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The point of this lecture

Electromagnetism has been connected to the study of forces in previous
chapters.

In this lecture, electromagnetism will be linked to energy.

By using an energy approach, problems that were insoluble using forces can
be solved.

The concept of potential energy is of great value in the study of electricity.

Because the electrostatic force is conservative, electrostatic phenomena can
be conveniently described in terms of an electric potential energy.

This will enable the definition of electric potential.
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So far we know...

* A charge creates an electric field detectable by dropping a
positive test charge in the field

* Any charge dropped in a field will move following electric field
lines

* The charge moves because it is subject to an electric force.

— |In other words, the charge moves because the electric field
exerts a work on the charge.



Reminder: What is Work ? eHysics 1

= characterizes the influence of a force on a system
= how much force you must apply on a system to
make it move

You must take into account the vector nature of the applied
force: its magnitude and its direction

Work is done by a force on an object W = /ﬁ - dS
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Work and Potential Energy

Work W is linked to potential energy U.

PHYSICS 1!!
W= AK work - kinetic energy theorem
potential energy
AK+ AU=0 conservation of energy = storage energy
- W=-AU

ds is a small displacement
tangent at each point to the
path of integration

In physics 1, the force is mechanical
In physics 2, it’s the electric force F=qE



Work by the electric force
on a charge

Work involves motion.
A charge placed in an E field will move, it will follow the electric field lines.

The field exerts a work on the charge.

:_AU_QO/Edg
AU = —qO/E" ds

— electric potential energy
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Electric Potential Energy

Remember that really what matters is the difference in potential energy,
because potential energy is defined by the change between two

points.
m — U=mghisreally AU=mgh-0

\ D +— define potential energy here to be 0

= Therefore the electric potential energy is defined between two charges.

= For a potential energy to exist, there must be a system of two or more
charges.

= The potential energy belongs to the system and changes only if a charge
is moved relative to the rest of the system

= The potential energy is characteristic of the charge-field system.
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Electric potential energy

When an object with mass moves

from point ® to point ®, the

gravitational potential energy of

the object—tield system decreases.
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When a positive charge moves

from point ® to point ®, the
electric potential energy of the
charge—field system decreases.
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Directions AU = —q [ Fas

System = positive charge in electric field , AU is negative
—> charge moves in direction of field
—> system loses electric potential energy
—-> the field does work on the charge

—-> the charged particle gains kinetic energy because of conservation
of energy

System = negative charge in electric field , AU is negative

—> charge should move in opposite direction of field,

In which case it loses electric potential energy

—> system gains electric potential energy if the AU = —q0 / E -ds

charge moves in the direction of the field (AU —— s

positive) negative  positive negative since

—-> for it to move in the direction of the field, an (decreases since g0 E and ds arein
with IS opposite

external agent must do positive work on the charge. increasing negative direction

displacement
ds)



Potential Energy and

Potential

AU:—QQ/E°d§

We can define a new quantity the potential V as the potential energy per unit

charge,

= The potentia
= The potentia
= The potentia

V = electric potential
U = potential energy
qo = test charge

IS characteristic of the field only.
Is iIndependent of any charges that may be placed in the field.
has a value at every point in an electric field.

The electric potential is a SCALAR quantity ( it has no direction)
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Change of potential

The difference in potential is the meaningful quantity.

As in physics 1, we often take the value of the potential to be zero at
some convenient point in the field.

The potential difference between two points exists solely because of a
source charge and depends on the source charge distribution.

unit of energy: joule J
AU S unit of charge: coulomb C
AV = - / L - ds unit of potential: J/C =V
qo :
Vis a volt

[Vl =[JVIC] = [N/C]Im]

= |t takes one joule of work to move a 1 coulomb charge through a potential
difference of 1 volt.

In addition, 1 N/C =1 V/m
= This indicates we can interpret the electric field as a measure of the rate of

change of the electric potential with respect to position.
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Example: charged particle
In uniform field

A positive charge is released from

rest and moves in the direction of
the electric field.

The change in potential is
negative.

AU -
AV =5~ [Eeas
4o
The change in potential energy

IS negative.

The force and acceleration are in
the direction of the field.

Conservation of Energy can be

used to find its speed. = - u — — =




Voltage

Electric potential is described by many terms.

The most common term is voltage.

A voltage applied to a device or across a device is the same
as the potential difference across the device.

= The voltage is NOT something that moves through a device.
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Electron volts (eV)

Another unit of energy that is commonly used in atomic and
nuclear physics is the electron-volt.

One electron-volt is defined as the energy a charge-field
system gains or loses when a charge of magnitude e (an
electron or a proton) is moved through a potential difference
of 1 volt.

