.00 2.89 0.23 1.11 0.21 0.94 0.08 0.83

Normal 0.02 0.58 0.24 0.30 0.18 0.30 -0.15 0.88

Lognormal -0.01 13.6 0.22 5.25 0.18 4.71 -0.02 4.48

Student-t 0.01 6.29 0.23 2.51 0.20 2.19 -0.01 2.00

SP500 0.01 0.84 0.24 0.42 0.19 0.40 -0.13 0.93

Nasdaq 0.02 0.84 0.24 0.39 0.17 0.37 -0.12 0.79

h = 5

Bias MAD Bias MAD Bias MAD Bias MAD

Pareto -0.01 0.22 0.02 0.21 0.16 0.20 0.21 0.20

Normal 0.02 0.13 0.17 0.13 0.21 0.13 0.37 0.13

Lognormal -0.01 1.08 0.17 1.01 0.21 0.94 0.40 0.82

Student-t -0.04 0.48 0.14 0.44 0.19 0.42 0.35 0.37

SP500 -0.00 0.15 0.15 0.15 0.25 0.15 0.37 0.15

Nasdaq -0.01 0.13 0.15 0.13 0.22 0.13 0.35 0.13

Note: Entries are quantile biases and mean absolute deviations of estimators in a sample of size n = 250

about the 1− h/n quantile of the underlying distribution F , based on the largest 20 order statistics. See
the main text for a description of the four types of estimators. Based on 5,000 Monte Carlo simulations.

Some unreported results suggest that the empirical quantile works very well in terms of

both bias and MAD properties, as long as it is well defined (h is an integer and larger than

1). Following Arnold, Balakrishnan, and Nagaraja (1992), it is easy to show that

E [1− F (Yn:n−h+1)] = − h

n (n+ 1)
.

This result shows that the empirical quantile is nearly quantile unbiased when n is reasonably

large. But the bias of the empirical TCE estimator, i.e., taking average of the largest h− 1

order statistics, depends on the underlying distribution F and can be much larger compared

with the fixed-k method.

For most F and h combinations, choosing a larger k does not degrade bias by much, and

the MAD decreases. This is because that the distributions considered in the experiment are

benign in the sense that a relatively large fraction of the data can be well approximated by a

Pareto tail. But as demonstrated Müller and Wang (2016), it is easy to construct underlying

distributions whose tail behavior is so worse behaved that any choice of a moderately large

11



Table 2: Small Sample Properties for TCE above the 1− h/n Quantile
TCE h = 0.5

fixed-k GPD dH-F W-H

Bias h Bias MAD Bias h Bias MAD Bias h Bias MAD Bias h Bias MAD

Pareto -0.07 0.02 2.29 0.86 -0.20 3.39 0.06 -0.02 1.95 -0.16 0.06 1.53

Normal -0.04 0.07 0.44 -0.15 0.33 0.48 0.01 -0.01 0.47 -1.20 14.9 2.02

Lognormal 0.40 -0.03 10.3 4.82 -0.24 15.6 -2.13 0.18 10.6 -9.45 1.90 14.5

Student-t -0.53 0.07 5.53 1.74 -0.16 8.32 0.02 -0.00 5.09 -2.83 0.59 5.70

SP500 -0.05 0.06 0.67 -0.12 0.16 0.79 0.04 -0.05 0.67 -1.07 5.20 2.23

Nasdaq -0.08 0.09 0.63 -0.20 0.28 0.75 0.11 -0.10 0.67 -0.72 2.25 1.74

h = 5

Bias h Bias MAD Bias h Bias MAD Bias h Bias MAD Bias h Bias MAD

Pareto 0.02 -0.11 0.52 0.06 -0.32 0.62 0.10 -0.52 0.49 -0.04 0.24 0.48

Normal 0.00 0.00 0.18 -0.05 0.72 0.18 0.02 -0.23 0.18 -0.38 7.97 0.38

Lognormal 0.08 -0.09 2.45 0.28 -0.32 2.94 -0.08 0.10 2.47 -1.90 3.03 2.43

Student-t 0.03 -0.07 1.21 0.13 -0.31 1.43 0.11 -0.27 1.16 -0.72 2.34 1.09

SP500 0.01 -0.11 0.22 -0.05 0.61 0.23 0.02 -0.20 0.23 -0.40 6.97 0.42

Nasdaq 0.01 -0.12 0.20 -0.04 0.53 0.21 0.02 -0.22 0.20 -0.33 6.09 0.35

Note: Entries are biases and mean absolute deviations of estimators in a sample of size n = 250 about the

