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Magnetic Fields

The origin of the magnetic field is moving charges.

The magnetic field due to various current distributions can be
calculated.

—> Use Ampere’s law and Biot Savart law



Biot-Savart Law

Mathematical expression that gives the magnetic field at
some point in space due to a current.

The magnetic field described by the Biot-Savart Law is the

field due to a given current carrying conductor.
= Do not confuse this field with any external field applied to

the conductor from some other source.

The constant u, is called the permeability of free space.
wo =4n x 107 T-m/A = how well you can get a magnetic field

IN vacuum.



Biot-Savart Law

— ,u()] ds X T
dB =
A1t r?

e you want to find the field at point P

e ris the unit vector from the small
current distribution in the wire
pointing in the direction of P

e dB is perpendicular to r and ds
(cross product)

e dB is proportional to 1/r2

e dBis still function of the current
| and the element of length of the
wire ds

The direction of the held
1s out of the page at F.

/
/ .
/!
rf 6 »”
ds
o ' o

{lﬁitl

The cdirection of the hield
Is into the page at P'.
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Total Magnetic Field

What we just saw is a law to calculate
a magnetic field due to a small current

distribution in a small length element
ds.

— ,u()] ds X T
dB =
A 7r?

To find the magnetic field due to the
whole wire, you must integrate the
previous equation:

The direction of the held
1s out of the page at P.

o y,
d Bnut /’ !

The direction of the field

Is into the page at P'.



Magnetic Field Compared to Electric Field

Distance
= The magnitude of the magnetic field varies as 1/r2, the
iInverse square of the distance from the current source
= The electric field due to a point charge also varies as 1/r2,
the inverse square of the distance from the charge.

Direction
= The electric field created by a point charge is radial in

direction.

= The magnetic field created by a current element is
perpendicular to both the length element ds and the
unit vector.

Source
= An electric field is established by an isolated electric charge.
= The current element that produces a magnetic field must be
part of an extended current distribution.

= Therefore you must integrate over the entire current
distribution.

6



How to solve a problem

e Find magnetic field at point P.
e Use Biot Savard law.
e (Calculate the field due to a small current distribution

e |ntegrate to find the total field.



Magnetic Field for a Long, Straight

Conductor: Direction

The magnetic field lines are circles
concentric with the wire.

The field lines lie in planes
perpendicular to the wire.

The magnitude of the field is constant
on any circle of radius a.

The right-nand rule for determining
the direction of the field is shown.
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Magnetic Field for a Long, Straight Conductor

¥

— ~ . w ~ ~
|ds| = dx P; ds Xt = |ds X t|k = [dxsm (T - 0)}k = (dx cos 6)k
/
s A I 1 . 0 -
/9k (1) dB = (aB)k = =2 X7 ¢
/ 4T r-
T, "
// (2) r=— sec=1/cos
/ cos 6
r
Lo | e X = —atan 6
Ld—s} () —P a do
| 3) dx= —asec’d df = ——
5 o ] (3) dx a SeC os? 0
[{ adb 0s” 6 [
(4) dB = —t ( a(‘) )(COS‘., )cos() — oL cos 0 db
41 \cos" 0 a- 47T a

iy
41 a

(sin @, — sin 6,)

0,
' J cos 0 df =
4mra l,




Magnetic Field for an infinite,

Straight Conductor
7 i
B = £ , cos 0 df = = (sin @, — sin 92)
dmra l, dmma .
) J,
P9
If the conductor is an infinitely # | %
long, straight wire: //%J/\\\
0, = m/2 and 0, = /2 / %
7
The field becomes : 2
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Magnetic Field for a Curved
Wire Segment

Find the field at point O due to the wire segment.