=1eV=160x101°J
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Potential difference Iin a uniform

field

The equations for electric potential between
two points A and B can be simplified if the
electric field is uniform:

B
VB—VA:AV:—/ E - ds
A

—Fd

The displacement points from Ato B and is
parallel to the field lines.

The negative sign indicates that the electric
potential at point B is lower than at point A.

= Electric field lines always point in the
direction of decreasing electric
potential. 15

Point \B) 1s at a lower electric
potential than point ®.

|

Points and @ are at the

same electric potential.



Equipotentials

= All points In a plane
perpendicular to a
uniform electric field
are at the same electric
potential.

The name equipotential surface is
given to any surface consisting of a
continuous distribution of points having
the same electric potential.

16

Point 1s at a lower electric
potential than point ®.
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Points ® and © are at the
same electric potential.
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Equipotentials

A uniform electric field produced
by an infinite sheet of charge
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The equipotential lines are everywhere perpendicular to the field lines.



Equipotentials

An electric field produced by an The steep slope between the
electric dipole charges represents the strong

Vv electric field in this region.
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The equipotential lines are everywhere perpendicular to the field lines.



Equipotential for a Point Charge

A spherically symmetric electric The red-brown curve shows the 1/r nature of the
field produced by a point charge electric potential as given by Equation 25.11.
) 4
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25s->24s (ed. change)
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Example: potential due to point
charge at distance r

It is customary to choose a reference potential of V=0 at r = «.

B—»
VB—VA:—/ E-ds
A

—1
S P i
q - [0
—1 —1
— _keq[ oo]
— +k€g

T 20



An isolated positive point charge produces
a field directed radially outward.

What is the potential difference between
points A and B?

The electric potential is independent of the
path between points A and B.

21

The two dashed circles represent
intersections of spherical equi-
potential surfaces with the page.



Electric potential of multiple
charges



Potential Energy of Multiple Charges

U
V = q_ A potential k,q; /779 The potential energy of
© exists at point P due to the pair of charges is
charge ¢;. given by k,q1 qo/ r19.
v >
7”12 //// q1 7‘12 //// q1
e’ * 3
_; 4N
W St &

If the two charges are the same sign, U is positive and work must be done
to bring the charges together.

If the two charges have opposite signs, U is negative and work is done to

keep the charges apart. o3



Example: multiple charges

The potential energy of this
system of charges 1s given by
Equation 25.14.

(99, 99 _ 9.9
F2 fs T
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Example Problem 1

1. Oppositely charged parallel plates are separated

W by 5.33 mm. A potential difference of 600 V exists
between the plates. (a) What 1s the magnitude of the
electric field between the plates? (b) What 1s the mag-
nitude of the force on an electron between the plates?
(¢) How much work must be done on the electron to
move it to the negative plate if it is initially positioned
2.90 mm from the positive plater
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Example Problem 1: Solution

(@) From Equation 25.6,

E:‘AV‘: 600]/_(3: =11.13x10° N/C
d 5.33x107 m

(b) The force on an electron is given by

F=|g[E=(1.60x10" C})(1.13x10° N/C)=[1.80x10™ N

(c) Because the electron is repelled by the negative plate, the force
used to move the electron must be applied in the direction of the
electron's displacement. The work done to move the electron is

W=F-scosf=(1.80x10"* N}[(5.33-290)x 10~ m |cos0°

—4.37x1077 ]
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Example Problem 2

1. An msulating rod having lnear
charge density A = 40.0 uC/m and
linear mass density o = 0.100 kg/m
1Is released from rest in a uniform
clectric tield £ = 100 V/m directed
perpendicular to the rod (Fig.
P25.11). (a) Determine the speed of Ay
the rod after it has traveled 2.00 m. Figure P25.11
(b) What If? How does yvour answer
(o part (a) change 1if the electric field 1s not perpen-
dicular to the rod? Explain.

mY Y Y
mY YV Y
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Example Problem 2: Solution

Arbitrarily take V = 0 at the initial point. Then at distance d downfield,
where L is the rod length, V = -Ed and U, =—-ALEd.