tail conditional expectation above the 1− h/n quantile of the underlying distribution F , based on the
largest 20 order statistics. See the main text for a description of the three types of estimators and the

definitions of biases. Based on 5,000 Monte Carlo simulations.
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Table 3: Small Sample Properties for the 1− h/n Quantile with Censored Data
Quantile h = 0.5 h = 5

fixed-k GPD fixed-k GPD

Bias MAD Bias MAD Bias MAD Bias MAD

Pareto 0.01 5.19 2.20 2.12 0.00 0.28 2.32 0.44

Normal 0.04 3.12 2.10 0.86 0.00 0.16 2.50 0.35

Lognormal -0.02 25.6 2.18 10.2 -0.02 1.38 2.29 2.10

Student-t 0.04 10.7 2.17 4.67 -0.02 0.59 2.30 0.91

SP500 0.06 3.67 2.16 1.07 0.02 0.19 2.47 0.39

Nasdaq 0.06 3.29 2.15 0.92 0.02 0.17 2.47 0.34
Note: Entries are quantile biases and mean absolute deviations of estimators in a sample of size n = 250

about the 1− h/n quantile of the underlying distribution F , with the largest 5 observations censored. See
the main text for a description of the two types of estimators. Based on 5,000 Monte Carlo simulations.

k could lead to poor finite sample approximations of the extreme value theory.

Table 3 lists the small sample bias of the fixed-k and GPD methods for censored data,

since the other two estimators are not applicable. These results suggest that the GPDmethod

always substantially underestimate the high quantile. In particular, the GPD estimator

is approximately the 97.8% quantile while the true target is 99.8%. Table 4 depicts the

performance of the fixed-k method with data truncation. As far as we know, this is the

only method that is applicable to truncated data and imposes no parametric assumptions on

F . These numbers suggest that the new approach has an excellent small sample bias. The

substantial difference in MAD across models indicates that the largest observation is very

informative about the extreme quantile. Hence if it is unobserved due to either censoring or

truncation, the unbiasedness has to be satisfied at a much larger cost in terms of MAD.

5 Application to Hurricane Damage

To illustrate empirical relevance, this session applies the new approach to estimate high

quantiles of the U.S. Hurricanes damage. Müller and Wang (2016) construct confidence

intervals for the high quantiles of hurricane damage based on the historical data collected

from 1995-2010, while this paper completes their study by providing a point estimate and

using more updated data. In particular, we collect the damage estimate of 26 costliest

U.S. hurricanes in the period 1995-2014 from http://www.icatdamageestimator.com (see also

Pielke, Gratz, Landsea, Collins, Saunders, and Musulin (2008)). These data are damage

13



Table 4: Small Sample Properties for the 1− h/n Quantile with Truncated Data

Quantile h = 0.5 h = 5

Truncation h̃ = 0 h̃ = 1 h̃ = 2 h̃ = 0 h̃ = 1 h̃ = 2

Bias MAD Bias MAD Bias MAD Bias MAD Bias MAD Bias MAD

Pareto 0.05 9.98 -0.01 5.85 0.01 3.27 0.06 1.73 -0.01 1.48 0.05 1.09

Normal 0.07 5.19 -0.01 2.64 0.03 1.70 0.06 1.02 -0.05 0.84 0.05 0.69

Lognormal 0.03 48.3 -0.00 28.6 -0.00 16.1 0.00 8.35 -0.02 7.24 0.03 5.28

Student-t 0.07 20.5 0.02 12.3 0.03 6.57 0.13 3.49 0.12 3.06 0.15 2.23

SP500 0.07 6.39 0.00 3.19 0.07 2.02 0.05 1.18 -0.11 0.96 -0.01 0.78

Nasdaq 0.10 5.72 0.03 2.85 0.04 1.89 0.04 1.06 -0.01 0.87 0.06 0.69
Note: Entries are quantile biases and mean absolute deviations of estimators in a sample of size n = 250