Integrate, remembering / and a are constants
= 0 Isinradians

Mo 1ds a.-”
dB = A ! = A
Y a° P
0<‘:ﬁf0 '
\z\
B — o ! . J I — ol s g™~
4ara” 4ra”




Magnetic Field for a Circular Loop of Wire

Y

I |ds X r / ds . .
B = £° | - I = £o PR Field at point P
4ar re 47 (a” + x°)
I/ {
dB, = 0 5 = ST cos 0
47 (a” + x7)
B - %(utz ol § (l.icos(i
| 47 | a” + x°
0 a
cos ) = —— 179
(a“) + x“)' )

© Sopogo Lozl Al Picte Mosermd.

ol ds a ol a
B-\‘ = 4 9 9 9 9Yy1/9 = 9 9\ 9 /9 ds
4m | a® + x° [(a” + x%)/" 47 (a* + x°)*




Magnetic Field for a Circular Loop of Wire

Either go from the results of the curve

(slide 11): Field in the center of

Mol oy the loop, point O

B = = (af) = 0
dara” 41T a

= O = 21 for a full circle

1 1
p - Moty _ HOZ

Ad1a 2a

Or use the result from slide 12 at x = 0:

9'7"(/) = [.L(,[(Z2 — —'LLO[
= (a2 + x2)¥? 2

Mol a
47 (a” + x

B

X

2y

13



Magnetic Field Lines for a Loop

|
Figure (a) shows the magnetic field lines surrounding a
current loop.

Figure (b) compares the field lines to that of a bar magnet.

Notice the similarities in the patterns.
The field created is NOT uniform!

14



Magnetic Field Between Two Parallel
Conductors

F=ILxB

Use the right
hand rule!

The field at point P midway
between the two wires is 0.
The two contributions cancel out.

15


Matthew Szydagis
15


Magnetic Force Between Two Parallel

Conductors -
The field By due to the current in

F'=1Lx~B wire 2 exerts a magnetic force of
L and B are magnitude F] = ;£ B, on wire 1.
perpendicular so:

F, = L{B,

L5
.y (f(#” _)
2T a




Magnetic Force Between Two Parallel
Conductors I I

= Parallel conductors carrying
currents in the same direction
attract each other.

= Parallel conductors carrying
current in opposite directions repel
each other.

Often described as the force per unit length:

I'p _ podils
/ 27a

The derivation assumes both wires are long compared with their
separation distance.

= Only one wire needs to be long.
= The equations accurately describe the forces exerted on each

other by a long wire and a straight, parallel wire of limited length,




Ampere and Coulomb

The force between two parallel wires can be used to
define the ampere.

When the magnitude of the force per unit length between two
long, parallel wires that carry identical currents and are
separated by 1 mis 2 x 107 N/m, the current in each wire is
defined to be 1 A.

The Sl unit of charge, the coulomb, is defined in terms of
the ampere.

When a conductor carries a steady current of 1 A, the
quantity of charge that flows through a cross section of the
conductorin1sis 1C.

18



Conceptual Questions

1. Can you treat a current as point like, the same way you treat
charge”

2. What does Biot-Savart law allow you to do?

3. Is the magnetic field created by a current loop uniform?

19



Conceptual Questions

1. Can you treat a current as point like, the same way you treat
charge? NO!

2. What does Biot-Savart law allow you to do? Calculate the field
due to current distribution

3. Is the magnetic field created by a current loop uniform? No.
Slide 14

20



Example problem #1

2. In each of parts (a) through (c) of Figure P30.2, find
the direction of the current in the wire that would pro-
duce a magnetic field directed as shown.

“» » —’
* e B
Ot
— )
¥ X Bin
< 0
X » o ) .
}
B a | ®
e
& - 3 .-
I ® o
a » -
) o o ﬁ
ol . + -
Q ¢ -}..
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Example problem #1: Solution

Imagine grasping the conductor with the right hand so the tingers curl
around the conductor in the direction of the magnetic field. The thumb

then points along the conductor in the direction of the current. The
results are

(a) [toward the left| (b) |out of the page| (c) [lower left to upper right

stop here?

22
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Example problem #2

5.0 (@) A conducting loop in the shape of a square of
V) edge length € = 0.400 m carries a current 7 = 10.0 A
as shown in Figure P30.5. Calculate the magnitude
and direction of the magnetic field at the center of
the square. (b) What If? If this conductor is reshaped
to form a circular loop and carries the same current,
what 1s the value of the magnetic field at the center?