(a) The rod-field system is isolated:
K;+U;=K,+U;

0+0= %mmdvz —qV

0= % ulv* — ALEd

% ulv® = ALEd

Solving for the speed gives

=
|l

22Ed  |2(40.0x107° C/m)(100 N/C)(2.00 m)
uo (0.100 kg/m)

=| 0.400 m/s

(b) | The same. | Each bit of the rod feels a force of the same size as

before.
08



Example Problem 3

25. Two particles each with charge +2.00 pC are located
on the xaxis. One i1s at x = 1.00 m, and the other is at
x = —1.00 m. (a) Determine the electric potential on
the y axis at y = 0.500 m. (b) Calculate the change in
electric potential energyv of the system as a third
charged particle of —3.00 wC 1s brought from infinitely
far away to a position on the yaxis at y = 0.500 m,
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Example Problem 3: Solution

(a) The electric potential at y = 0.500 m on the y axis is given by

vk kg, Z(keq)
1, 1, r
(8.99x10° N-m*/C*)(2.00x10™° C)
V=2 : :
J(1.00 m)* +(0.500 m)
V=322x10" V=[322kV

Y
p ¢ (0, 0.500 m)

2.00 uC 2.00 nC
@ @
(=1.00 m, 0) (1.00 m, 0)

ANS. FIG. P25.25

(b) The change in potential energy of the system when a third charge
is brought to this point is

U =qV =(-3.00x10° C})(3.22x10* ] /C)=| -9.65x 107 ]
30




Example Problem 4

7. Two  particles,  with
charges of 20.0 nC and
—=20.0 nC, are placed at
the points with coordi-
nates (0, 4.00 cm) and
(0, —4.00 c¢cm) as shown
in Figure P25.17. A par-
ticle with charge 10.0 nC
18 located at the origin.
(a) Find the electric
potential energy of the

configuration of the
three fixed charges.
(b) A fourth particle,

with a mass of 2.00 X

10" kg and a charge of

40.0 nC, 1s released from
restat the point (3.00 cm,

20).0 n(I'.

4.00 cm

10.0 nC L 3.00 cm »m30.0nC
= )

4.00 cm

~20.0 nCF

Figure P25.17

0). Find 1ts speed after it has moved freely to a very

large distance away.
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Example Problem 4: Solution

(@) Inan empty universe, the 20.0-nC charge can be placed at its
location with no energy investment. At a distance of 4.00 cm, it
creates a potential

kg, (899%x10° N-m?/C?)(20.0x10° C
v, = er%:( 004501)1(1 ) _ 450 kv

To place the 10.0-nC charge there we must put in energy
U, =q,V,=(10.0x10" C)(4.50 x 10° V) =4.50x 107 ]

Next, to bring up the —20.0-nC charge requires energy
U,, +U, =gV, +q,V, =q,(V, + V) At this pc?lnt, V1 is calculated at
" o , - thelocation of charge g3
=(-20.0x 10 C)(8.99x10° N-m?/C?)

" 10.0x10” C N 20.0x107 C
0.040 0 m 0.080 0 m

= 450x107° J—4.50x107 ]

The total energy of the three charges is same as formula on slide 24

U, +U, +U,, =| -4.50x107 ]
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Example Problem 4: Solution

(b) The three fixed charges create this potential at the location where
the fourth is released:

V=V +V,+V,
=(8.99x10° N-m?*/C?)
X( 20.0x107° C
J(0.040 0 m)* +(0.030 0 m)?

,100x107 C _ 20.0x10° C )
0.030 0m  {/(0.040 0 m)?+(0.030 0 m)>
V=300x10°V

Energy of the system of four charged objects is conserved as the
fourth charge flies away:

1,
—mo°+qgV
(2 1

=(lmv2 +qV
o\ 2

1

f

0+(40.0x10™ C)(3.00x10° V)= %(2.00>< 107" kg)v* +0

20x10™ ?
2x10™" kg
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Summary

W = /F -ds = —AU Electric force does work to move a charge
U

V = V, the potential, is the potential energy per unit charge

Potential is linked to potential energy and is
linked to electric field, through work.

AU - _, The - signh means that electric field lines
AV = =— | E-ds always point in the direction of decreasing
q0 potential.

V — q . . .
= +ke ; Potential due to a point charge, at a distance r

34



Finding the electric field
using the electric potential

AV:—/EJ§

SO.

Similar statements would apply to the y and z components.

Equipotential surfaces must always be perpendicular to the electric field lines
passing through them.
35



Finding the electric field
using the electric potential

oV

Ex
0X




Continuous charge distribution

Consider a small charge element dq
= Treat it as a point charge.

The potential at some point due to
this charge element is

= This value for V uses the reference of
V' = 0 when P is infinitely far away from
the charge distributions.