about the 1− h/n quantile of the underlying distribution F , with data generated from the truncated F at

Q
(
F, 1− h̃/n

)
. Based on 5,000 Monte Carlo simulations.

estimates measured in 2017 US dollars and adjusted for inflation, wealth per capita and

affected county population, Panel A in Table 5 replicates these data points for convenience.

Note that in this example, the number n of total tropical cyclones is not known to us.

Nevertheless, under the assumption that hurricane damage is i.i.d. and hurricane arrival is

stationary, the 1−h/n quantiles can be naturally interpreted as follows: a hurricane causing
at least that amount of damage is expected every 20/h years (cf. ).

Panel B in Table 5 provides estimates for Q (1− h/n) for h ∈ {0.5, 5} using the fixed-k
approach developed in previous sections for three models of data. The "complete" data

model means that we simply use the largest k order statistics. For the "censored" data

model, we only use the 2nd until the 21st largest data with the largest one (Katrina in

2005) being treated as censored (m = 1). In the last "truncated" data, we drop the largest

observation as well and consider the 2nd to the 21st largest damage, with the assumption

that at most 1/n tail probability of the underlying distribution cannot be recorded (h̄ = 1).

These two incomplete data experiments are artificial but can be helpful to eliminate the

measure error problem that the exact damage of the extremely costly hurricane is hard to

estimate (cf. Downton and Pielke (2005) and Pielke, Gratz, Landsea, Collins, Saunders, and

Musulin (2008)). All the estimates for h = 0.5 are much larger than the sample maximum,

suggesting that the distribution of hurricane damage exhibits a heavy tail. In addition,

the two incomplete data approaches deliver larger estimates than the complete data one for

h = 0.5. The intuition is that the cost of the most severe hurricane in history could be much

14



Table 5: Empirical Results on Damage of U.S. Mainland Hurricanes
Panel A: 26 Costliest Mainland United State Hurricanes, 1995-2014

Rank 1 2 3 4 5 6 7 8 9 10 11 12 13

Damage 91.13 54.66 31.02 26.04 24.4 22.32 15.68 12.96 11.67 10.9 10.21 9.69 9.08

Rank 14 15 16 17 18 19 20 21 22 23 24 25 26

Damage 7.93 5.90 5.02 3.28 3.08 2.5 2.03 1.7 1.44 1.34 1.13 1.03 0.99
Panel B: Estimate of 1− h/n Quantile of the United State Hurricane Damage
Quantile h = 0.5 h = 5

Data Type complete censored truncated complete censored truncated

Estimate 139.2 170.6 189.7 23.4 23.8 21.1
Note: Data source: http://www.icatdamageestimator.com. Measured in 2017 U.S.$ billions. See the main

text for a description of the three data type. Based on the k = 20 order statistics from Panel A.

larger than 91.13 given that the 2nd largest one (Sandy 2012) is already so devastating.

Hence treating Katrina as the observed sample maximum leads to smaller estimates than

if the largest one is left as unobserved. But such difference is small when estimating the

quantile Q (1− 5/n), which is relatively less affected by the sample maximum. Finally, all

three estimates are substantial amounts from macroeconomic perspective and hence indicate

a strong need of insurance.

6 Generalization to Stochastic Volatility Models with

Complete Data

In financial applications, the i.i.d. assumption is usually violated since data may exhibit

time series correlation and heteroskedasticity. To overcome this diffi culty, we can resort to

the stochastic volatility models with i.i.d. driving innovations. In particular, we assume an

AR(p̃)-GARCH(p,q) model (cf. McNeil and Frey (2000)). The conditional quantile of a one-

step ahead forecast then simply becomes the product of the square root of the conditional

heteroskedasticity function and the estimated quantile or TCE of the driving innovations.