A

23



Example problem #2: Solution

(a) Use Equation 30.4 for the field produced by each side of the
square.

B_ Lol
dra

(sin6, —sin6,)

where 6, =45.0°, 6, =-45.0°, and a = ‘

Each side produces a field into the page. The four sides altogether
produce

B —4p— 4t

center 4 Ta

(sin6, —siné, )
I
)2
_2;101[ 2 }_2\/5;101

T/l NA T/l

[ sin45.0° —sin(—45.0°)]

V2

n_ 242 (47 x107 T-m/A)(10.0 A)
- 7(0.400 m)

=242 %107 T =| 28.3 uT into the page 24
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Example problem #2: Solution

(b) For a single circular turn with 4/=2#nR,

il el (47x107 T-m/A)(10.0 A)

2R 4 4(0.400 m)

=| 24.7 uT into the page

25



Example problem #3

There 1s no homework due on 3/14. No quiz on that day.
When’s your midterm exam? (note - *not™ OPEN book)

20
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There is no homework due on 3/14. No quiz on that day.
When’s your midterm exam? (note - *not* OPEN book)�


Example problem #3: Solution

Thursday, March 14: in this room, taking up the entire class slot (to 10:20)

* Between 5 and 10 problems to work out (Part I). Max 1-2 on magnetism

* About 10 multiple-choice / TvF / matching problems (Part I1)

* ~1-3 essay questions (Part Ill) by which | mean short answer.

Will include all material we have covered so far EXCEPT FOR no math problems from Ch. 29 (this one)

Bring: 1 calculator (NOT laptop or phone or tablet), 1 pen or pencil, and a formula sheet you write yourself (hint: look at all red boxes from lecture!)
One standard 8.5x11” sheet. Both sides. Any font size, anything you want

Constants will be provided to you, but formulas won’t be provided at all

UNLESS not a part of our class (e.g., geometry: volume of a sphere, etc.)

27
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Thursday, March 14: in this room, taking up the entire class slot (to 10:20)
* Between 5 and 10 problems to work out (Part I). Max 1-2 on magnetism
* About 10 multiple-choice / TvF / matching problems (Part II)
* ~1-3 essay questions (Part III) by which I mean short answer.
Will include all material we have covered so far EXCEPT FOR no math problems from Ch. 29 (this one)

Bring: 1 calculator (NOT laptop or phone or tablet), 1 pen or pencil, and a formula sheet you write yourself (hint: look at all red boxes from lecture!)
One standard 8.5x11” sheet. Both sides. Any font size, anything you want 
Constants will be provided to you, but formulas won’t be provided at all
UNLESS not a part of our class (e.g., geometry: volume of a sphere, etc.)�


Example problem #4

21. Two long, parallel conductors, separated by 10.0 c¢m,

carry currents in the same direction. The first wire car-
ries a current /, = 5.00 A, and the second carries /7, =
8.00 A. (a) What is the magnitude of the magnetic field
created by 7, at the location of 7,7 (b) What is the force
per unit length exerted by 7/, on 7,7 (¢) What i1s the
magnitude of the magnetic field created by /, at the
location of /,? (d) What is the force per length exerted
by I, on /,?

28



Example problem #4: Solution

Let both wires carry current in the x direction, the first at y = 0 and the
second at y = 10.0 cm.

ol ~ (47x107 T-m/A)(5.00 A)f(

(a) B=—"Lk=
2y 27(0.100 m)

B=|1.00x10" T out of the page

y

[,=8.00 A
- y=10.0cm

I,=5.00 A
-

&

29



Example problem #4: Solution

(b) Fy=1,0xB=(8.00 A)|(1.00 m)ix(1.00x 107 T)k ]|

_ -5 . N
=(8.00x 107 N)(—j) KA

N

.