37



E field of a uniform ring of charge

dg de
(1) dE,= k,—,,/ cos = k,—; ) 5 cos 6
re a- + x-
X X
(2) cosf =— = — 91 1/9
r (a* + x°)'/*
r = ('](/ X a k,.x
db, = k, a® + x2 | (a2 + x?)2 - (a? + x2)%2 49 from earlier lectures
¥ " k, x : k. x J 1
o 9 oy a0 M = 0 2\3/2 a4
J (a2 + 22 " (@ + 222
k,x
(3) E= 5

(a“’ i xz)g.-'
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Uniformly Shaped Ring

P is located on the perpendicular
central axis of the uniformly charged
rng .

The symmetry of the situation
means that all the charges on the
ring are the same distance from
point P.
= The ring has a radius a and a
total charge Q.

The potential and the field are given

by
V = ke f ﬂ = keQ Unlike the electric field, the potential
\/a + X due to every single small charge
% distribution dq is the same.
E = € Q This is why you do not need to express

" (a2 + X° )3/2 dg in terms of r and ©.
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E field of uniformly charged disk

dE —Li’ dc. =dE cos ©

| dg dq from earlier
(11‘.1. = I‘ &(OQH = l, 22 4 12 cos f lecture

dg = o dA = o(2mrdr) = 2mwor dr e ‘ ‘,‘;‘.:)\
\ < ‘*%X
k x | dE
dE, = ——— (2mwor dr) dt
( 2 + .Y-).i &
o L
27 dy 9 - —_— =
E.=1 "TO" , - -
o 0 (I + X )§ (bs OL \/T2—|—372
*Note the dEx
® ... . changein (o5 O -
= kxmo| (r* + x°)7%d(r®) yariable JE
“A)
—9 R 2 , _ 0
— keajﬂ-0-|:(rr‘2 _|_ $2)1/2i|0 k'exﬂ-o-(_ (7"2 _|_ 332)1/2 - ZWk 2 l ( 9 + \2)| 2
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Uniformly Shaped Disk

dg = o dA = o(2mwrdr) = 2mordr

v k, dg k, ‘)Tr(r) (1: R S V2 4 42
av = f - = ~

/0 A N o
Vors + x* \/ re ~

Xﬂ\x
.1 |

, 2rdr |

Vi= mho

/o 0
0 Vot 4+ xT

dA = 27r dr
R
_ 1/9 dr
= k.o (= 4+ x°) V= 2rdr B
T
V= 2wka[(R*+ x°)'/* — x] .
dq
A : _
E = —— = ka,a[l - dV = k,—
dx (R + x°)" r

41



|

de A dx
R,—— = R, - -
' Va® + x°
-"
/\ ([ A
k

I. \/(I 4 x*

-4

dx
k,A ' — ‘
‘0 Va+ ‘\",
() — l
I(,.T In (\ -+ \/(l- +- .\;-)
| 0
(z : /o R
L+ Va6 -
Q (f +Va®+ ¢ 2)
— In
/'

Finite Line of
Charge

A rod of line £ has a total

charge of Q and a linear
P e charge density of A.
AN = There is no
AN symmetry to use, but
N the geometry is
! simple.
a \\T
N
\\ dq
\
N
\
. \
In a| —] R X
PN A
= ¢ >
42 Can you find the E field from this?
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Charged Conductor

At the surface: E is always perpendicular to , ,
the displacement so E.ds=0 Notice from the spacing of the

positive signs that the surface

Vis constant everywhere on the surface of

a charged conductor in equilibrium. charge density is nonuniform.
= AV = 0 between any two points on the - \
surface
The surface of any charged conductor in electrostatic I
equilibrium is an equipotential surface. ‘|

Inside the conductor: E=0, so V=constant
The electric potential is constant everywhere inside
the conductor and equal to the value at the surface.

The charge density is high where the radius of
curvature is small

= And low where the radius of curvature is large @

=1

The electric field is large near the convex points
having small radii of curvature and reaches very
high values at sharp points. 43



Cavity in a conductor

Assume an irregularly shaped cavity is
iInside a conductor.

Assume no charges are inside the cavity.

The electric field inside does not
depend on the charge distribution on
the outside surface of the conductor.

For all paths between A and B,

AV=0

A cavity surrounded by conducting
walls is a field-free region as long as

no charges are inside the cavity.
44

The electric field in the cavity 1s
zero regardless of the charge on
the conductor.
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Example Problem 5

t7. A wire having a uniform linear charge density A 1s bent
into the shape shown in Figure P25.47. Find the elec-
tric potential at point O.

Figure P25.47
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Example Problem 5 - Solution

V=k | if’ k. j@%

all charge

kA

J' itds J /ldx

V=-kAln(-x WR+7;ER+kXMﬂ

V= klln%+k A +kAIn3 =

k,A(7+21In3)
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