We show that estimation error of the AR and GARCH parameters is negligible for our

asymptotic theory when the data is complete, so that we can apply our estimators to the

estimated innovations.2

2It is unclear about how to obtain a consistent estimator of the GARCH parameters with incomplete

data. If such consistent estimates were available, the approach introduced before can still be applied.
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More specifically, let Zt denote the real data which is assumed to be the following sta-

tionary time series

Zt = µt + σtYt

σ2
t = α0 + α1Y

2
t−1 + ...αqY

2
t−q + β1σ

2
t−1 + ...+ βpσ

2
t−p

µt = µ̄+ φ1Zt−1 + ...φp̃Zt−p̃.

where the innovation Yt is i.i.d. with CDF F , as specified in the previous discussion. As

standard in the literature, we assume that µt and σt are measurable with respect to Ft−1,

the information available up to time t− 1.

To estimate the unknown coeffi cients, we can apply the pseudo maximum likelihood

(PML) estimator, which maximizes the likelihood under the assumption of standard

Gaussian innovations. Given the PML estimator, we can back out the estimated condi-

tional mean and standard deviation series, denoted as {µ̂t} and {σ̂t}, respectively. Then,
the residuals can be calculated as

Ŷt =
Zt − µ̂t
σ̂t

which can be used as i.i.d. data for estimating VaR and TCE. The following theorem shows

that the error in fitting the AR-GARCH type models is asymptotically negligible if the

estimator of the coeffi cients is consistent.

Theorem 1 Suppose there exists a consistent estimator of the AR(p̃)-GARCH(p,q) coeffi -
cients for some known positive integers (p̃,p,q), then the estimated innovations {Ŷt} satisfy
the extreme value theorem, i.e., the largest k innovations with a fixed k,

(
Ŷn:n, ..., Ŷn:n−k+1

)
,

satisfy (3).

The proof is in the appendix. This theorem validates the weak convergence (3) for

the ordered estimated innovations
(
Ŷn:n, ..., Ŷn:n−k+1

)
, and hence the previously suggested

approach is applicable again. As a summary, our estimator can be implemented by the

following steps:

Step 1 For time t > n, fit the data {Zt, Zt−1, ..., Zt−n+1} with an AR-GARCH type model
and obtain the standardized innovations {Ŷt}

Step 2 Compute the empirical estimators or the fixed-k estimators Q̂ and T̂ by using the

largest k standardized innovations, denoted by Ŷt, and solving the Lagrangian prob-

lems (8) and (10).
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Step 3 Plug in the conditional mean and standard deviation at time t to construct the
one-step prediction of the VaR and TCE, that is, Q̂

(
Ŷt

)
σ̂t + µ̂t and T̂

(
Ŷt

)
σ̂t + µ̂t.

Appendix

A.1 Computational Details

The estimators defined in (8) and (10) require evaluation of the following items. Use the expression

for fX below (2), and define Γ (·) as the Gamma function and b0(ξ) = −1/ξ for ξ < 0, and b(ξ) =∞
otherwise. Also define e (xs, s) = exp

(
−(1 + 1/)

∑k
i=1 log(1 + ξxsis)

)
. Then for a positive Q̂ (Xs),

some calculations yield the following expressions.