ANS. FIG. P30.21(b)

|

» =| 8.00 % 10~ N toward the first wire

1, (_—12) _ (47x 107 T-m/A)(8.00 A) (_—12)

(c) B=
27(0.100 m)

27y

=(1.60x107 T)(-k|

ANS. FIG. P30.21(c)

wel
I

1.60x 107 T into the page

30
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Example problem #4: Solution
) B =L7xB=(500A) (100 m)ix(160x10~ T)(-k|]
=(8.00x 107 N))(+j)

p‘ i
5

! }2

|

» =(8.00% 10~ N towards the second wire




Example problem #5

There 1s V for electric field E. Does magnetic field B have an associated
potential?

32
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There is V for electric field E. Does magnetic field B have an associated potential?


Example problem #5: Solution

YES, but unlike Voltage 1t 1s a VECTOR not a SCALAR. It 1s called the
vector potential, A. (As a 4-vector in GR, V plays the role of time from space-
time)

33
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YES, but unlike Voltage it is a VECTOR not a SCALAR. It is called the vector potential, A. (As a 4-vector in GR, V plays the role of time from space-time)


Magnetic Field for a Long, Straight

Conductor: Direction

The magnetic field lines are circles
concentric with the wire.

The field lines lie in planes
perpendicular to the wire.

The magnitude of the field is constant
on any circle of radius a.

The right-nand rule for determining
the direction of the field is shown.

34
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Ampere's Law

 Remembering that the magnetic field in a long, straight
current carrying conductor is:

Ll

27r
* This equation is only valid for long straight wires. In
general the relationship between current in a wire of any
shape, and its magnetic field around it was derived by
Andre Marie Ampere.

B_

* For any arbitrary closed path around a current enclosed
by the area of the closed path:

35
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Ampere's Law

Ampere’s law is useful in calculating the magnetic field of a highly
symmetric configuration carrying a steady current.

small length element along the path
magnetic field J J P .
permeability of free

\_, \ _, / space
%B - dl = ,UOIencl

O\

integral over a closed path total current through any surface
bounded by the closed path

Ampere’s law describes the creation of magnetic fields by all
continuous current configurations.

Put the thumb of your right hand in the direction of the current
through the amperian loop and your fingers curl in the direction
you should integrate around the loop.

36



Ampere’'s Law

Electric
current

Magnetic field

\
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Field Due to a Long Straight Wire —
From Ampere’s Law

Calculate B at point P.

The current is uniformly
distributed through the
cross section of the wire.

Since the wire has a high
degree of symmetry, the
problem can be categorized as
a Ampere’s Law problem.

= Forrz R, this should be e
the same result as obtained
from the Biot-Savart Law.

38



Field Due to a Long Straight Wire —
From Ampere's Law '

Outside of the wire, r > R:
—> — i
%B rds = B#st = B(27r) = wuyl

/
B = - (for r= R)
2

This is what we found
with Biot Savart!

39



Field Due to a Long Straight Wire —
From Ampere's Law

Inside the wire, we need I, the
current inside the amperian circle.

]’ ’1772 1’ — r I

. 49
I/ TR? R

% ﬁ rds = 13(277") = uol’ = IJ‘”(

!
B = ( al (,)T (for r < R)
2w R~

The field is proportional to r inside
the wire.

The field varies as 1/r outside the
wire.

Both equations are equal at r = R.

40




Magnetic Field of a Toroid

Find the field at a point at O\
distance r from the center of 7N

\\\ -
N W H < )
™ / \}\\_\ 7 N \ R | ‘\\a_r‘, A 4(/
th ,ﬁ - P 75 2 - >
e O rO I ': \:\\ \\\ = '/
A . N
n |‘ ’ f\\\\ \\\
W\ / -
— )
. S—
o= f X

The toroid has N turns of wire.

The magnitude of the fieldis ~ ;, “~a, 5
constant on loop 1 (by / B A A
symmetry) and tangent to it at” / I Vars

all points. s L

—

f
OB :ds = B®ds= B(2mwr) = u NI The wire passes
_ J
through the loop N
#U‘VI times.

2 Current forms collection of
" loops (slide 11)

B =



Magnetic Field of a Solenoid

A solenoid is a long wire wound  Exterior
in the form of a helix.