1. For the complete data case, the asymptotic bias terms read

Eξ[
∣∣∣(X1 −Xk) Q̂ (Xs) +Xk − q (ξ, h)

∣∣∣ |Xs]fXs|ξ (Xs)

= Γ (k + 1)

∫ b0(ξ)

(1 + ξsq (Xs))−1/ξ sk−2e (xs, s) ds

Eξ

[
(X1 −Xk) T̂ (Xs) +Xk − τ (ξ, h) |Xs

]
fXs|ξ (Xs)

= T̂ (Xs) Γ (k − ξ)
∫ b0(ξ)

0
sk−1e (xs, s) ds

+

(
Γ (k − ξ)− Γ (k)

ξ
− τ (ξ, h) Γ (k)

)∫ b0(ξ)

0
sk−2e (xs, s) ds

and the risk terms read

Eξ[
∣∣∣(X1 −Xk) Q̂ (Xs) +Xk − q (ξ, h)

∣∣∣ |Xs]fXs|ξ (Xs)

= |ξ|−1
∫ b0(ξ)

0
g (s) sk−2e (xs, s) ds

where for a (s) = 1 + sξQ̂ (Xs)

g (s) =


(

−h−ξ(Γ[k]− 2Γ[k, a (s)1/ξ h])

+a (s) (Γ[k − ξ]− 2Γ[k − ξ, a (s)1/ξ h])

)
if a (s) > 0(

h−ξΓ[k]− a (s) Γ[k − ξ]
)

otherwise,

and

Eξ

[∣∣∣(X1 −Xk) T̂ (Xs) +Xk − τ (ξ, h)
∣∣∣ |Xs

]
fXs

= |ξ|−1
∫ b0(ξ)

0
g̃ (s) sk−2e (xs, s) ds
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where for a (s) = 1 + sξT̂ (Xs)

g̃ (s) =


(

−h−ξ

1−ξ (Γ[k]− 2Γ[k, a (s)1/ξ h (1− ξ)1/ξ])

+a (s) (Γ[k − ξ]− 2Γ[k − ξ, a (s)1/ξ h (1− ξ)1/ξ])

)
if a (s) > 0(

h−ξΓ[k]− a (s) Γ[k − ξ]
)

otherwise.

2. For the censored data case, the asymptotic bias term reads

Eξ

[(
1 + ξ

(
(Xm+1 −Xm+k) Q̂ (Xs

m) +Xm+k

))−1/ξ
|Xs

m

]
fXsm|ξ (Xs

m)

=
Γ (m+ k + 1)

m!

∫ b0(ξ)

0
(1 + ξsq (Xs))−1/ξ sk−2 exp

(
−m
ξ

log (1 + ξs)

)
e (xs, s) ds

and the asymptotic risk term reads

Eξ[
∣∣∣(Xm+1 −Xm+k) Q̂ (Xs

m) +Xm+k − q (ξ, h)
∣∣∣ |Xs

m]fXsm|ξ (Xs
m)

=
1

m! |ξ|

∫
g (k, h, ξ, s) exp

(
−m
ξ

log (1 + ξs)

)
e (xsm, s) s

k−2ds

where for a (s) =
(

1 + sξQ̂ (Xs)
)
,

g (s) =


(

−h−ξ(Γ[k +m]− 2Γ[k +m, a (s)1/ξ h])

+a (s) (Γ[k +m− ξ]− 2Γ[k +m− ξ, a (s)1/ξ h])

)
if a (s) > 0(

h−ξΓ[k +m]− a (s) Γ[k +m− ξ]
)

otherwise.

3. for the truncated data case, the asymptotic bias term reads

Eξ,h̃[
∣∣∣(X̃1 − X̃k

)
Q̂
(
X̃
)

+ X̃k − q (ξ, h)
∣∣∣ |X̃s]fX̃s|ξ,h̃

(
X̃s
)

= exp
(
h̃
)∫ b0(ξ)

0
Γ
(
k + 1, h̃ (1 + ξs)1/ξ

)(
1 + ξsq

(
X̃s
))−1/ξ

sk−2e (x̃sm, s) ds

and the asymptotic risk term reads

Eξ,h̃

[(
1 + ξ

((
X̃1 − X̃k

)
Q̂ (Xs) + X̃k

))−1/ξ
|X̃s

]
fX̃s|ξ,h̃

(
X̃s
)

= exp
(
h̃
)
|ξ|−2

∫ b0(ξ)

0
g (k, h, ξ, s) e (x̃sm, s) s

k−2ds

where for a (s) = 1 + sξQ̂
(
X̃s
)

g (k, h, ξ, s)
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=


ξ
(
−h−ξ(Γ[k, h̃ (1 + ξs)1/ξ]− 2Γ[k, a (s)1/ξ h]) + a (s) (Γ[k − ξ, h̃ (1 + ξs)1/ξ]− 2Γ[k − ξ, a (s)1/ξ h])

)
if ξ > 0, a (s) > h−ξ (1 + ξs) /h̃−ξ or ξ < 0, 0 < a (s) < h−ξ (1 + ξs) /h̃−ξ

ξ
(
h−ξΓ[k, h̃ (1 + ξs)1/ξ]− a (s) (Γ[k − ξ, h̃ (1 + ξs)1/ξ])

)
if ξ > 0, 0 < a (s) < h−ξ (1 + ξs) /h̃−ξ or ξ < 0, a (s) < 0 or ξ < 0, a (s) > h−ξ (1 + ξs) /h̃−ξ.

We evaluate these by numerical quadrature.

To determine the suitable Lagrangian multipliers λ and λ̃, we follow the algorithm suggested by

Müller and Wang (2015). In particular, for the complete and censored data case, we restrict λi and

λ̃i for i = 1 and 2 to be discrete distributions with support on Ξ = {−1/2,−1/2 + 1/19, . . . , 1/2},
and determine the 20 point masses by fixed-point iterations based on importance sample Monte

Carlo estimates of bias. In particular, we simulate the biases with 5,000 i.i.d. draws from a proposal

with ξ randomly drawn from Ξ, and iteratively increase or decrease the 20 point masses on Ξ as a

function of whether the (estimated) bias given that value of ξ is larger or smaller than zero. After

4000 iterations, the resulting discrete distribution is a candidate for the Lagrangian multiplier.

Regarding the truncated data, we take Ξ×H = {−1/2,−1/2 + 1/9, . . . , 1/2}×{0, 0.5, 1.0, 1.5, 2.0}
and compute the Lagrangian multipliers on this 10 × 5 grids. For the weighting function W , we

simply use a uniform weight on Ξ and an exponential weight on H for the truncated data. Note

that the choice of ξ ≤ 1/2 covers all the distributions with a finite second moment. Our approach

can be easily extended to cover larger range of ξ.

For any given k and h, the Lagrangian multipliers λ and λ̃ only need to be determined

once. Conditional on λ and λ̃, the estimator is readily computed from (8), (10), (11), and

(12). The tables of λ and λ̃ and corresponding Matlab code are provided on the website:

https://sites.google.com/site/yulongwanghome/.

A.2 Data with Known Censoring or Truncation value

In the censored data case, if the censoring value is also observed, we may still consider maximal

invariant introduced in Section 3.1. Denote the censoring value as c, we have

Yn:n − Yn:n−(m+k)+1

Yn:n−m − Yn:n−(m+k)+1
, ...,

Yn:n−(m+k)+1 − Yn:n−(m+k)+1

Yn:n−m − Yn:n−(m+k)+1
⇒ Xs

where xsi > t =
c−Y(m+k)

Y(m+1)−Y(m+k) > 1 for i ≤ m and xsi ∈ [0, 1] for i > m. The density of Xs
m =(

Xs
m+1, ..., X

s
m+k

)
can be derived as follows

fXsm = Γ (m+ k)

∫
1+ξxsi>0 for i≤m+k

sm+k−2 exp

(
−
(

1 +
1

ξ

)m+k∑
i=1

log (1 + ξxsis)

)
ds

fXsm|ξ (Xs
m) =

∫
...

∫
xs1≥xs2≥...xsm>t

fXs|ξ (xs) (dxs1...dx
s
m)
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= Γ (m+ k)

∫ b0(ξ)

0

sk−2

m!
(1 + ξts)−m/ξ exp

(
−
(

1 +
1

ξ

) m+k∑
i=m+1

log (1 + ξxsis)

)
ds,

and then the asymptotic bias and risk terms can be derived in a similar fashion.