The field lines in the interior are
= Nearly parallel to each other

= Uniformly distributed
= Close together

This indicates the field is strong and
almost uniform.

Interior

42 *




Magnetic Field of a Tightly Wound
Solenoid

The field distribution is similar to that of a

The magnetic field lines bar magnet' o

resemble those of a bar As the length of the solenoid increases,
magnet, meaning that the = The interior field becomes more
solenoid effectively has uniform

north and south poles.

= [he exterior field becomes weaker.

Effectively the solenoid
has a north and south
pole.

43



I d e a I S O I e n O i d Ampere’s law applied to the

rectangular dashed path can be
used to calculate the

An ideal solenoid is approached when: esmmroh s i aee
= The turns are closely spaced. 3
= The length is much greater than the
radius of the turns. =ttt e |
Qﬂ_r
2 B fields: I
- the external field: it is due to the current ® i,
moving from coil to coil (loop 1). Itis a
very weak field with circular field lines, : D 4+ ||
and you can use Ampere’s law on that & S 9
loop to calculate the field - B
- the field in the interior of the solenoid. Loop ]
You can use the rectangular amperian
loop to calculate this field. o

circular path whose plane is
perpendicular to the page can be
used to show that there is a weak

14 field outside the solenoid.

S Congoe Leamirg. NVHgS Bosarved.



Ampere’s Law Applied to a Solenoid

%B} ' dZ: ,u()fencl

Apply Ampere’s law on each side:

Side 2 and 4: B and dl are

perpendicular, so the dot product is O
Side 3: the field here is the external
field. B and dl are perpendicular.

Side 1: B and dl are parallel

= —> o —>
OB ds = B:‘ds = B
J J

path 1 path 1

’R

J

ds = Bt
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Ampere’s Law Applied to a Solenoid

The total current through the
rectangular ﬁath equals the current
through each turn multiplied by the
number of turns.

= n= N/ £ is the number of turns per
unit length.

This is valid only at points near the
center of a very long solenoid.

46
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Magnetic Flux

The magnetic flux associated
with a magnetic field is
defined in a way similar to
electric flux.

Consider an area element dA
on an arbitrarily shaped
surface.

dA Is a vector that is
perpendicular to the
surface and has a magnitude
equal to the area dA = normal
to the surface.

The magnetic flux ®g is the amount of magnetic field going
through the surface:

The unit of magnetic flux is T-m2 = Wb
= Wb is a weber

47



Magnetic Flux Through a Plane

¢B:/§dﬁ
dA

The magnetic flux is &g = BA cos 0. 1 >

In this case, the field is parallel to the

plane and perpendicular to the normal ”

and ¢g = 0.

In this case, the field is perpendicular -

to the plane and parallel to the normal |

and ® = BA. —
= This is the maximum value of the :

flux.

48
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Magnetic Flux through a rectangular loop

Find the flux through the loop Ay
due to the wire

| is up, use RHR to find field il |

direction A "
—> circle around the wire
Apply Gauss’law to find the
flux through the wire.

b

"
—

(t)“ - E '(/A

- p e A —

49



Magnetic Flux through a rectangular loop

I
=fb'd,4= Jﬂ-(m
29

o]
b, = J 20 b dr =

Holb [ i{
29 27T

r

Q,B:u'_»’l’f“"'ﬂ:Mln,.
2T r 2

C c

#n”’l (a + (.‘) Ih I
= n — lin
2 ¢ 27T

ate

(1+£
‘

50
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Gauss’ Law in Magnetism

Magnetic fields do not begin or end at any point.
= Magnetic field lines are continuous and form closed loops.
= The number of lines entering a surface equals the number
of lines leaving the surface.

Gauss’ law in magnetism says the magnetic flux through any
closed surface is always zero:

§|;§- dA =0 Maxwell’s 2nd equation!

THIS DOES NOT MEAN THAT THE FIELD IS 0!

This indicates that isolated magnetic poles (monopoles) can't
exist.