In the truncated data case with a known truncation value c, we can still model c = Q
(

1− h̃/n
)

for some unknown h̃ since the quantile function Q (·) is unknown (and not easy to estimate).
Consider

Yn:n − Yn:n−k+1

c− Yn:n−k+1
, ...,

Yn:n−k+1 − Yn:n−k+1

c− Yn:n−k+1

⇒ X̃s (c) ≡ X̃1 − X̃k

qξ

(
h̃
)
− X̃k

, ...,
X̃k − X̃k

qξ

(
h̃
)
− X̃k

.

Given the density of X̃ remains the same as stated in Lemma /1, the density of X̃s (c) can be derived

in a similar fashion as

fX̃s|ξ,h̃

(
X̃s
)

= exp
(
h̃
)∫ b1(ξ)

0
Γ
(
k, h̃ (1 + ξs)1/ξ

)
sk−2e (x̃s, s) ds

where b1 (ξ) =∞ if ξ > 0 and −1/ (ξx̃s1 (c)) if ξ < 0, and similarly for the asymptotic bias and risk

terms as well.

A.3 Proof

Proof of Lemma 1. Given the CDF (2), it is equivalent to show that

Y(1) − bn, ..., Y(k) − bn
an

⇒
(

(hc + E∗1)−ξ − 1

ξ
,
(hc + E∗1 + E∗2)−ξ − 1

ξ
, ...,

(hc + E∗1 + E∗2 + · · ·+ E∗k)−ξ − 1

ξ

)

where E∗1 , ..., E
∗
k are i.i.d. standard exponentials. To show this, denote F

c (·) as the truncated CDF
by Q (1− hc/n), that is, F c (·) = F (·) / (1− hc/n). Define U (t) = F−1 (1− 1/t) and similarly for

U c (t). Then

Y(1), ..., Y(k)
d
= U c

(
1

1− e−E1,n

)
, U c

(
1

1− e−E2,n

)
, ..., U c

(
1

1− e−Ek,n

)
where E1,n...Ek,n are order statistics of n i.i.d. standard exponentials. Next, note that

U c
(

1

1−e−E1,n

)
= U

(
1

1−(1−hc/n)e−E1,n

)
. Then the proof follows from the same argument of Theorem

2.1.1 of de Haan and Ferreira (2007) and the fact that n (1− (1− hc/n) exp (−x/n))→ x+ hc.

Proof of Theorem 1. For notational ease, we prove the theorem without the autoregression

part, i.e., assuming φ = µ̄ = 0. The proof with it follows the same logic with more tedious algebra,
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and is available upon request. We start with the simplest GARCH(1,1) case, i.e., σ2
t = α0+α1y

2
t−1+

βσ2
t−1. By iteration, we have σ

2
t =

∑t−1
l=0 β

l(α0+α1y
2
t−1) and plugging in the PML estimator, denoted

as
(
α̂0, α̂1, β̂

)
, of the coeffi cients leads to an estimator of σ̂2

t , that is, ĥt =
∑t−1

l=0 β̂
l
(α̂0 + α̂1y

2
t−1).

Note that

sup
0≤w
| â+ wb̂

a+ wb
− 1| ≤ max(|a− â|, |b− b̂|)

min(a, b)

sup
0≤w
| âĉ+ wb̂

ac+ wb
− 1| ≤ max(|ac− âĉ|, |b− b̂|)

min(ac, b)

≤ max(a|c− ĉ|, c|a− â|, |c− ĉ| · |a− â|, |b− b̂|)
min(ac, b)

since

ac− âĉ = a(c− ĉ+ ĉ)− âĉ
= a(c− ĉ) + ĉ(a− â)

= a(c− ĉ) + (ĉ− c+ c)(a− â)

= a(c− ĉ) + c(a− â) + (ĉ− c)(a− â).

Thus, by repeated applications of these inequalities, we have

sup
y2t−1

| σ̂
2
t

σ2
t

− 1| ≤ max(β|α0 − α̂0|, β|α1 − α̂1|,max(α1, α0) supl |βl − β̂
l|)

α0

which converges to zero in probability by consistency of the PML estimator of the GARCH coeffi -

cients and α0 > 0.

Thus, supt |σ̂2
t /σ

2
t − 1| p→ 0, and also supt |σ̂t/σt − 1| p→ 0. Let Yt = Zt/σt and Ŷt = Zt/σ̂t, so

that Ŷt = Ytσt/σ̂t. Then these results also imply supt |Ŷt/Yt − 1| p→ 0. Now suppose Yt satisfies

(3), that is, 
Yn:n−bn

an
...

Yn:n−k+1−bn
an

⇒ X

where X is jointly extreme value distributed as below (3). Let I = (I1, . . . , Ik) ∈ {1, . . . , T}k be
the k random indices such that Yn:n−j+1 = YIj , j = 1, . . . , k, and let Î be the corresponding indices

such that Ŷn:n−j+1 = ŶÎj . We claim that I − Î p→ 0. Suppose otherwise, then (3) implies that

supt |Ŷt/Yt − 1| is not op(an). This contradicts supt |Ŷt/Yt − 1| p→ 0 (since an →∞).
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Thus, 
ŶÎ1
−bn
an
...

ŶÎk
−bn
an

 =


ŶI1−bn
an
...

ŶIk−bn
an

+ op(1)

= diag(
σI1
σ̂I1

, . . . ,
σIk
σ̂Ik

)


YI1σI1/σ̂I1−bn

an
...

YIkσIk/σ̂Ik−bn
an

+ op(1)

⇒ X

by the Slutzky’s theorem.

Now for GARCH(p, q) model, we have σ2
t = α0 +

∑q
i=1 αiy

2
t−i +

∑p
i=1 βiσ

2
t−i with α0 > 0,

αi ≥ 0, βi ≥ 0 and
∑p

i=1 βi < 1.

Let B(x) = 1 − β1x − β2x
2−, ...,−βpxp and A(x) = α1x + α2x

2+, ...,+αqx
q, then we have

B(L)σ2
t = α0 +A(L)y2

t

sup
y2t−1,...,y

2
t−p

∣∣∣∣ σ̂2
t

σ2
t

− 1

∣∣∣∣ ≤ sup
y2t−1,...,y

2
t−p

1

a0

∣∣∣α̂0B̂
−1(1)− α0B

−1(1) +
(
Â(L)B̂−1(L)−A(L)B−1(L)

)
y2
t

∣∣∣
≤ 1

a0

∣∣∣α̂0B̂
−1(1)− α0B

−1(1)
∣∣∣+ sup

y2t−1,...,y
2
t−p

1

a0

∣∣∣(Â(L)B̂−1(L)−A(L)B−1(L)
)
y2
t

∣∣∣
≤

∣∣∣B̂−1(1)−B−1(1)
∣∣∣+

B̂−1(1)

α0
|α̂0 − α0|

+ sup
y2t−1,...,y

2
t−p

1

a0

∣∣∣(Â(L)B̂−1(L)−A(L)B−1(L)
)
y2
t

∣∣∣
≤ op(1) +

(maxi α̂i)

a0
sup

y2t−1,...,y
2
t−p

∣∣∣(B̂−1(L)−B−1(L)
)
y2
t

∣∣∣
+

(
maxB−1(L)

)
a0

sup
y2t−1,...,y

2
t−p

∣∣∣(Â(L)−A(L)
)
y2
t

∣∣∣
= op(1)

where B−1(L) = 1
B(L) =

∑∞
j=1 bjL

j with coeffi cients bj decaying exponentially fast andmaxB−1(L)

denotes the maximum of {b1, b2, ...}. In the last inequality, we implicitly use the fact that the
consistency of B̂ implies the consistency of B̂−1. Then the rest of proof is the same as in the

GARCH(1,1) case.
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