51



Example Problem #6

@Figure P30.31 is a cross-sectional view of a coaxial

cable. The center conductor is surrounded by a rubber
laver, an outer conductor, and another rubber layer.
In a particular application, the current in the inner
conductor is /; = 1.00 A out of the page and the cur-
rent in the outer conductor is 1, = 3.00 A into the
page. Assuming the distance 4 = 1.00 mm, determine
the magnitude and direction of the magnetic field at
(a) point a and (b) point b.

|, SRRy




Example Problem #6: Solution

(@) From Ampere’s law, the magnetic field at point a is given by
u'OIa
B, =

a

circle of radius r,. In this case, I, = 1.00 A out of the page (the
current in the inner conductor), so

. ~ (47x107 T-m/A)(1.00 A)
“  27(1.00x107 m)

, where [ is the net current through the area of the

-~ | 200 uT toward top of page ‘
_ 1],
2w,

(b) Similarly at point b: B, , where [, is the net current through

the area of the circle having radius .. Taking out of the page as
positive, [, =1.00 A -3.00 A =-2.00 A, or I, = 2.00 A into the page.

Therefore,

(47 %107 T-m/A)(2.00 A)

% T 2(3.00%10° m)

=| 133 uT toward bottom of page
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Example Problem #7

Solenoids allow for non-zero A but zero B to exist (outside of them). Can
that change the state of a particle? (push 1t towards the cylinder or away?)

54
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Solenoids allow for non-zero A but zero B to exist (outside of them). Can that change the state of a particle? (push it towards the cylinder or away?)


Example Problem #7: Solution

YES, but not 1n classical electromagnetism! And neither KE nor p
(momentum) can be changed, only the PHASE of the wave(/particle) in QM
- This 1s called the AHARONOV-BOHM EFFECT and 1t requires a loop

55
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YES, but not in classical electromagnetism! And neither KE nor p (momentum) can be changed, only the PHASE of the wave(/particle) in QM
- This is called the AHARONOV-BOHM EFFECT and it requires a loop�


Example Problem #8

46. Consider the hemispherical closed surface in Figure
P30.46. The hemisphere is in a uniform magnetic
field that makes an angle 6 with the vertical. Calculate
the magnetic flux through (a) the flat surface S, and
(b) the hemispherical surface S,.

56



Example Problem #8: Solution

(@) The magnetic flux through the tlat surface S, is

—_—

(@), =B-A=BrR*cos(180-6)=| -BrR*cos 6

(b) The net flux out of the closed surtace is zero:
((I)B)ﬂat + ((I)B )curved = O

Therefore,

(D) =| Bt R* cos6

curved

o7



Example Problem #9

435, Assigle-turn square loop of wire, 2.00 cm on each edge,
carries a clockwise current of 0.200 A. The loop is inside
a solenoid, with the plane of the loop perpendicular
to the magnetic field of the solenoid. The solenoid has

30.0 turns/cm and carries a clockwise current of 15.0 A.
Find (a) the force on each side of the loop and (b) the
torque acting on the loop.

58



Example Problem #9: Solution

(@) The field produced by the solenoid in its interior is given by

B = pynl (~i)=(47x107 T-m/A)(lgg'O J(lS.O A)(-i)

B=—(5.65x107 T)i (7

The force exerted on side AB of the square current loop is

(F;) , =ILxB=(0.200 A)

x [(200%107 m)jx(5.65x 102 T)(-i) |
ik

59
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Example Problem #9: solution

Similarly, each side of the square loop experiences a force, lying
in the plane of the loop, of

226 uN directed away from the center of the loop |.

(b) From the above result, it is seen that the net torque exerted on the
square loop by the field of the solenoid is |zero|. More formally,

the magnetic dipole moment of the square loop is given by
- X ) 2 _’.‘\ _ 2 A
fi=IA=(0.200 A)(2.00x 107 m)’(~i)=-80.0 A m? i @

The torque exerted on the loop is then

—

T=fixB=(-80.0 uA - m’ i)x(—5.65>< 102 Ti)=[0

60
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